

FreeLunch: Compression-based GPU Memory Management for Convolutional Neural Networks

<u>Shaurya Patel</u> University of British Columbia University of Massachusetts, Amherst Tongping Liu University of Massachusetts, Amherst Hui Guan University of Massachusetts, Amherst

CNN memory consumption trend

Memory Consumption

Forward Activations(much larger in size than model params) need to persist in memory until the gradient updates in backward phase!

Policies for memory management

- Swapping
 - Capuchin [X. Peng et al., 2020]
 - SwapAdvisor [C-C. Huang et al., 2020]
 - Superneurons [L. Wang et al., 2018]
 - ...
- Recomputation
 - Capuchin [X. Peng et al., 2020]
 - Superneurons [L. Wang et al., 2018]
 - ...

Recomputation

2 SC21

6

Recomputation is complex and has lineage dependencies!

FreeLunch

- A compression based policy for CNN training.
 - basic Idea: compress and keep the tensors on GPU memory.
 - avoids the bandwidth issue introduced by swapping.
 - avoids the computation complexity of recomputation.
- Challenges:
 - How to reduce the compression overhead?

Parallel workflow

Optimizations:

- Sliding Compression Workspace
- Persistent Tensor Buffers

Typical Compression workflow

Memory operations synchronize all cuda streams!

Sliding Compression Workspace

Stidies wonkflession dementation orkflow

operations!

Persistent tensor buffers

Experiment setup

- Can FreeLunch improve training throughput while reducing memory consumption of CNN training?
- How effective are the optimizations in FreeLunch compared with other compressionbased baselines?

Throughput as compared to other policies

Memory consumed as compared to other policies

No observed impact on accuracy of model

Impact of optimizations

☆SC21

16

Throughput comparison with async swapping

- Capuchin and SwapAdvisor use swapping in an async manner.
- We implement async swapping and compare it to FreeLunch.

Async swapping vs FreeLunch

Hybrid policy

Async swapping vs Hybrid
We implemented a hybrid async swapping policy in combination with FreeLunch

Summary

- We introduce FreeLunch that effectively avoids the bandwidth and concurrent execution that swapping and recomputation face.
- We incorporate two optimizations as part of FreeLunch to make compression parallelizable and improve performance.
- We show that FreeLunch achieves up to 70% better throughput and up to 32% better memory consumption.

