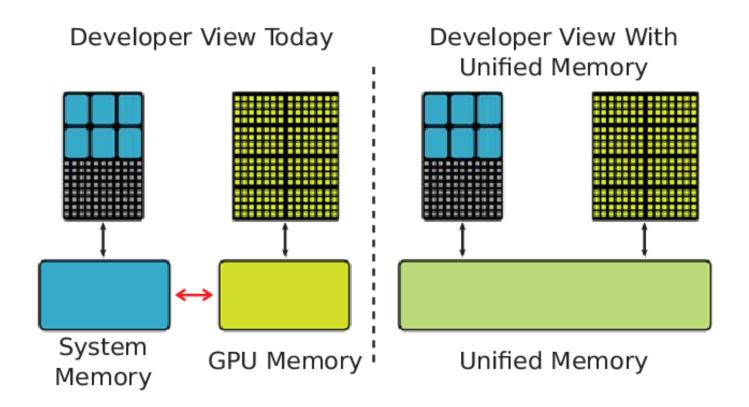
Machine Learning Guided Optimal Use of GPU Unified Memory

Hailu Xu, **Murali Emani***, Pei-Hung Lin**, Liting Hu, Chunhua Liao**

Florida International University
Argonne National Laboratory*
Lawrence Livermore National Laboratory**

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by LLNL-LDRD 18-ERD-006. LLNL-PRES-796963. This research was funded in part by the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357



Benefits of Unified Memory:

- combines the advantages of explicit copies and zero-copy access
- eliminates manual management of data migration across host and device

Deep Copy

Explicit Memory Management

```
char **data;
// allocate and initialize data on the CPU

char **d_data;
char **h_data = (char**)malloc(N*sizeof(char*));
for (int i = 0; i < N; i++) {
    cudaMalloc(&h_data[i], N);
    cudaMemcpy(h_data[i], data[i], N, ...);
}
cudaMalloc(&d_data, N*sizeof(char*));
cudaMemcpy(d_data, h_data, N*sizeof(char*), ...);

gpu_func<<<...>>>(d_data, N);
```

GPU code w/ Unified Memory

```
char **data;
// allocate and initialize data on the CPU

gpu_func<<<...>>>(data, N);
```

^{*}http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

NVIDIA provides the **cudaMemAdvise()** API to advise the UM driver

NVIDIA provides the **cudaMemAdvise()** API to advise the UM driver

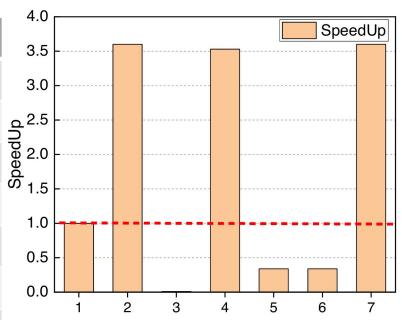
Different choices for Unified Memory:

- Default: default on-demand page migration to accessing processor, using the first-touch policy
- cudaMemAdviseSetReadMostly: Data will mostly be read and only occasionally be written to
- cudaMemAdviseSetPreferredLocation: Set the preferred location for the data as the specified device
- cudaMemAdviseSetAccessedBy: Data will be accessed by the specified device, so prevent page faults as much as possible

Impact of different choices

Table1: Code variants in the gaussian benchmark

Var	Description
1	baseline using discrete memory for all objects
2	modified to use unified memory for all objects
3	set array a with the ReadMostly advice
4	set array a with the PreferredLocation advice on GPU
5	set array a with the AccessedBy advice on GPU
6	set array <i>a</i> with the <i>PreferredLocation</i> advice on CPU
7	set array a with the AccessedBy advice on CPU



Different choices of advice lead to 3.5 times speed up or 200x degradation.

rent code

Problem

 Extremely challenging for programmers to decide when and how to efficiently use UM for various kinds of applications.

• For a given memory object, there is a wide range of choices

Problem

- Extremely challenging for programmers to decide when and how to efficiently use UM for various kinds of applications.
- For a given memory object, there is a wide range of choices

Whether and how to use unified memory?

Proposed Approach

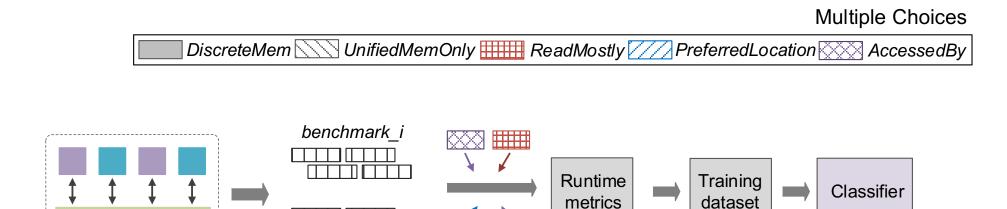
Use machine learning-based model to guide the memory advice choice

Offline training and online inference phases

Offline Training

unified memory

 Benchmarks with different advice; runtime metrics collection; format to training dataset; build the classifier



with various choices

benchmark k

Feature Engineering

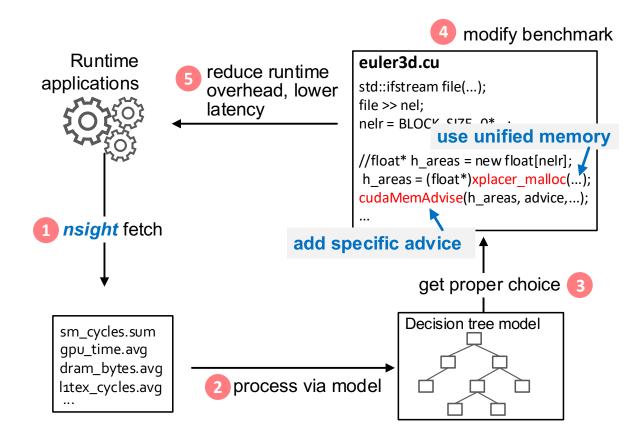
- Nvidia Nsight Compute command line profiler to fetch detailed runtime performance metrics of the benchmarks
- The default profiling phase contains 8 sections such as
 - Compute Workload Analysis,
 - Memory Workload Analysis,
 - Scheduler Statistics,
 - Warp State Statistics,
 - Instruction Statistics,
 - Launch Statistics,
 - Occupancy
- Select important features using correlation and information gain metrics

Feature Engineering

No.	Feature Name
1	Elapsed Cycles
2	Duration
3	SM Active Cycles
4	Memory Throughput
5	Max Bandwidth
6	Avg. Execute Instructions Per Scheduler
7	Grid Size
8	Number of Threads
9	Achieved Active Warps Per SM

Table 2: List of selected features in the model.

Online Inference

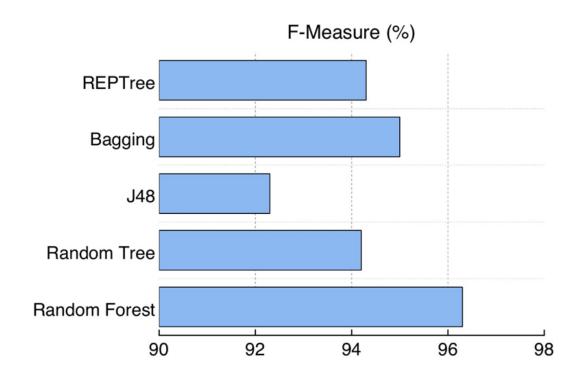


Evaluation-Testbeds and benchmarks

- Multiple benchmarks from Rodinia on the Lassen supercomputer at Livermore Computing.
- Each compute node: two IBM Power9 CPUs and four Tesla V100 GPUs
- 2,753 instances for training data

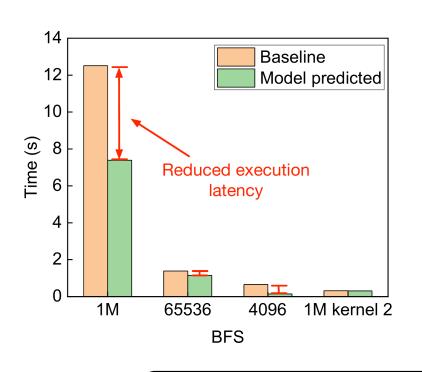
Benchmarks	Kernels	Arrays	Variants	Input dataset
CFD	4	3	(2x6x6x6)	3
BFS	2	6	(2x6x6)	3
Gaussian	2	3	(2x6x6x6)	67
Hotspot	1	2	(2x6x6)	8

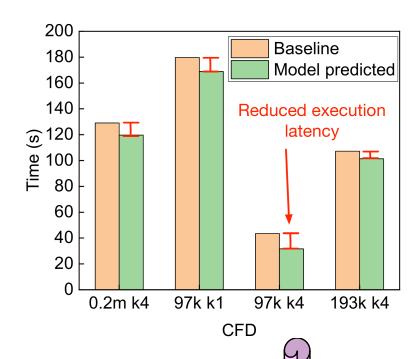
Results - Accuracy



- Random Forest classifier achieves the best performance with F-measure up to 96.3%
- Effective and optimal predictions for the benchmarks

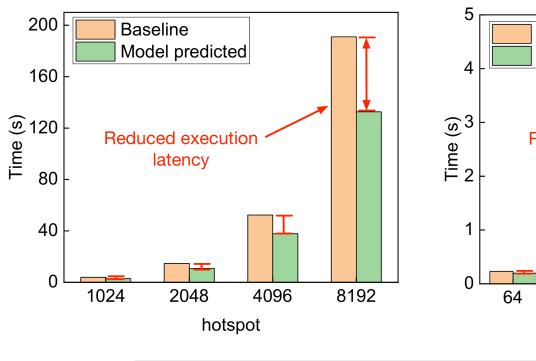
Results – Reduced latency

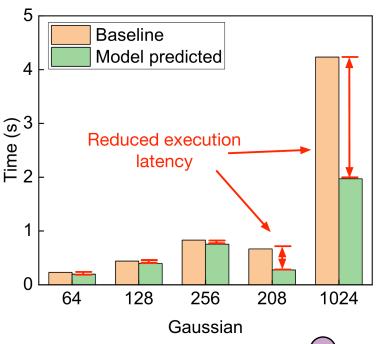




BFS has near <u>40%</u> deduction at most; CFD has average **8%** deduction in execution latency.

Results – Reduced latency





Hotspot benchmark has around <u>35%</u> deduction; Gaussian has at most <u>60%</u> deduction in execution latency.

Conclusion & Future work

- We study the hybrid use of both discrete and unified memory APIs on GPUs, with additional consideration for selecting different memory advice choices.
- A machine learning-based approach is proposed to guide optimal use of GPU unified memory
- Design code transformation to enable runtime adaptation of CUDA programs leveraging online inference decisions

Future work:

- extend to evaluate the advice choices at a finer granularity considering calling context.
- employ runtime code generation and/or adaptation techniques to automatically generate codes using suggested optimal memory choices
- evaluate the overhead for collecting training data and investigate how to reduce the overhead

Thank you!

Problem

Whether and how to use unified memory?

Whether?

Decide to use unified memory or not

How?

Decide which advice should be used