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Complex memory hierarchy
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Buffers with different access patterns
• Streamed accesses (Predictable, bandwidth bound)
• Pointer chasing (Unpredictable, latency bound)
• Random accesses (Unpredictable, latency bound)
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How and where to allocate memory?

• It depends on the needs
> Where is the computation happening?
> What are the memory systems available?
> How is the data accessed?

• How portable is the solution?
> Relying on vendors’ solutions (manually)
> Relying on heterogeneous aware libraries (Umpire, SICM, etc.)
> Relying on the system allocations’ policy to use the correct

NUMA node

Last approach privileged
Problem: the NUMA distance doesn’t enclose all related
information.
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Problem Statement

• Data placement is essential for achieving optimal performance
• We need a quantitative evaluation of data “needs”
• We need a quantitative evaluation of memory characteristics

The general problem becomes
How to evaluate the fit between complex data accesses and
complex memory architecture?

6 — MCHPC’21 — C. FOYER, B. GOGLIN



Problem Statement

• Data placement is essential for achieving optimal performance
• We need a quantitative evaluation of data “needs”
• We need a quantitative evaluation of memory characteristics

The general problem becomes
How to evaluate the fit between complex data accesses and
complex memory architecture?

6 — MCHPC’21 — C. FOYER, B. GOGLIN



7 — MCHPC’21 — C. FOYER, B. GOGLIN

Creating Heterogeneity
02



• New technologies are required to test the placement
algorithms
> Either we buy expensive new hardware

− very few different platforms available yet
> Or we find a way to create heterogeneity within the existing

systems

• Bandit (Bandwidth or Latency)
• Resource Control

> Added in Linux kernel 4.10
> Expose control over L3 cache
> Cache partitioning
> Bandwidth throttling

• Bandwidth throttling affect the L3 cache ↔ DRAM I/O bus
• Granularity can be in percentage (Intel) of the total BW or

arbitrary (AMD)
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Platform evaluation: Intel

Machine (1920 GB total)
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Figure: Topology of the dual Intel Cascade Lake Xeon Gold 6230
platform as reported by lstopo (factorized version), with 2 Optane
PMM DIMMs (dax mode).
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Platform evaluation: Intel
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Figure: STREAM benchmark
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Platform evaluation: Intel
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Platform evaluation: Intel

• Big granularity when allocating the bandwidth
> 10% steps

• Strong NUMA effect on bandwidth
• Little effect of the bandwidth throttling on application

> Need to use a very restrictive setting to observe an effect
• Bandwidth limitation shows no effect on latency
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Platform evaluation: AMD
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Figure: Topology of the dual AMD Zen2 Rome EPYC 7502 platform, as
reported by lstopo (factorized version).
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Platform evaluation: AMD
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Platform evaluation: AMD
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Platform evaluation: AMD
• Small granularity when allocating the bandwidth
• No NUMA effect on bandwidth (with interleaved memory

allocation)
• Wide range for the throttling settings

> Only range 1–100 is useful
> Fine grain setting of the bandwidth

• Strong effect of the bandwidth throttling on application (for
values < 100)
• Bandwidth limitation may show effect on latency for too

restrictive settings.

Our experimental settings
• We tested on AMD, in the range 10–100
• We kept three values higher than 100 to ensure the coherency

with our platform characterization.
• We used a step size of 10
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Evaluating Bandwidth
Sensibility

03



Set of Evaluated Applications
A wide panel of applications have been selected:
Pointer-Chasing Randomised accesses in an array.

FoM: # elements accesed per second
XSBench key computational kernel of the Monte Carlo neutron

transport.
FoM: lookups per second

BT Tri-diagonal solver from the NASA parallel benchmark.
FoM: FLOPS

Lulesh LLNL Unstructured Lagrangian Explicit Shock
Hydrodynamics application.
FoM: elements solved per microsecond

miniFE Finite element based proxy application.
FoM: MFLOPS of the CG

STREAM Reference benchmark for bandwidth applications.
FoM: Maximum achieved bandwidth (in MB/s)
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A New Metric Defined

• Based on a progressive throttling of the bandwidth offered to
the L3 cache
• Progressive decline of the FoM characterizes the sensibility to

BW throttling
• We define three thresholds to evaluate quantitatively the

sensibility
> 90% of max FoM
> 75% of max FoM
> 50% of max FoM

• AMD platform
• 10 runs per application, per throttling level
• Maximum average of FoM as baseline
• 8 threads (one per L3 cache)
• memory bound on all 4 NUMA nodes, with interleaving of pages
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Results
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Figure: Bandwidth sensitivity metric results
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Conclusions

• x86 Resource Control is a viable way to alter the performance
of a platform and generate extra heterogeneity
• Fine grained control is possible

> Add phases in the execution of the application instead of
changing parameters for the whole execution

> Determining the sensibility of a specific buffer requires more
control over the cache preloading

• The heterogeneity can be tuned to reflect different platform
configurations

• Our metric shows promising results, and such quantitative
approach may help sorting application and evaluation the
expected benefit for a given technology
• Future work may investigate supporting other platforms (ARM

support not yet available)
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