
A Distributed Deep Memory Hierarchy System
for Content-based Image Retrieval of

Big Whole Slide Image Datasets

Esma Yildirim, PhD
Department of Mathematics and Computer Science

Queensborough Community College of CUNY
November 18 , 2019

Histological Big Data: Whole Slide
Images

• A whole slide image (WSI) is a multiple-resolution
multi-Giga-pixel image produced by a whole slide
scanner used in pathological diagnostics

2

Highest resolution(Level 0): 100912 x 94774 pixel image A 1024x1024 pixel tile among 9206 others

CBIR’s Role in Cancer Treatment

• Content-based Image Retrieval (CBIR) methods
allow pathologists search for region of interests
(ROIs) containing cancerous patterns efficiently in
a vast amount of whole slide image dataset.
– Identification of regions exhibiting similar

characteristics in either the same specimen or across
disparate specimens

– Draw comparisons among patient samples in order to
make informed decisions for likely prognosis and most
appropriate treatment regimens.

3

CBIR Workflow: Step 1 – Coarse
Searching

4

Sliding Window

Query patch

Region of Interest

.

.

.

.

.

.

Color histograms of rings

Distance between
feature sets

Sort by distances

Crop 10% of best
results

Output coordinates of
Top 10% ROIs

Example tile

CBIR Workflow: Step 2 – Fine
Searching

5Query patch

Region of Interest

.

.

.

.

.

.

Color histograms of segments

Distance between
feature sets

Sort by distances

Crop 10% of best
results

Output coordinates of
Top 10% ROIs

Example tile

Out of 10% top results
of Coarse Searching

CBIR Workflow: Step 3 –
Clustering

6

Example tile

Out of 10% top results
of Fine Searching

Overlapping patches
are combined

Fine searching

Sort by distance

Output coordinates
of resultant patches

Resource Management
• Storage System

– Exploit parallel file systems (e.g.Lustre, GPFS) through parallel disk accesses
– Distribute tile coordinates based on the tile size and WSI path information

among MPI processes
– Let each process access the parallel file system to bring the assigned list of

tiles into memory
• Processing Power

– Hybrid + Nested parallel programming
• Addition of parallel threads (OpenMP) into communicating sequential processes(MPI) to

calculate feature sets on tiles
• Increase thread-level parallelism through nested threads

• Memory Management
– Keep track of intermediate data size

• Spill to disk if necessary and do a parallel external sort
– Stage input data in memory a distributed memory staging system

7

Memory Management: Staging Input
Data

• Repeated data accesses to input data in each stage of the workflow
• Keep data in a shared distributed memory area
• DataSpaces being developed at RDI2
• Parallel applications can have synchronized access to tensor objects

by specifying coordinates as bounding boxes

8

Memory Management: Staging Input
Data

• Store tiles as objects in
dataspaces

• Let the following stages
access data from
Dataspaces instead of
file system

9

Deep Memory Hierarchies

• Memory space of each node is limited
– Require large number of data staging nodes to

accommodate the WSI data

• Solution: Use of deep memory hierarchies including
Solid-state drives (SSDs) into the system
– SSDs are faster than disk systems
– NVMe SSDs perform even better

11/14/19 10

Deep Memory Hierarchies

11/14/19 11

Proposed framework consists of caching, prefetching and
persistence modules implemented into DataSpaces server
code

Modules: Persistence

• Allows catching and prefetching modules
allocate space on SSD

• Posix mmap() interface is used to allocate a
large memory space on SSD

• Files in SSD can be accessed as if they were in
memory

• It manages allocation/deallocation and
fragmentation of space through doubly linked
lists

11/14/19 12

Modules: Caching

• Uses a Least-recently Used algorithm to keep
recently requested data in DRAM memory and
evict less recently used data back to SSD.

• Data could be located in memory, in SSD or
both
– Status: in_memory, in_SSD, in_memory_SSD

11/14/19 13

Modules: Prefetching
• Makes the data available

in DRAM memory before
the application requests it
– Masks the latency of SSD

memory
• Operates as a concurrent

thread under the main
Dataspaces server thread
– Pipelines the prefetching

I/O operations between
SSD and DRAM memory
and I/O operations
between client application
and Dataspaces server

11/14/19 14

Updated and Newly Introduced
Interfaces

• dspaces init() calls persistence module to create the
mapped file in SSD and launches the Prefetching
thread.

• dspaces get() queries DataSpaces server to retrieve
data.
– If the data for the requested coordinates is in DRAM

memory, the server returns it to the client.
– If it is in SSD, it caches it into DRAM and changes data

storage status into In memory ssd.
– If DRAM has no space, then it calls the cache replacement

algorithm in the Caching Module to evict some data into
SSD before bringing requested data into DRAM.

11/14/19 15

Updated and Newly Introduced
Interfaces

• dspaces put() inserts data in DRAM and changes
data storage status into In memory.
– If DRAM has no space then it calls the cache

replacement algorithm before inserting data into
DRAM.

• dspaces hint() queries DataSpaces servers to
check if data is in SSD.
– If so, the hint is inserted into prefetching circular

array. It wakes prefetching thread if the thread is
sleeping to fetch data from SSD to DRAM. After the
operation is complete data storage status is changed
into In_memory_ssd.

11/14/19 16

Performance Results: Overhead

11/14/19 17

Performance Results: Total Workflow
Execution Time

11/14/19 18

Performance Results: Effect of
#Staging Nodes

11/14/19 19

Conclusions

• An extreme-scale multi-stage CBIR
implementation is possible without preprocessing
of input data

• Staging data for subsequent stages of the
workflow reduce execution time

• A novel deep memory hierarchy approach can
remove memory limit of the nodes by hiding
latencies introduced by SSDs.

• The overhead of the deep memory hierarchy
system is negligible

11/14/19 20

