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Architectural considerations

• Exploit persistence
– ACID?

• Integration point
– Memory

– Node
– System

• Scalability

• Programming model

Application Scenarios

• Burst buffers

• In situ viz and analytics

• Persistent data structures

Our Approaches

– Transparent access to NVM from 
GPU

– NVL-C: expose NVM to 
user/applications

– Papyrus: parallel aaggregate
persistent memory

– Many others (See S. Mittal and J. S. 
Vetter, "A Survey of Software Techniques 
for Using Non-Volatile Memories for 
Storage and Main Memory Systems," in 
IEEE TPDS 27:5, pp. 1537-1550, 2016)

NVM Design Choices

[Liu, et al., MSST 2012]

Empirical results show many 
reasons…
•Lookup, index, and permutation tables
•Inverted and ‘element-lagged’ mass matrices
•Geometry arrays for grids
•Thermal conductivity for soils
•Strain and conductivity rates
•Boundary condition data
•Constants for transforms, interpolation
•MC Tally tables, cross-section materials 
tables… http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey
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DRAGON : Expanding the memory capacity of GPUs

• GPUs have limited memory capacity

• Recent GPUs have added paging support 
to host memory

• Recent datasets have grown larger that 
host memory

• Extend GPUs to NVM
– Support for massive data
– Support for temporary data
– Support for read-only data

• Good performance (including surprises)

P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018 https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon
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NVL-C: Portable Programming for NVMM
– Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM.

– Pointer safety:
– Persistence creates new categories of 

pointer bugs.
– Best to enforce pointer safety constraints at 

compile time rather than run time.
– Transactions:

– Prevent corruption of persistent memory in 
case of application or system failure.

– Language extensions enable:
– Compile-time safety constraints.
– NVM-related compiler analyses and 

optimizations.
– LLVM-based:

– Core of compiler can be reused for other 
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {

nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {

if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016
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Papyrus
• Papyrus is a novel programming system for 

aggregate NVM in the next generation HPC 
systems

• Leverage emerging NVM technologies
– High performance
– High capacity
– Persistence property

• Designed for the next-generation DOE systems
– Portable across local NVM and dedicated NVM 

architectures
– An embedded distributed key-value store (no system-

level daemons and servers)
– Scalability and performance

• Designed for HPC applications
– MPI/UPC-interoperable
– Application customizability

• Memory consistency models (sequential and relaxed)
• Protection attributes (read-only, write-only, read-write)
• Load balancing

– Zero-copy workflow, asynchronous checkpoint/restart

*Wikipedia: Papyrus can 
refer to a document 
written on sheets of 
papyrus, an early form of 
a book. 

[1] J. Kim, S. Lee, and J.S. Vetter, “PapyrusKV: a high-performance parallel key-value store for distributed NVM architectures,” in SC17.
[2] J. Kim, K. Sajjapongse, S. Lee, and J.S. Vetter, “Design and Implementation of Papyrus: Parallel Aggregate Persistent Storage,” in IPDPS 2017.

https://code.ornl.gov/eck/papyrus

https://code.ornl.gov/eck/papyrus
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