
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Extreme Heterogeneity in Emerging Memory 
Systems

Jeffrey S. Vetter
With many contributions from FTG Group and Colleagues

MCHPC Panel
SC19
18 Nov 2019 

ORNL is managed by UT-Battelle 
for the US Department of Energy http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/
mailto:vetter@computer.org


2

Architectural considerations

• Exploit persistence
– ACID?

• Integration point
– Memory

– Node
– System

• Scalability

• Programming model

Application Scenarios

• Burst buffers

• In situ viz and analytics

• Persistent data structures

Our Approaches

– Transparent access to NVM from 
GPU

– NVL-C: expose NVM to 
user/applications

– Papyrus: parallel aaggregate
persistent memory

– Many others (See S. Mittal and J. S. 
Vetter, "A Survey of Software Techniques 
for Using Non-Volatile Memories for 
Storage and Main Memory Systems," in 
IEEE TPDS 27:5, pp. 1537-1550, 2016)

NVM Design Choices

[Liu, et al., MSST 2012]

Empirical results show many 
reasons…
•Lookup, index, and permutation tables
•Inverted and ‘element-lagged’ mass matrices
•Geometry arrays for grids
•Thermal conductivity for soils
•Strain and conductivity rates
•Boundary condition data
•Constants for transforms, interpolation
•MC Tally tables, cross-section materials 
tables… http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey


33

DRAGON : Expanding the memory capacity of GPUs

• GPUs have limited memory capacity

• Recent GPUs have added paging support 
to host memory

• Recent datasets have grown larger that 
host memory

• Extend GPUs to NVM
– Support for massive data
– Support for temporary data
– Support for read-only data

• Good performance (including surprises)

P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018 https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon


44

NVL-C: Portable Programming for NVMM
– Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM.

– Pointer safety:
– Persistence creates new categories of 

pointer bugs.
– Best to enforce pointer safety constraints at 

compile time rather than run time.
– Transactions:

– Prevent corruption of persistent memory in 
case of application or system failure.

– Language extensions enable:
– Compile-time safety constraints.
– NVM-related compiler analyses and 

optimizations.
– LLVM-based:

– Core of compiler can be reused for other 
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {

nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {

if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016



55

Papyrus
• Papyrus is a novel programming system for 

aggregate NVM in the next generation HPC 
systems

• Leverage emerging NVM technologies
– High performance
– High capacity
– Persistence property

• Designed for the next-generation DOE systems
– Portable across local NVM and dedicated NVM 

architectures
– An embedded distributed key-value store (no system-

level daemons and servers)
– Scalability and performance

• Designed for HPC applications
– MPI/UPC-interoperable
– Application customizability

• Memory consistency models (sequential and relaxed)
• Protection attributes (read-only, write-only, read-write)
• Load balancing

– Zero-copy workflow, asynchronous checkpoint/restart

*Wikipedia: Papyrus can 
refer to a document 
written on sheets of 
papyrus, an early form of 
a book. 

[1] J. Kim, S. Lee, and J.S. Vetter, “PapyrusKV: a high-performance parallel key-value store for distributed NVM architectures,” in SC17.
[2] J. Kim, K. Sajjapongse, S. Lee, and J.S. Vetter, “Design and Implementation of Papyrus: Parallel Aggregate Persistent Storage,” in IPDPS 2017.

https://code.ornl.gov/eck/papyrus

https://code.ornl.gov/eck/papyrus

	Extreme Heterogeneity in Emerging Memory Systems
	NVM Design Choices
	DRAGON : Expanding the memory capacity of GPUs
	NVL-C: Portable Programming for NVMM
	Papyrus

