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Abstract—An effort to maximize memory bandwidth utiliza-
tion for a sparse linear algebra kernel executing on NVIDIA®
Tesla V100 and A100 Graphics Processing Units (GPUs) is
described. The kernel consists of a block-sparse matrix-vector
product and a series of forward/backward triangular solves. The
computation is memory-bound and exhibits low arithmetic inten-
sity. Along with a relatively small block size, the data layout poses
a challenge to effectively utilize the available memory bandwidth
on common GPU architectures. An earlier implementation using
a warp to process a single row of the matrix was found to yield
good memory performance on the V100 architecture. However, a
new approach, which assigns a warp to six rows of the matrix, is
proposed for the A100. In addition, two new features offered by
the A100 architecture are explored. L2 residency control enables
a portion of the L2 cache to be used for persistent data access,
and the asynchronous copy instruction allows data to be loaded
directly from main memory into shared memory. Demonstrations
show that the new implementation improves memory bandwidth
utilization from 71.5% to 81.2% of the peak available on the
A100 architecture.

Index Terms—memory bandwidth, Graphics Processing Unit,
cache, asynchronous

I. INTRODUCTION

FUNS3D is a suite of computational fluid dynamics software
developed at the NASA Langley Research Center to solve the
Navier-Stokes (NS) equations for a broad range of aerody-
namics applications across the speed range [ ]. FUN3D uses
an implicit time-integration strategy based on a node-based,
finite-volume spatial discretization on mixed-element unstruc-
tured grids. An approximate nearest-neighbor linearization of
the nonlinear residual equations for each control volume gives
rise to a large tightly-coupled system of block-sparse linear
equations that must be solved at each physical time step.
The block size is determined by the number of governing
equations and may range from five to several dozen. Multicolor
point-implicit iterations are used to solve the system of linear
equations. This effort focuses on the multicolor point-implicit
linear solver that accounts for a significant fraction of the
overall runtime in virtually all FUN3D simulations.

The solver kernel consists of a block-sparse matrix-vector
product and a series of forward/backward triangular solves.
The dominant computation is a block-sparse matrix-vector
product; for a broad range of applications encountered in
practice, 5 x 5 blocks are common. The off-diagonal matrix
coefficients are stored in a compressed sparse row (CSR)
format [ '], where two integer arrays capture the sparsity
pattern of the nonzero blocks in the matrix. The nonzero
blocks in a row are stored contiguously in memory, and the
scalar entries within a block are stored in column-major order.
The kernel is memory-bound with a low arithmetic intensity. In
such cases, it is critical to understand the increasingly complex
memory hierarchies of today’s advanced architectures and
how memory bandwidth and potential reuse of computations
can be effectively leveraged. For example, in the case of an
NVIDIA® Graphics Processing Unit (GPU), it is essential to
understand how to accommodate the application data layout
and restructure the solver algorithm to utilize the registers,
shared memory, L1 and L2 caches, and DRAM effectively.

The data layout of the sparse matrix in memory, along
with relatively small blocks, poses a challenge for GPU
architectures to utilize the memory bandwidth effectively.
Modern GPUs support the Single Instruction Multiple Thread
(SIMT) model, with a group of threads referred to as a warp.
The dimension of this thread group can vary from one GPU
architecture to another, and the group must process consecutive
memory locations to achieve coalesced memory accesses (Fig-
ure 1). This requires mapping a warp to one or more blocks of
a sparse matrix and restructuring the computation accordingly.
In summary, restructuring the computation is essential, and in
some cases, modifications to the underlying data layout may
even be required.

Many researchers have studied efficient implementations of
iterative solvers on GPUs [ ], [ '], and considerable effort has
focused on the optimization of the underlying sparse matrix-
vector product often required. Some representative work for
sparse matrix-vector products can be found in Refs. [ ]-[' '].
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Fig. 1: Structuring the computation to ensure coalesced mem-
ory accesses.

In addition, some implementations have been developed using
cuSPARSE library functions [ '], [ ]. An algorithm for high-
performance block-sparse matrix-vector products for PDE-
based applications on multiple GPUs has been addressed in
Ref. [/ ].

In our early work to optimize performance for block-sparse
matrix-vector products, an implementation that allocates a
number of warps to process a subset of the blocks in one
row of the sparse matrix was proposed [ ]. Here, we refer
to this implementation as the baseline implementation. Sev-
eral challenges were encountered, including a variable extent
of available parallelism, indirect memory addressing, low
arithmetic intensity, and the need to accommodate different
block sizes. To address these challenges, effort was focused
on coalesced memory loads, the use of shared memory and
prefetching, minimal thread divergence within warps, and
strategic use of shuffle instructions available on recent hard-
ware. This baseline implementation of the block-sparse matrix-
vector product showed performance gains of up to 7x over the
existing CUDA library functions available in cuSPARSE when
running on an NVIDIA® Tesla K40. In more recent work,
the baseline implementation was evaluated on the NVIDIA®
Tesla V100 and A100 architectures (hereafter referred to as
V100 and A100). It was found that the implementation does
not require modification on the V100 and yields 78% of the
peak bandwidth available on that hardware.! However, on the
A100, the baseline implementation yields just 71.5% of the
peak bandwidth.

For the A100 GPU, we propose a new implementation that
results in improved performance over the baseline. The major
architectural features that improve the performance of the new
implementation include higher HBM2 memory bandwidth,
larger cache sizes, and L2 residency support. The A100 has a
peak memory bandwidth of 1555 GB/s, a 73% increase from

I'Since the algorithm is memory bound, we evaluate the performance of
a particular implementation by observing the percentage of theoretical peak
bandwidth obtained.

the 900 GB/s available on the V100. The L2 cache is 40 MB,
which is 7x larger than that of the V100. Moreover, the L2
cache bandwidth is 2.3x that of the V100. The A100 also
supports L2 cache residency controls that enable a portion
of the L2 cache to be used for persistent data access. The
combined size of the L1 cache and shared memory is 192 KB,
which is 1.5x larger than that of the V100. Furthermore, the
A100 supports asynchronous copy instructions that load data
directly from device memory into shared memory, optionally
bypassing the L1 cache. In the current effort, these features
are leveraged to improve the memory performance of the
baseline implementation from 1104 GB/s to 1262 GB/s, which
represents 81% of the peak memory bandwidth on the A100.

The remainder of the paper is organized as follows. First,
details of the multicolor point-implicit algorithm are presented
in Section II. The test case used for evaluating the perfor-
mance of different implementations is discussed in Section III.
In Section IV, specific performance concerns for the GPU
implementation are introduced. For completeness, we review
the baseline implementation of the solver for prior NVIDIA®
GPUs in Section V. Section VI describes the new implementa-
tion optimized for the A100 architecture. Performance results
are presented in Section VII, and conclusions are provided in
Section VIIIL.

II. MULTICOLOR POINT-IMPLICIT SOLVER

For a spatial mesh containing n grid vertices, the implicit
approach used within FUN3D requires frequent solutions of a
large n x n linear system of block equations. The linear system
is of the form AAQ =R, where R represents the vector
of discrete nonlinear residual equations and A is an n X n
block-sparse matrix composed of dense ny x np blocks. The
quantity AQ is the vector of unknowns required to advance
the nonlinear solution Q¥ at time-level k£ to k + 1. The
coefficient matrix A is based on a strictly nearest-neighbor
stencil. To provide flexibility in the implementation, A is
additively split into diagonal and off-diagonal components that
are stored separately, namely,

A=D+0 ey

where D and O represent the diagonal and off-diagonal blocks
of A, respectively. The implementation in FUN3D uses 32-bit
precision for O and AQ, while 64-bit precision is used for
D and R. An FP16 representation of A was also explored in
[ ]

The block-sparse n x n matrix O contains nnz nonzero
ny X np blocks that are stored using a CSR format. Each of
the n rows and columns containing 7, X 1, blocks are referred
to as a brow and a bcol, respectively. Two integer arrays tam
and jam are used to efficiently capture the sparsity pattern of
the matrix. The array ¢am is a rank-1 array of size n+1 whose
i-th entry indicates the leading nonzero block index in the i-th
brow of O. The array includes an entry in the n+1 location to
facilitate traversal of the elements through the n-th brow. The
jam array is a rank-1 array of size nnz that provides the bcol
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Fig. 2: Figure (a) shows the sparsity structure of a matrix O.
An entry x indicates a nonzero block. Figure (b) shows O for
a block size of 2 x 2.

Algorithm 1 MULTICOLOR LINEAR SOLVER
I: AQ=0
2: for ¢ < 1 to niter do
3: for c < 1ton. do
4 Ar <+ Re — 0:.AQ
5: AQ. + DZ1Ar
6: end for
7: end for

index for each nonzero block. A third array is used to store
the block entries proceeding from iam(1) to iam(n+1)—1,
where the scalar entries within each n; x np block are stored
in column-major order. Figures 2 (a) and 2 (b) show a sample
block-sparse matrix with n; = 2 and the corresponding CSR
arrays, respectively.

Several linear-solver options are provided within FUN3D;
the scheme most commonly used in practice is the multicolor
point-implicit relaxation [ "], [ ] shown in Algorithm I. In
this approach, the grid vertices are grouped into n. color
groups, such that no two adjacent vertices are assigned the
same color. Typical values of n. for meshes encountered in
practice are 10-15. Since the matrix A involves only a nearest-
neighbor stencil, unknowns within a color may be updated in
parallel in a Jacobi-like fashion. Color groups are processed
sequentially, where solution updates within each color depend
solely on the latest values of AQ in neighboring color groups.
The overall process may be repeated using n;se, SWeEps over
the entire system. Exact solutions to the linear system are
not sought in practice; small values of n;.,, which provide
suitable convergence of the nonlinear solution, are generally
used.

To improve memory performance, the system of equations
is renumbered such that unknowns within a color appear
in consecutive order. In Algorithm 1, O, and D, represent

Fig. 3: Wing-body configuration taken from Ref. [ ].

submatrices of O and D, respectively, for the unknowns
contained in color c. R, represents the nonlinear residual
subvector defined by unknowns belonging to color c. Line 4 of
Algorithm 1 represents a standard block-sparse matrix-vector
product. Line 5 requires an inversion of each n; x n; block
of the matrix D.. Here, a lower-upper (LU) decomposition of
these blocks is computed beforehand and stored in place. The
solution for the current block row is then obtained through
a forward-backward substitution procedure. Throughout this
work, the terms block row and row are used interchangeably,
both referring to a matrix row of n; x n; dense blocks.

In addition to the shared-memory programming model pre-
sented here, the solver also accommodates an MPI message-
passing approach using a standard domain-decomposition
strategy for architectures with multiple sockets and/or multiple
NUMA domains, as well as general multinode, distributed-
memory environments necessary for large-scale simulations.
To recover the serial algorithm using this approach, halo
exchanges of partition boundary data are performed before
processing the next color. To hide communication latencies
associated with these halo exchanges each color group is
further subdivided into values along partition boundaries and
those remaining values lying entirely interior to the partition.
When processing the unknowns within a color group, values
along partition boundaries are determined first, then non-
blocking MPI calls are used to initiate halo exchanges with
neighboring partitions. Values interior to the partition are then
evaluated while halo values are in flight. At the completion
of the current color, each process waits for communication to
complete prior to initiating the next color.

III. TEST CASE

The test case used here is based on transonic turbulent
flow over the semispan wing-body [ '] configuration shown
in Fig. 3. The freestream Mach number is 0.85, the angle of
attack is zero degrees, and the Reynolds number, based on
the mean aerodynamic chord, is 5 million. The computational
mesh consists of 1.1 million grid vertices, 1.2 million prisms,
3.0 million tetrahedra, and 7.3 thousand pyramids. This prob-
lem size is representative of the workload that would typically
be placed on a single compute node in practice. For the pur-
poses of the current study, a single linear system with n, =5
is extracted from an arbitrary time step during the nonlinear
convergence of the mean flow equations. The linear system



contains a total of 19 million nonzero off-diagonal blocks, or
an average of approximately 17 off-diagonal blocks per mesh
vertex. Timings reported below correspond to nte, = 15.

IV. GPU-RELATED PERFORMANCE CONCERNS

The GPU device is best suited for computations that can be
executed concurrently on multiple data elements. In general,
a computation is partitioned into thousands of fine-grained
operations, which are assigned to thousands of threads on
a GPU device for parallel execution. The GPU hardware
consists of a number of streaming multiprocessors (SMs),
which in turn consist of multiple cores. Threads are organized
in blocks, or cooperative thread arrays (CTAs), where one
or more blocks run on an SM. On NVIDIA® GPUs, the
threads in a block are further partitioned into subgroups of
32 threads, or warps. Threads within the same block are able
to explicitly synchronize and have access to a small (e.g., 48
KB) but fast shared-memory scratchpad that is local to each
SM. This facilitates efficient sharing of data across threads in
the block. Threads within the same warp can exchange data
directly using register shuffles, which are generally faster than
shared-memory accesses, and can synchronize more efficiently
than at the block level.

One of the significant challenges in achieving high perfor-
mance for the current algorithm is its low arithmetic intensity.
The block-sparse matrix-vector product dominates the overall
execution time and is characterized by an arithmetic intensity
of approximately 0.5, resulting in a memory-bound scenario
on the GPU architecture. A naive implementation might map
a GPU thread to process a single row block. To process rows
of the same color concurrently, one could launch a GPU
kernel with as many threads as the number of row blocks
in that color. Such an approach generally yields very poor
performance, exhibiting approximately 8% of peak memory
bandwidth utilization on the V100. The roofline model shown
in Fig. 4 illustrates qualitatively the shortcomings of such
an approach, where the low achieved bandwidth ultimately
results in very low computational throughput. The objective is
therefore to design a kernel that can maximize performance
by utilizing the available memory bandwidth as effectively as
possible. Increasing the arithmetic intensity of the kernel by
enabling efficient reuse of vector elements available in cache
offers an opportunity to further improve performance.

V. BASELINE GPU IMPLEMENTATION

To develop an efficient GPU implementation of the multi-
color point-implicit solver, functions provided by the cusS-
PARSE [ '] and cuBLAS [ ] libraries were initially consid-
ered. The function cusparseSbsrmv multiplies a block-sparse
matrix with a vector, and the function cublasStrsmBatched
solves block systems of equations by performing forward
and backward substitutions using an LU-decomposition of the
diagonal block. Experiments showed that this approach yields
suboptimal performance for linear systems representative of
those encountered in typical FUN3D simulations.
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Fig. 4: Roofline model for V100 and a naive kernel imple-
mentation.

Instead, optimized CUDA implementations of these func-
tions were developed in [ ]. To perform a block-sparse
matrix-vector product, the proposed algorithm allocates a
number of warps to process a subset of the blocks in a single
row of the sparse matrix. The mapping of a warp to process
a block of a sparse matrix with n;, = 5 is illustrated in
Figure 5. To perform forward and backward substitutions, a
second kernel is invoked that assigns a single warp to process
one diagonal block. Several challenges were encountered,
including a variable extent of available parallelism, indirect
memory addressing, low arithmetic intensity, and the need
to accommodate different block sizes. To address these chal-
lenges, particular emphasis was placed on coalesced memory
loads, the use of shared memory and prefetching, minimal
thread divergence within warps, and strategic use of shuffle
instructions available on recent hardware. Depending on the
value of ny;, the new implementations realized performance
gains of up to 7x over existing cuSPARSE and cuBLAS library
functions.

VI. NVIDIA® A100 GPU IMPLEMENTATION

A new implementation that distributes workload amongst
threads in a different manner is proposed. Recall that a warp
is used to process a single row-block of the matrix in the
baseline approach. In the new formulation, a warp is used
to process six row blocks of the sparse matrix, as shown in
Figure 6. Note that five consecutive warp threads are assigned
to process a row block in the new algorithm. In this manner, 30
threads of a warp are utilized, resulting in a higher efficiency
of 30/32 compared to that of the baseline approach, 25/32.
In addition, the new algorithm works with fewer blocks than
the baseline algorithm for identical block sizes. Consequently,
the new algorithm executes fewer rounds of thread blocks on
an SM. Instead, each thread in a block is doing more work,
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threadIdx.x % 5;
threadIdx.x / 5;
start+blockIdx.x*blockDim.y+threadIdx.y-1;

=
nounn

if ( (n < end) && (1 < 5)) {
istart = iam[n];
iend = iam[n + 1] - 1;
for (j=istart-1 ; j < iend; j++) {
colid = jam[j];
fk += A_OFF(k, 1, j)*DQ(1l,colid-1);

}
sm_f[k]1[1][threadIdx.y] = fk;

Fig. 5: Assignment of a warp to process a complete 5 X 5
block to ensure that consecutive threads of the warp load and
process data from consecutive locations of device memory.
The 25 active threads of a warp process a complete row one
block at a time, and aggregate partial results into a 5 x 5 block.
Note that the active threads are selected by the if construct.
The columns of the final aggregated block are reduced using
shuffle instructions or shared memory (not shown here).

and at any given time, there are many more active memory
requests than the baseline implementation.

The code segment that highlights the kernel computation is
shown in Figure 7. Note that a thread loads five values of row
k of the dense 5 x 5 block, lines 8 — 12, along with the five
vector values to be multiplied. After multiplication, the five
partial results are stored in registers fkO to fk4. The partial
results are accumulated for all dense blocks in a row inside
the for loop. At the end of the loop, the five consecutive warp
threads collectively hold a dense 5 x 5 block of accumulated
results. The accumulated results in registers fkO to fk4 are
aggregated in register fk (line 14).

We now discuss how a bigger L2 cache on the A100 ar-
chitecture helps this implementation. Initially, we assume that
a warp performs aligned accesses. The impact of misaligned
accesses will be considered later. At the beginning of the
iteration, each active thread of the warp loads an element of
the sparse matrix into register fkO (line 8). This results in
a warp loading six cache lines into L2 that are far apart in
memory, while only five values from the beginning of each
cache line are used. In subsequent processing, lines 9-12, the
rest of the cache line values in L2 are used by the warp. A
bigger L2 is able to hold these cache lines for subsequent
consumption before evicting them.

The impact of alignment is now considered for the specific
case of 5 x 5 dense blocks (25 values). Clearly, misaligned
accesses will occur while processing dense blocks in a row.

row-block #0

row-block #1

row-block #5

Fig. 6: Assignment of a warp to process 6 row blocks. Five
consecutive threads of a warp process a row block. A total of
30 threads of a warp are active.

// sub-matrix row index

int k = threadIdx.x % 5;

3 // Block row index offset by block/warp.

4 int brow = threadIdx.x / 5 + 6 * blockIdx.x;

S

5 int istart = iam[brow], iend = iam[brow+1];
¢ for (int j = istart; j < iend; J++) {

7 bcol = jam[j] - 1;

§  fk0 += A_OFF(k, 0, j) % DQ(0, bcol);

9 fkl += A_OFF (k, 1, Jj) * DQ(1l, bcol);

10 fk2 += A_OFF (k, 2, Jj) * DQ(2, bcol);

1 fk3 += A_OFF(k, 3, 3j) % DQ(3, bcol);

12 fk4 += A_OFF (k, 4, Jj) * DQ(4, bcol);

13}

4 fk = fk0 + fk1l + fk2 + fk3 + fk4;

Fig. 7: Code segment of the kernel to illustrate how five
threads of a warp cooperate to process a row block.

Since a cache line is 128 bytes, an aligned access only requires
a single cache line to process a dense block. However, most
accesses will be misaligned, and as a result we will be fetching
two cache lines to process a dense block. However, the fetched
values in L2 that are not being used in the current iteration
of the loop will be used in the subsequent iteration. In this
manner, the effects of misaligned accesses are minimized.

A. Storing Persistent Data in L2

For the block-sparse matrix-vector operation, the sparse
matrix values are only used once. However, there is a reuse of
the vector values, and enabling the vector data to persist in the
L2 cache offers an opportunity to reduce the memory traffic
between device memory and L2. The A100 architecture offers
a new feature that allows a portion of the L2 cache to perform
persistent data accesses to device memory, which ultimately
enables higher bandwidth and lower latency accesses to device
memory.

On the A100, the CUDA version 11 toolkit offers API
functions to set aside a portion of the 40-MB L2 cache to
perform persistent data accesses to global memory. Note that
these accesses have priority use of the allocated L2 cache;



cudaDeviceProp prop;

cudaGetDeviceProperties ( &prop, device_id);

// set-aside 3/4 of L2 cache for persisting

accesses

5 size_t size =
0.75),

6 prop.persistingL2CacheMaxSize );

7 cudaDeviceSetLimit (
cudalimitPersistingL2CacheSize,

8 size);

9 // Stream level attributes data structure

10 cudaStreamAttrValue stream_attribute;

11 // Global Memory data pointer

12 stream_attribute.accessPolicyWindow.base_ptr

T

min( int (prop.l2CacheSize x

13 reinterpret_cast<voidx> (dg_dev);
14 // Number of bytes for persisting access
15 stream_attribute.accessPolicyWindow.num_bytes

16 (1123718 = 1.0
float) ;

17 stream_attribute.accessPolicyWindow.hitRatio
= 1.0;

* 5 * sizeof(

Fig. 8: Setting accesses to AQ in global memory to persist
in the L2 cache.

however, conventional accesses may use this reserved L2
cache when unused by persistent accesses. The stream level
attributes data structure is used to set the region of the device
memory which will persist in L2 cache when initially accessed
as shown in Figure 8. The starting address in global memory
is specified along with the number of bytes. If some fraction
of global memory accesses are designated as persistent, the
value of the hit ratio must be specified. A value of 1 is used
here.

B. Prefetching the AQ Vector

Two shared memory buffers are used to prefetch the AQ
vector. While processing a dense 5 x 5 block, the algorithm
reads the required AQ values from a preloaded buffer. The
AQ values needed for processing the next dense block are
simultaneously loaded into the second buffer. These buffers
are then toggled and the process continues until completion.
The code segment that highlights this prefetching is shown in
Figure 9.

C. Asynchronous Copy

The A100 GPU supports an asynchronous copy instruction
that loads data in the background while computations are
occurring. Moreover, the data are loaded directly from global
memory into shared memory without the use of intermediate
registers. This feature has the potential to hide memory la-
tency and reduce register file usage. Here, the capability has
been used for the forward/backward substitution procedure
that follows the block-sparse matrix-vector product in the
solver algorithm. Loading the diagonal block required for
forward/backward substitution is overlapped with the matrix-
vector computation using this asynchronous memory copy
operation, as shown in Figure 10.

w o

// number of row blocks processed by a warp
const int NRWP = 6;

_ _shared__ float s_dqgq[2][5 = NRWP];

float* dg _next = s_dg[0], dg_cur = NULL;

// sub-matrix row (k) and block row (r)

int k = threadIdx.x % 5, r = threadIdx.x / 5;
dg_next[k * NRWP + r] = DQ(k, Jjam[istart]-1);
int bind = 1;

for ( j = istart; j < iend - 1; J++) {
dg_cur = s_dg[(bind - 1) % 2];
// prefetch next index
auto bcol = jam[j+1] - 1;
dg_next = s_dqglbind % 2];
fk0 += A_OFF (k,0,j) » dg_cur[0 = NRWP + r];
fkl += A_OFF (k,1,j) * dg _cur[l x NRWP + r];
fk2 += A_OFF (k,2,3) * dg_cur[2 * NRWP + r];
fk3 += A_OFF (k,3,]) » dg_cur[3 x NRWP + r];
dg_next[k * NRWP + r] = DQ(k, bcol);
fk4 += A_OFF (k,4,]3) x dg_cur[4 %= NRWP + r];
bind = bind + 1;
}
dg_cur = s_dqg[(bind - 1) % 2];
j = iend - 1;
fk0 += A_OFF (k,0,j) » dg cur[0 = NRWP + r];
fkl += A_OFF (k,1,j) » dg_cur[l = NRWP + r];
fk2 += A_OFF (k,2,]) » dg_cur[2 x NRWP + r];
fk3 += A_OFF (k,3,]) » dg_cur[3 = NRWP + r];
fk4 += A_OFF (k,4,]) » dg_cur[4 = NRWP + r];

Fig. 9: Prefetching AQ using shared memory.

namespace cg = cooperative_groups;
auto block = cg::this_thread_block();
__shared__ double s_a_diag_lu[NRWP=x25];

int
int

lane_id / nb ;
* NRWP +

rowid_local =
n = start + blockIdx.x
rowid_local - 1;
int n0 = start + blockIdx.x = NRWP - 1;
if ((n < end) && ((lane_id < NRWP * nb))) {
auto active_block = cg::coalesced_threads();
// prefetch diag matrix values into shared
memory
cg: :memcpy_async (
active_block,
s_a_diag_1lu,
&a_diag_lu[n0 x 25],
sizeof (double) = 25 % NRWP
) i
// prefetching overlaps with row block SpMV
for ( j = istart; j < iend - 1; Jj++) {
// process a row block
}
// wait for prefetch access to complete
cg::wait (active_block) ;

// use a_diag_lu_shared here

Fig. 10: Asynchronous memory copy to hide latency.



TABLE I: Designation for various implementations.

Designation Approach
11_0 One warp per row
11_1 11_0 with L2 residence control
11_2 11_1 with asynchronous memory copy
16_0 One warp per six rows
16_1 16_0 with L2 residence control
16_2 16_1 with asynchronous memory copy

VII. RESULTS

To evaluate the performance of different mapping algo-
rithms and the new features of the A100 hardware, six variants
of the solver kernel were explored as outlined in Table I. Recall
that L2 persistency and asynchronous memory transfers to
shared memory are not available on the V100 architecture.
Experiments were performed using V100 and A100 GPUs
with 16 and 40 GB of memory, respectively. Computations
using the V100 were based on version 11.0 of the CUDA
toolkit, while the A100 results were generated using version
11.2. The correctness of outputs was validated against CPU-
generated data using a checksum. To determine execution time,
the minimum time observed over ten successive executions of
the kernel was used.

Table II shows the overall performance in milliseconds (ms)
for each of the kernel variants on both architectures. The
baseline algorithm yields results of 48.6 ms and 30.9 ms on
the V100 and A100, respectively. The use of L2 persistency
and asynchronous memory copies improve the result on A100
to 27.6 ms. When a warp is applied to six rows of the matrix,
performance for both GPUs is degraded; however, the options
to leverage L2 persistency and asynchronous memory copies
enable improved timings. The most performant approach is the
six-row formulation on the A100 with the use of L2 control.
Note that all tests using L2 control kept the complete AQ
vector persistent in L2.

The results shown in Table III indicate that the performance
of the original mapping algorithm designated as 11_0 is lower
on the A100 than the V100 in terms of bandwidth efficiency.
On the V100, 78.6% of the peak bandwidth was observed,
but only 71.5% was noted on the A100. However, when the
new features available on the A100 are used, the performance
improves from 71.5% to 80.1%.

The A100 performance improvement is primarily due to the
L2 residency control feature. A further slight improvement
is observed when using asynchronous memory copies. The
new mapping algorithm and L2 residency control give an
overall performance of 81.2%, slightly better than the original
mapping algorithm with the new A100 features. Attempts were
made to measure the impact of the L2 residency control feature
on memory traffic; however, these attempts were unsuccessful
since the NVIDIA profiler clears the L2 cache after multiple
passes through the kernel to gather data.

TABLE II: Execution time in milliseconds for various imple-
mentations on V100 and A100.

11.0 11_1 11.2 160 16_1 16_2
V100  48.6 - - 60.5 - -
A100 309 27.8 27.6 316 272 282

TABLE III: Memory bandwidth performance for various
implementations on V100 and A100 in GB/s and percentage
of peak.

11_0 11_1 112 16_0 16_1 16_2

V100 707 - - 568 - -
(78.6%) - - (63.1%) - -

A100 1,112 1238 1246 1,088 1262 1,220
(71.5%) (719.6%) (80.1%) (70.0%) (81.2%) (78.4%)

VIII. SUMMARY AND CONCLUSIONS

This paper described two implementations for a memory-
bound sparse linear algebra kernel on the NVIDIA® Tesla
V100 and A100 GPU architectures. To achieve optimal perfor-
mance for such algorithms, it is critical to utilize the memory
bandwidth effectively, which requires global memory requests
to access consecutive memory locations. Results showed that
restructuring the computation to support the desired mem-
ory access pattern improves performance. In addition, new
features available on the A100 architecture were explored,
including L2 residency control and asynchronous memory
copies. The new implementation improves memory bandwidth
performance on the A100 from 1104 GB/s to 1262 GB/s, or
81% of the peak memory bandwidth available.
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