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CNN training
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Forward Activations(much larger in size than model params) need to persist in memory 
until the gradient updates in backward phase!



• Swapping
• Capuchin [X. Peng et al., 2020]
• SwapAdvisor [C-C. Huang et al., 2020]
• Superneurons [L. Wang et al., 2018]
• …

• Recomputation
• Capuchin [X. Peng et al., 2020]
• Superneurons [L. Wang et al., 2018]
• …

Policies for memory management
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CPU-GPU bandwidth is a bottleneck!



Recomputation
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Recomputation is complex and has lineage dependencies!



• A compression based policy for CNN training. 
• basic Idea: compress and keep the tensors on GPU memory.
• avoids the bandwidth issue introduced by swapping.
• avoids the computation complexity of recomputation.

• Challenges:
• How to reduce the compression overhead?

FreeLunch
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Parallel workflow

Optimizations:
• Sliding Compression Workspace
• Persistent Tensor Buffers



Parallel workflow
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Typical Compression workflow
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Memory operations synchronize all cuda streams!



Sliding Compression Workspace
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Typical workflow implementation
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Persistent tensor buffers
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• Can FreeLunch improve training throughput while reducing memory consumption of 
CNN training?

• How effective are the optimizations in FreeLunch compared with other compression-
based baselines?

Experiment setup
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Throughput as compared to other policies
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Memory consumed as compared to other policies
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No observed impact on accuracy of model
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• Capuchin and SwapAdvisor use swapping in an async manner. 
• We implement async swapping and compare it to FreeLunch.

Throughput comparison with async swapping

17

0

100

200

300

400

500

AlexNet VGG16 ResNet256Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
on

d)

Async swapping vs FreeLunch

Async Swapping FreeLunch

1.32X

1.32X
1.13X



• We implemented a hybrid async swapping policy in combination with FreeLunch

Hybrid policy
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• We introduce FreeLunch that effectively avoids the bandwidth and concurrent execution 
that swapping and recomputation face. 

• We incorporate two optimizations as part of FreeLunch to make compression 
parallelizable and improve performance. 

• We show that FreeLunch achieves up to 70% better throughput and up to 32% better 
memory consumption. 

Summary
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