
Vivek Sarkar
Professor, School of Computer Science

Stephen Fleming Chair for Telecommunications, College of Computing
Georgia Institute of Technology

MCHPC’19 Panel: Software and Hardware Support 
for Programming Heterogeneous Memory

36 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

to scale computer performance. How-
ever, engineering software for the von 
Neumann architecture is itself a dif-
ficult endeavor. Adding the need for 
explicit programming of parallelism 
is largely untenable to the software 
industry as a whole. Thus, the solution 
has been successful for HPC, a realm 
in which software rewriting is consid-
ered an acceptable investment, and the 
result has been computer performance 
increases only for select applications.

Reaching the power wall has impli-
cations for more than the PC industry. 
The PC–microprocessor ecosystem has 
driven down the cost of mainstream 
processors to an attractively low price 
fostered by the continual increase in 
logic IC volume. Consequently, these 
microprocessors and other ecosys-
tem elements have migrated upward, 
affecting much more complex systems 
such as high-performance computers .

PROPOSED WAYS FORWARD
Attendees at the RCI’s four past sum-
mits reached consensus on the idea 

that any solutions to extending com-
puting performance and efficiency 
would have to radically depart from 
the straightforward interpretation of 
Moore’s law. As a 2015 IEEE Spectrum 
article put it,5

Today’s technology makes a 
1-exaflops supercomputer capable 
of performing 1 million trillion 
floating-point operations per 
second almost inevitable. But 
pushing supercomputing beyond 
that point to 10 exaflops or more 
will require major changes in 
both computing technologies 
and computer architectures.

To address that requirement, the RCI 
meetings covered a range of solutions 
to the impending end of current com-
puting paradigms, which can be char-
acterized in terms of disruption to the 
computing stack, as Figure 2 shows.

Non−von Neumann computing
The most radical approaches rethink 

computing from the ground up, and 
will require new algorithms, lan-
guages, and so on. Chief among these 
is quantum computing, which uses 
properties of quantum mechanics 
to solve problems in optimization, 
search, and whole number theory. 
Although a quantum computer can 
be used as a universal computing plat-
form, it will be no better than a con-
ventional computer outside a limited 
set of problems. However, the quan-
tum computer’s advantage is so large 
for some of those problems that it has 
the potential to shake the foundation 
of conventional scientific, engineer-
ing, business, and security practices. 
For example, a working quantum com-
puter could factor the product of two 
large primes in a nanosecond,6 which 
undermines asymmetric-key encryp-
tion. This encryption standard, which 
is central to every facet of  e-commerce 
and national security, is based on the 
notion that such factoring is computa-
tionally intractable.

Another non−von Neumann ap-
proach is neuromorphic computing, 
which leverages what is known about 
the human brain’s operation to create 
new computing technologies. Neuro-
morphic computers do not attempt to 
replicate the brain, but rather draw 
from the neuroscientific aspects that 
enable humans to solve problems with 
great efficiency, such as recognizing 
and classifying patterns in text, au-
dio, or images. Neuromorphic com-
puters can be simulated on modern 
computers, but the true energy effi-
ciencies come from specialized hard-
ware built specifically for the task.

Neuromorphic algorithms differ 
greatly from traditional algorithms 
and overlap the important discipline 
of machine learning. The indus-
try can now simulate neuromorphic 
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FIGURE 2. Four future computing approaches and the extent to which they disrupt the 
traditional computing stack (left). At the far right (level 4) are non−von Neumann archi-
tectures, which completely disrupt all stack levels, from device to algorithm. At the least 
disruptive end (level 1) are more “Moore” approaches, such as new transistor technology 
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of 
which the programmer is unaware.
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Levels of Disruption in Moore’s Law End-Game and Post-
Moore eras
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disruptive end (level 1) are more “Moore” approaches, such as new transistor technology 
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of 
which the programmer is unaware.

Source: “Rebooting Computing: The Road Ahead”, T.M.Conte, 
E.P.DeBenedictis, P.A.Gargini, E.Track, IEEE Computer, 2017.  

At the far right (level 4) are 
non−von Neumann 
architectures, which completely 
disrupt all stack levels, from 
device to algorithm.
At the least disruptive end 
(level 1) are more “Moore” 
approaches, such as new 
transistor technology and 3D 
circuits, which affect only the 
device and logic levels.
All future hardware directions 
are characterized by extreme 
heterogeneity.
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Range of Approaches (and disruptions!)  for
Memory-Centric Processing
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Place Types

Memory-Centric Programming with Places in X10

HERE THERE

int x
T f

T g

T p

p.x
q = p.f
r = p.g
r.x

T q

T r

Type inference for locality analysis of distributed data structures.
Satish Chandra, Vijay Saraswat, Vivek Sarkar, Ras Bodik.  PPoPP 2008.



5

Hierarchical Place Tree (HPT) extension for memory hierarchies 
and heterogeneous architectures

PL0

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

§ Devices (GPU or FPGA) are represented as memory 
module places and agent workers
§ GPU memory configuration is fixed, while FPGA

memory can be reconfigured at runtime
§ async at(P) S

§ Creates new task to execute statement S at place P

PL

PL

PL

PL

Physical memory

Cache
GPU memory

Reconfigurable FPGA
Implicit data movement
Explicit data movement

Wx CPU computation worker
Wx Device agent worker

Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Date Movement.
Yonghong Yan, Jisheng Zhao, Yi Guo, Vivek Sarkar.  LCPC 2009.

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.”  Alina 
Sbirlea, Yi Zou, Zoran Budimlic, Jason Cong, Vivek Sarkar.  LCTES 2012
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Data Layout Transformations (Example)

// Input
double C[NI][NJ];

double A[NI][NK];

double B[NK][NJ];
…

for (k = 0; k < nk; k++)  

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * A[i][k]

* B[k][j];

// Conversion to Struct-of-Array
double C[NI][NJ];
struct Struct_of_AB {

double A[NI];
double B[NJ];

};
Struct_of_AB SoAB[NK];
…
for (k = 0; k < nk; k++)  

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * SoAB[k].A[i]
* SoAB[k].B[j];

// Array dimensional permutation
double C[NI][NJ];
double A[NK][NI];
double B[NK][NJ];
…
for (k = 0; k < nk; k++)  

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

C[i][j] += alpha * A[k][i]
* B[k][j];
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Separation of
Concerns:
§ User specifies data

layouts for different
architectures in “meta files”

§ Automatic Layout Generator can be 
used to recommend best layouts 
for different architectures

§ Code is unchanged!

Compiler Optimization
of Data Layouts

“Data Layout Optimization for Portable Performance.” K. Sharma, I. Karlin, J. Keasler, J. McGraw, V.Sarkar, EuroPar ‘15.
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Automatic Data Layout Problem for CPU+GPU architectures

§ Previous framework limited to a single data-layout for 
the entire program

§ Large programs with multiple kernels might require 
different layouts for different parts of the program
§ The best data layout could be a single layout for the entire 

program or multiple layouts for each kernel with data-
remapping in between

“Automatic Data Layout Generation and Kernel Mapping for CPU+GPU Architectures.”
Deepak Majeti, Kuldeep Meel, Raj Barik and Vivek Sarkar.  CC 2016.
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This integration has 
been demonstrated for 

X = MPI, UPC++, 
OpenSHMEM, 
Accelerators

Integrating Data Movement with Tasking (X + Habanero)

Example:
finish{

async S1;

MPI_Isend(…);

MPI_Irecv(…, &req);

async await(req) S2;

S3;

}

...

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent 
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar.  IPDPS 2013.
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Compiler/Runtime Analysis can also help with debugging 
memory mappings, e.g., OpenMP’s map clause

OMPSan: Static Verification of OpenMP’s Data Mapping Constructs. 
Prithayan Barua, Shirako Jun, Tsang Whitney, Paudel Jeeva, Chen Wang IWOMP 2019
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Towards Performance, Programmability, and Portability 
for future Memory Systems
§ Programming models

§ Use of virtualized abstractions of heterogeneous memories, such 
as hierarchical places/locales

§ Compilers
§ New optimizations that combine code transformations with data 

placement, layout and movement
§ Runtime Systems

§ Integrated scheduling of asynchronous tasks and data movement
§ Debugging

§ Co-design of prog model, compiler, runtime to simplify debugging


