
Performance and Energy Improvement of ECP 
Proxy App SW4lite under Various Workloads

Xingfu Wu, Valerie Taylor
Argonne National Laboratory and The University of Chicago

Zhiling Lan
Illinois Institute of Technology

SC2021 Workshop on Memory-Centric High Performance Computing
Nov. 14, 2021



2

Outline

§ Background and Motivations

§ ECP Proxy Application: SW4lite

§ Performance Analysis

§ Performance and Power Modeling using MuMMI and Ensemble Learning

§ Performance and Energy Improvement

§ Summary and Future Work



3

Background and Motivations

§ Energy efficient execution of scientific applications requires insight into how HPC 
system features affect the performance and power of the applications.

§ This insight generally results from significant experimental analysis and possibly 
the development of performance and power models.

§ To balance power and performance for energy efficiency, one must understand 
the relationships between runtime, power, and the unique characteristics of a 
large-scale scientific application

§ Insights about these relationships provide guidance for application optimizations 
to reduce runtime and power.
– application code modification
– system tuning
– or a combination of both



4

ECP Proxy Application: SW4lite

§ A bare bone version of SW4 (Seismic Waves, 4th order accuracy), which 
implements substantial capabilities for 3-D seismic modeling and uses a fourth 
order in space and time finite difference discretization of the elastic wave 
equations in displacement formulation

§ It has the hybrid MPI/OpenMP implementations with C or Fortran and CUDA-
aware MPI implementation

§ It consists of five main kernels within a time step loop:
– BC comm: communication among MPI tasks for exchanging boundary 

conditions (BC)
– BC phys: imposing physical boundary conditions
– Scheme: evaluating the difference scheme for divergence of the stress tensor
– Supergrid: evaluating supergrid damping terms
– Forcing: evaluating the forcing functions



5

ECP Proxy Application: SW4lite

§ Representative of SW4 with respect to computation and memory behavior and 
similar communication patterns

§ SW4lite version 1.1 (the latest) provides five different types of input problems:
– LOH.1, LOH.2, topo, cartesian, and pointsource
– Strong scaling

§ Often used to evaluate and compare different hardware architecture solutions 
for performance testing

§ Distributed as one of ECP proxy applications

§ Performance optimization of SW4lite itself has not been considered seriously 



6

Contributions of This Paper
§ We investigate performance and energy of SW4lite 

– under various workloads 
– with two different memory modes
– on Cray XC40 Theta at Argonne

§ We utilize hardware performance counter-based performance and power 
modeling to identify performance and power bottlenecks
– Based on the insights from the performance and power models
– To provide the most important counters which impact performance and 

power

§ We use performance counter-guided optimization strategies to improve the 
performance and energy of SW4lite with the focus on memory-centric 
optimization and code modifications to achieve
– up to 26.97% performance improvement
– up to 19.44% energy saving on up to 16,384 cores



Cray XC40 Theta at Argonne

Cache Mode

Flat Mode

System Name Cray XC40 Theta

Architecture Intel KNL

Number of nodes 4392

CPU cores per node 64

Sockets per node 1

CPU type and speed Xeon Phi KNL 7230 1.30GHz

L1 cache per core D:32KB/I:32KB

L2 cache per socket 32MB (shared)

L3 cache per socket None

Memory per node 16GB MCDRAM/192GB DDR4

Threads	per	core	 4

Network Cray Aries Dragonfly

Power tools CapMC/PoLiMEr

TDP per socket 215W

Power Management  Yes

File System Lustre PFS



8

Performance Analysis Using Two Memory Modes

§ Analyze performance of SW4lite using
– Cache memory mode
– Flat memory mode

§ Use two problems: 
– Small problem: pointsource
– Large problem: LOH.1-h100

§ Use up to 256 OpenMP threads per node on a single node



9

Performance Analysis (small problem)



10

Performance Analysis (large problem)



11

Performance Comparison using 64 threads per node

Problem pointsource LOH.1-h100
Flat/cache ratio 1.06 1.08

§ Using 64 OpenMP threads per node with one thread per core results in the best 
performance for both cache and flat memory modes for SW4lite 

§ Using the cache mode outperforms using the flat mode 
– SW4lite with the problem sizes used fits into the high bandwidth MCDRAM 

§ Use 64 OpenMP threads per node and one thread per core with the cache 
mode for all of our experiments 



Data Collection with Various Workloads

§ Use the medium and large problems such as topo (gaussianHill.in, skinny.in), 
LOH.1 (LOH.1-h100.in, LOH.1-h50.in), and LOH.2 (LOH.2-h100.in, LOH.2-
h50.in) to collect the data for 91 different configurations on up to 1024 nodes 

§ For each configuration, use MuMMI with PAPI to collect 26 available 
performance counters, and four metrics such as runtime, node power, CPU 
power, and memory power



13

Data Collection



14

Data Collection



MuMMI: Counter-based Modeling Framework

Runtime and Power Modeling

HPC Application

Application or
function-level 
Performance

Counters
(Ci)

Metric

Spearman
PCA

Application or
Function-level
Runtime and

Powers (CPU,mem)

Predicted 
runtime

Predicted power
(node, CPU, mem)

Counters

ModelRegression

f(C1,C2,…,Cn) 

Recommendations 
for Improvement

PAPI

Four metrics: runtime, node power, CPU power, memory power
X. Wu, V. Taylor, J. Cook, and P. Mucci, “Using performance-power modeling to improve energy efficiency of HPC applications,” IEEE Computer, vol. 49, no. 10, pp. 20–29, Oct. 2016. 



MuMMI with Ensemble Learning

Runtime and Power Modeling

HPC Application

Application or
function-level 
Performance

Counters
(Ci)

Metrics

Machine
Learning

Application or
Function-level

Runtime, Powers

Predicted 
runtime

Predicted power
(node, CPU, mem)

Counters

Ensemble
Learning

Counter 
Ranking

Models

f(C1,C2,…,Cn) 

Recommendations 
for Improvement

Counter 
Tools

Four metrics: runtime, node power, CPU power, memory power
X. Wu and V. Taylor, “Utilizing ensemble learning for performance and power modeling and improvement of parallel cancer deep learning CANDLE benchmarks,” 
Concurrency and Computation: Practice and Experience, vol. e6516, 2021. 



Performance and Power Modeling

§ Apply MuMMI and ensemble learning to the dataset to build performance and 
power models based on performance counters

§ Identify the most important counters from each model

§ Consider the most important counters which impact performance and power for 
energy efficiency 

§ Optimize the application and/or tune the system



18

Performance Counter Ranking



Performance Counter Ranking

§ Using MuMMI, the dominant performance counters are 
– REF_CYC in runtime model
– L2_TCH in node power and CPU power models
– BR_MSP in memory power model

§ Using mvtboost, the dominant performance counters are 
– L1_ICM in runtime model
– BR_CN in node power model
– LD_INS in CPU power model
– REF_CYC in memory power model

§ Using RFE, the dominant performance counters are 
– BR_MSP in runtime model
– BR_CN  in node power model
– BR_TKN in CPU power model
– TLB_DM in memory power model



Performance and Energy Improvement

§ Our potential optimization efforts are threefold: 

– to address the dominance of REF_CYC in the runtime model using MuMMI
and in the memory power model using mvtboost
• indicates that something else other than CPU performance limits the 

performance and power of SW4lite. 

– to improve the cache utilizations (L1_ICM, L2_TCH) 

– to reduce TLB_DM  



Looking into the SW4lite Source Code

§ Focus on three main kernels for some hints:
– Scheme entails evaluating the difference scheme for divergence of the stress 

tensor 
– Supergrid entails evaluating supergrid damping terms 
– Forcing entails evaluating the forcing functions 

§ Find that one issue is to apply ”#pragma omp for” to the for statement ”for (k = 1;k ≤ 
6;k++)” in the five files: rhs4sg.C, rhs4sg_rec.C, rhs4sg_recNW.C, rhs4sgcurv.C and 
rhs4sgcurv_rev.C from SW4lite source code



Looking into the SW4lite Source Code

§ Further, to improve the cache utilization, we put ”#pragma unroll(6)” directive right before 
the loop to unroll the revised loop to improve the cache performance 

§ The ”#pragma unroll(6)” directive is a compiler optimization for loop unrolling to reduce 
loop control overhead



Utilizing Huge Pages

§ TLB_DM occurs in several power models 
§ We can utilize huge page sizes to reduce TLB_DM so that the cache and 

memory performance may be improved 
§ Cray XC40 Theta provides the system modules for the huge page sizes from 

2MB to 2GB.
– The default page size is 4KB 

§ Observe that 8MB huge page resulted in the consistent better performance



Combination of Improvement Strategies

§ Apply the combination of the revised code with the loop unrolling and utilizing 
8MB huge page (called the improved code) to the large problems 
– How much performance improvement and energy saving
– On up to 16,384 cores (256 nodes) on Theta

LOH-1.h100 

LOH-2.h100 



Combination of Improvement Strategies

LOH-1.h50 

LOH-2.h50 



Summary

§ We conducted the experiments to evaluate the performance of SW4lite with two 
memory modes (cache and flat) on Theta and found that using 64 OpenMP 
threads with the cache mode resulted in the best performance for SW4lite 

§ We applied MuMMI and ensemble learning to build the performance and power 
models to identify the most important performance counters for the potential 
optimization efforts

§ we improved the performance and energy of SW4lite with the focus on the 
memory-centric application optimizations such as cache memory mode, loop 
unrolling and 8MB huge page and the source code modifications to achieve up to 
26.97% performance improvement and up to 19.44% energy saving 

§ For the future work, we will apply our ytopt autotuning framework to further tune 
the performance and energy of SW4lite and other ECP proxy applications



Acknowledgements

§ This work was supported in part by 

– DoE ECP PROTEAS-TUNE

– DoE ASCR RAPIDS2

– NSF grants CCF-1801856, CCF-2119203

– Use of ALCF Theta under ALCF EE-ECP project


