
Vivek Sarkar
Professor, School of Computer Science

Stephen Fleming Chair for Telecommunications, College of Computing
Georgia Institute of Technology

MCHPC’19 Panel: Software and Hardware Support
for Programming Heterogeneous Memory

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

to scale computer performance. How-
ever, engineering software for the von
Neumann architecture is itself a dif-
ficult endeavor. Adding the need for
explicit programming of parallelism
is largely untenable to the software
industry as a whole. Thus, the solution
has been successful for HPC, a realm
in which software rewriting is consid-
ered an acceptable investment, and the
result has been computer performance
increases only for select applications.

Reaching the power wall has impli-
cations for more than the PC industry.
The PC–microprocessor ecosystem has
driven down the cost of mainstream
processors to an attractively low price
fostered by the continual increase in
logic IC volume. Consequently, these
microprocessors and other ecosys-
tem elements have migrated upward,
affecting much more complex systems
such as high-performance computers .

PROPOSED WAYS FORWARD
Attendees at the RCI’s four past sum-
mits reached consensus on the idea

that any solutions to extending com-
puting performance and efficiency
would have to radically depart from
the straightforward interpretation of
Moore’s law. As a 2015 IEEE Spectrum
article put it,5

Today’s technology makes a
1-exaflops supercomputer capable
of performing 1 million trillion
floating-point operations per
second almost inevitable. But
pushing supercomputing beyond
that point to 10 exaflops or more
will require major changes in
both computing technologies
and computer architectures.

To address that requirement, the RCI
meetings covered a range of solutions
to the impending end of current com-
puting paradigms, which can be char-
acterized in terms of disruption to the
computing stack, as Figure 2 shows.

Non−von Neumann computing
The most radical approaches rethink

computing from the ground up, and
will require new algorithms, lan-
guages, and so on. Chief among these
is quantum computing, which uses
properties of quantum mechanics
to solve problems in optimization,
search, and whole number theory.
Although a quantum computer can
be used as a universal computing plat-
form, it will be no better than a con-
ventional computer outside a limited
set of problems. However, the quan-
tum computer’s advantage is so large
for some of those problems that it has
the potential to shake the foundation
of conventional scientific, engineer-
ing, business, and security practices.
For example, a working quantum com-
puter could factor the product of two
large primes in a nanosecond,6 which
undermines asymmetric-key encryp-
tion. This encryption standard, which
is central to every facet of e-commerce
and national security, is based on the
notion that such factoring is computa-
tionally intractable.

Another non−von Neumann ap-
proach is neuromorphic computing,
which leverages what is known about
the human brain’s operation to create
new computing technologies. Neuro-
morphic computers do not attempt to
replicate the brain, but rather draw
from the neuroscientific aspects that
enable humans to solve problems with
great efficiency, such as recognizing
and classifying patterns in text, au-
dio, or images. Neuromorphic com-
puters can be simulated on modern
computers, but the true energy effi-
ciencies come from specialized hard-
ware built specifically for the task.

Neuromorphic algorithms differ
greatly from traditional algorithms
and overlap the important discipline
of machine learning. The indus-
try can now simulate neuromorphic

Algorithm

Language

API

Architecture

Instruction-set
architecture

Microarchitecture

Function unit

Logic

Device More “Moore”

1

No disruption Total disruption

2 3 4

Hidden
changes

Architectural
changes

Non–
von Neumann

computing

FIGURE 2. Four future computing approaches and the extent to which they disrupt the
traditional computing stack (left). At the far right (level 4) are non−von Neumann archi-
tectures, which completely disrupt all stack levels, from device to algorithm. At the least
disruptive end (level 1) are more “Moore” approaches, such as new transistor technology
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of
which the programmer is unaware.

2

Levels of Disruption in Moore’s Law End-Game and Post-
Moore eras

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

to scale computer performance. How-
ever, engineering software for the von
Neumann architecture is itself a dif-
ficult endeavor. Adding the need for
explicit programming of parallelism
is largely untenable to the software
industry as a whole. Thus, the solution
has been successful for HPC, a realm
in which software rewriting is consid-
ered an acceptable investment, and the
result has been computer performance
increases only for select applications.

Reaching the power wall has impli-
cations for more than the PC industry.
The PC–microprocessor ecosystem has
driven down the cost of mainstream
processors to an attractively low price
fostered by the continual increase in
logic IC volume. Consequently, these
microprocessors and other ecosys-
tem elements have migrated upward,
affecting much more complex systems
such as high-performance computers .

PROPOSED WAYS FORWARD
Attendees at the RCI’s four past sum-
mits reached consensus on the idea

that any solutions to extending com-
puting performance and efficiency
would have to radically depart from
the straightforward interpretation of
Moore’s law. As a 2015 IEEE Spectrum
article put it,5

Today’s technology makes a
1-exaflops supercomputer capable
of performing 1 million trillion
floating-point operations per
second almost inevitable. But
pushing supercomputing beyond
that point to 10 exaflops or more
will require major changes in
both computing technologies
and computer architectures.

To address that requirement, the RCI
meetings covered a range of solutions
to the impending end of current com-
puting paradigms, which can be char-
acterized in terms of disruption to the
computing stack, as Figure 2 shows.

Non−von Neumann computing
The most radical approaches rethink

computing from the ground up, and
will require new algorithms, lan-
guages, and so on. Chief among these
is quantum computing, which uses
properties of quantum mechanics
to solve problems in optimization,
search, and whole number theory.
Although a quantum computer can
be used as a universal computing plat-
form, it will be no better than a con-
ventional computer outside a limited
set of problems. However, the quan-
tum computer’s advantage is so large
for some of those problems that it has
the potential to shake the foundation
of conventional scientific, engineer-
ing, business, and security practices.
For example, a working quantum com-
puter could factor the product of two
large primes in a nanosecond,6 which
undermines asymmetric-key encryp-
tion. This encryption standard, which
is central to every facet of e-commerce
and national security, is based on the
notion that such factoring is computa-
tionally intractable.

Another non−von Neumann ap-
proach is neuromorphic computing,
which leverages what is known about
the human brain’s operation to create
new computing technologies. Neuro-
morphic computers do not attempt to
replicate the brain, but rather draw
from the neuroscientific aspects that
enable humans to solve problems with
great efficiency, such as recognizing
and classifying patterns in text, au-
dio, or images. Neuromorphic com-
puters can be simulated on modern
computers, but the true energy effi-
ciencies come from specialized hard-
ware built specifically for the task.

Neuromorphic algorithms differ
greatly from traditional algorithms
and overlap the important discipline
of machine learning. The indus-
try can now simulate neuromorphic

Algorithm

Language

API

Architecture

Instruction-set
architecture

Microarchitecture

Function unit

Logic

Device More “Moore”

1

No disruption Total disruption

2 3 4

Hidden
changes

Architectural
changes

Non–
von Neumann

computing

FIGURE 2. Four future computing approaches and the extent to which they disrupt the
traditional computing stack (left). At the far right (level 4) are non−von Neumann archi-
tectures, which completely disrupt all stack levels, from device to algorithm. At the least
disruptive end (level 1) are more “Moore” approaches, such as new transistor technology
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of
which the programmer is unaware.

Source: “Rebooting Computing: The Road Ahead”, T.M.Conte,
E.P.DeBenedictis, P.A.Gargini, E.Track, IEEE Computer, 2017.

At the far right (level 4) are
non−von Neumann
architectures, which completely
disrupt all stack levels, from
device to algorithm.
At the least disruptive end
(level 1) are more “Moore”
approaches, such as new
transistor technology and 3D
circuits, which affect only the
device and logic levels.
All future hardware directions
are characterized by extreme
heterogeneity.

3

Range of Approaches (and disruptions!) for
Memory-Centric Processing

4

Place Types

Memory-Centric Programming with Places in X10

HERE THERE

int x
T f

T g

T p

p.x
q = p.f
r = p.g
r.x

T q

T r

Type inference for locality analysis of distributed data structures.
Satish Chandra, Vijay Saraswat, Vivek Sarkar, Ras Bodik. PPoPP 2008.

5

Hierarchical Place Tree (HPT) extension for memory hierarchies
and heterogeneous architectures

PL0

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

§ Devices (GPU or FPGA) are represented as memory
module places and agent workers
§ GPU memory configuration is fixed, while FPGA

memory can be reconfigured at runtime
§ async at(P) S

§ Creates new task to execute statement S at place P

PL

PL

PL

PL

Physical memory

Cache
GPU memory

Reconfigurable FPGA
Implicit data movement
Explicit data movement

Wx CPU computation worker
Wx Device agent worker

Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Date Movement.
Yonghong Yan, Jisheng Zhao, Yi Guo, Vivek Sarkar. LCPC 2009.

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.” Alina
Sbirlea, Yi Zou, Zoran Budimlic, Jason Cong, Vivek Sarkar. LCTES 2012

6

Data Layout Transformations (Example)

// Input
double C[NI][NJ];

double A[NI][NK];

double B[NK][NJ];
…

for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * A[i][k]

* B[k][j];

// Conversion to Struct-of-Array
double C[NI][NJ];
struct Struct_of_AB {

double A[NI];
double B[NJ];

};
Struct_of_AB SoAB[NK];
…
for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * SoAB[k].A[i]
* SoAB[k].B[j];

// Array dimensional permutation
double C[NI][NJ];
double A[NK][NI];
double B[NK][NJ];
…
for (k = 0; k < nk; k++)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * A[k][i]
* B[k][j];

7

Separation of
Concerns:
§ User specifies data

layouts for different
architectures in “meta files”

§ Automatic Layout Generator can be
used to recommend best layouts
for different architectures

§ Code is unchanged!

Compiler Optimization
of Data Layouts

“Data Layout Optimization for Portable Performance.” K. Sharma, I. Karlin, J. Keasler, J. McGraw, V.Sarkar, EuroPar ‘15.

8

Automatic Data Layout Problem for CPU+GPU architectures

§ Previous framework limited to a single data-layout for
the entire program

§ Large programs with multiple kernels might require
different layouts for different parts of the program
§ The best data layout could be a single layout for the entire

program or multiple layouts for each kernel with data-
remapping in between

“Automatic Data Layout Generation and Kernel Mapping for CPU+GPU Architectures.”
Deepak Majeti, Kuldeep Meel, Raj Barik and Vivek Sarkar. CC 2016.

9

This integration has
been demonstrated for

X = MPI, UPC++,
OpenSHMEM,
Accelerators

Integrating Data Movement with Tasking (X + Habanero)

Example:
finish{

async S1;

MPI_Isend(…);

MPI_Irecv(…, &req);

async await(req) S2;

S3;

}

...

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

10

Compiler/Runtime Analysis can also help with debugging
memory mappings, e.g., OpenMP’s map clause

OMPSan: Static Verification of OpenMP’s Data Mapping Constructs.
Prithayan Barua, Shirako Jun, Tsang Whitney, Paudel Jeeva, Chen Wang IWOMP 2019

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
9yf98

AMi`Q/m+iBQM Pm` aQHmiBQM 1p�Hm�iBQM *QM+HmbBQM

1tT2`BK2Mi _2bmHib

"2M+?K�`F _2bmHib

._�** 6BH2 kk

BMi BMBiUV&
7Q`UBMi B4yc BI*c BYYV&

7Q`UBMi D4yc DI*c DYYV &
GR3, #(DYB *)4Rc '

�(B)4Rc
+(B)4yc

''
BMi JmHiUV&
OT`�;K� QKT i�`;2i K�TUiQ,�(y,*)V K�TUiQ7`QK,+(y,*)V

K�TU�HHQ+,#(y,* *)V
OT`�;K� QKT i2�Kb /Bbi`B#mi2 T�`�HH2H 7Q`
Gjk, 7Q`UBMi B4yc BI*c BYYV&

7Q`UBMi D4yc DI*c DYYV
Gj9, +(B)Y4#(DYB *) �(D)c

'
'

PJSa�M, _2TQ`i2/ 1``Q`
1__P_ .2}MBiBQM Q7 ,# QM
GBM2,R3 Bb MQi `2�+?�#H2 iQ
GBM2,j9-
JBbbBM; *H�mb2,iQ,GBM2,jk

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
9yf98

AMi`Q/m+iBQM Pm` aQHmiBQM 1p�Hm�iBQM *QM+HmbBQM

1tT2`BK2Mi _2bmHib

"2M+?K�`F _2bmHib

._�** 6BH2 kk

BMi BMBiUV&
7Q`UBMi B4yc BI*c BYYV&

7Q`UBMi D4yc DI*c DYYV &
GR3, #(DYB *)4Rc '

�(B)4Rc
+(B)4yc

''
BMi JmHiUV&
OT`�;K� QKT i�`;2i K�TUiQ,�(y,*)V K�TUiQ7`QK,+(y,*)V

K�TU�HHQ+,#(y,* *)V
OT`�;K� QKT i2�Kb /Bbi`B#mi2 T�`�HH2H 7Q`
Gjk, 7Q`UBMi B4yc BI*c BYYV&

7Q`UBMi D4yc DI*c DYYV
Gj9, +(B)Y4#(DYB *) �(D)c

'
'

PJSa�M, _2TQ`i2/ 1``Q`
1__P_ .2}MBiBQM Q7 ,# QM
GBM2,R3 Bb MQi `2�+?�#H2 iQ
GBM2,j9-
JBbbBM; *H�mb2,iQ,GBM2,jk

11

Towards Performance, Programmability, and Portability
for future Memory Systems
§ Programming models

§ Use of virtualized abstractions of heterogeneous memories, such
as hierarchical places/locales

§ Compilers
§ New optimizations that combine code transformations with data

placement, layout and movement
§ Runtime Systems

§ Integrated scheduling of asynchronous tasks and data movement
§ Debugging

§ Co-design of prog model, compiler, runtime to simplify debugging

