
Optimizing Data Layouts For Irregular
Applications on a Migratory Thread

Architecture
Thomas Rolinger1,2, Christopher Krieger2, Alan Sussman1

1 University of Maryland
2 Laboratory for Physical Sciences

Overview
• Emerging memory-centric architectures
– fundamentally different from conventional systems
– require different approaches to obtain high

performance
• This work: optimizing data layouts
– focus on applications with irregular data access

patterns
• makes static optimizations hard

2

Outline
• Migratory Thread Architecture
– Emu
– Data Layouts

• Framework for optimizing data layouts
– cost model
– optimization: block placement

• Case Study
– Sparse Matrix Vector Multiply

3

Migratory Thread Architecture
• Studied in this work: Emu
• “Cheaper” to move program instead of data
• Threads migrate to remote data on reads

– migration context: ~ 200 bytes (live registers, PC)
– stores performed as remote updates (thread does not migrate)
– no direct analogue to this on conventional systems

• Consequences
– data layout directly impacts work distribution and hardware load

balancing
• load balance != equally distributing data
• cannot pin/isolate threads to hardware resources

4

The Emu Architecture

5

• Gossamer Core (GC)
– cache-less
– supports up to 64 concurrent light-

weight threads
• Nodelets combined to form nodes
• Threads move between nodelets

– intra-node: migration engine
– inter-node: Serial RapidIO link(s)

• Partitioned Global Address Space
(PGAS)

• Migrations performed by
hardware
– no user intervention

The Emu Architecture

6

• Gossamer Core (GC)
– cache-less
– supports up to 64 concurrent light-

weight threads
• Nodelets combined to form nodes
• Threads move between nodelets

– intra-node: migration engine
– inter-node: Serial RapidIO link(s)

• Partitioned Global Address Space
(PGAS)

• Migrations performed by
hardware
– no user intervention

Single Node
with 4 nodelets

The Emu Architecture

7

• Gossamer Core (GC)
– cache-less
– supports up to 64 concurrent light-

weight threads
• Nodelets combined to form nodes
• Threads move between nodelets

– intra-node: migration engine
– inter-node: Serial RapidIO link(s)

• Partitioned Global Address Space
(PGAS)

• Migrations performed by
hardware
– no user intervention

0
1 2

3

4
5 6

7

System used in our work: Emu Chick
8 nodes (32 nodelets), Arria10 FPGA hardware
Nodes requiring two hops:

0 ßà7 1 ßà6 2 ßà5 3 ßà4

Data Layouts on Emu
• Data layout is everything on Emu
– data layout is the only “knob” we can control

• Performance metrics to characterize “bad”
layouts:
– induces many thread migrations

• migrations are expensive
– induces poor load balancing

• thread migration hot spots
8

Problem Statement
• Question: How should we lay out our data to achieve high

performance?
• Answer: it depends on the data access pattern of the

application
– not known until runtime for irregular applications

• Proposed framework
– profile-driven data layout optimizations

• Focus of this work: block distributions
– chunk up data into blocks and distribute blocks to nodelets
– blocks can have different sizes

9

Profile-driven Data Layout Optimizations

program P that
accesses data D

Emu
simulator

Data-centric
memory profiler

Cost modelOptimization(s)test new layout
on hardware

memory trace memory access
profile for D

costs for each block of
D and each nodelet

new layout
for D

specify that
we want to
optimize D

10

Emu hardware
memory access costs

Profile-driven Data Layout Optimizations

Cost modelOptimization(s)test new layout
on hardware

costs for each block of
D and each nodelet

new layout
for D

11

Focus of this talk

In full paper: details of data-centric
profiler and block distribution library

Optimization: Block Placement
• Optimization to consider:
– INPUT: existing data layout (mapping of blocks to nodelets)
– OUTPUT: new data layout
– move a block from its original nodelet to another such that

its total memory access cost is reduced
– but also avoid creating migration hot spots

• Need a cost model to help guide optimization
– This talk à high level overview
– Full paper à more formal description

12

Cost Model
• Step 1.) How much does an access cost?

13

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

Measure cycles per access
between nodelets

Produced by hardware
benchmark

Cost Model
• Step 1.) How much does an access cost?

14

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x

Cost Model
• Step 1.) How much does an access cost?

15

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x

intra-node migrations
2x more cycles than locals

node 0, nodelets 0 – 3

Cost Model
• Step 1.) How much does an access cost?

16

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x

intra-node migrations
2x more cycles than locals

inter-node migrations
Single hop
3x more cycles than localsnode 3, nodelets 12 – 15

node 0, nodelets 0 – 3

Cost Model
• Step 1.) How much does an access cost?

17

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x

intra-node migrations
2x more cycles than locals

inter-node migrations
Single hop
3x more cycles than locals

node 0, nodelets 0 – 3
inter-node migrations
Two hops
4x more cycles than locals

node 7, nodelets 28-31

Cost Model (cont.)
• Step 2.) What is the memory access cost for

each block?
– For a given nodelet i and block b on nodelet j
• (# accesses to b) X (cost of access from i to j)

– Sum up across all nodelets to get a “total” latency
for the block, measured in cycles

18

Cost Model (cont.)
• Step 2.) What is the memory access cost for

each block?
– For a given nodelet i and block b on nodelet j
• (# accesses to b) X (cost of access from i to j)

– Sum up across all nodelets to get a “total” latency
for the block, measured in cycles

19

Steps 1—2 tell us how to find
nodelet that will give the lowest
memory access cost for a given block

But need way to consider
load balancing of resources

Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Memory profiler provides info about how threads

access blocks (and nodelets) over time

20

Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access

blocks (and nodelets) over time

21

0

200

400

600

of

 th
re

ad
s

Threads Accessing Blocks

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3
BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7

Maximum threads
supported per
nodelet à 192over-utilization

penalty

Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access

blocks (and nodelets) over time

22

0

200

400

600

of

 th
re

ad
s

Threads Accessing Blocks

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3
BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7

block 0: heavy load
à Hard to find acceptable

nodelet placement

block “load” à
independent of its

placement

Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access

blocks (and nodelets) over time

23

0

200

400

600

of

 th
re

ad
s

Active Threads on Nodelets

NDLT 0 NDLT 1 NDLT 2 NDLT 3

NDLT 4 NDLT 5 NDLT 6 NDLT 7

nodelet 0: heavy “load” à
probably not good to
relocate blocks there

nodelet “load” à
aggregation of all blocks on
nodelet as well as all other

activity

Cost Model (cont.)
• Step 4.) Compute performance impact of each

block à prioritize the blocks
– Experiments showed that attempting to move all

blocks is generally bad
– Also found that the order in which we attempt to

move blocks is crucial
• Considers memory access latency (based on its

current placement) as well as block load

24

Cost Model (cont.)
• Step 5.) Compute placement cost of block b on

nodelet n
– Considers both memory access latency and the

resulting load on nodelet n IF block b were to be
placed on nodelet n

– Does not require re-running or profiling of application
to compute à relies on existing profiler data only

25

Optimization Algorithm

26

• See full paper for details
• Basic idea:

– prioritize/sort blocks based on performance impact
– Place block b on the nodelet n that gives the lowest placement cost

• Update model between placements
– does not require re-running the program

• Complexity: O(BlogB + BN2)
– N = # nodelets = 32 (not data dependent)
– B = # blocks
– Common case B == N à O(N3)

Case Study: SpMV
• Sparse Matrix Vector Multiply

– fundamental kernel in graph analytics
• Ax = b

– A à sparse matrix
– x à dense input vector
– b à dense output vector

• x is split into equal sized blocks
– default layout (block i on nodelet i).

• System: 32 nodelets (8 nodes), 192 threads per nodelet à
6,144 migrating threads total

27

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

HEP-th
-new

co
p20k_

A

Dubco
va

3

web-N
otre

Dame

inlin
e_1

loc-G
owall

a

Fu
llC

hip
mip1

gupta3

cra
nkseg_

1

myci
elsk

ian15

vsp
_fin

an
512

myci
elsk

ian13

parab
olic_

fem

wiki
-Talk

cra
nkseg_

2

net150

Hamrle
3

patents

human
_ge

ne1

Fre
esca

le1

patents_
main

sp
ee

d-
up

 o
ve

r d
ef

au
lt

SpMV Performance Gains
New Data Layouts Vs Default

28

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

HEP-th
-new

co
p20k_

A

Dubco
va

3

web-N
otre

Dame

inlin
e_1

loc-G
owall

a

Fu
llC

hip
mip1

gupta3

cra
nkseg_

1

myci
elsk

ian15

vsp
_fin

an
512

myci
elsk

ian13

parab
olic_

fem

wiki
-Talk

cra
nkseg_

2

net150

Hamrle
3

patents

human
_ge

ne1

Fre
esca

le1

patents_
main

sp
ee

d-
up

 o
ve

r d
ef

au
lt

SpMV Performance Gains
New Data Layouts Vs Default

29

Already had existing migration hot spot
à current optimization does not “fix” hot spots
à best addressed with another optimization

Future Work
• Consider more optimizations

– copy/replicate blocks
– adjust block sizes
– optimize layout for more than one data structure at a time

• More refined cost model
– better understanding of thread activity
– consider memory consumption

• Evaluate more applications
• Runtime optimizations

– not feasible with current Emu hardware
30

Conclusions
• Data placement is crucial to performance on

migratory thread architectures
– fundamental differences in how to approach data

layouts when compared to conventional systems
• Our framework is application independent
– relies on memory trace analysis and cost model
– target use cases: iterative applications

• cost of profiling/optimization can be amortized
31

• Emerging memory-centric architectures
– fundamentally different from conventional systems
– require different approaches to obtain high

performance
• This work: optimizing data layouts
– focus on applications with irregular data access

patterns
– run à profile à model à optimize

32

Contact:
Thomas Rolinger (tbrolin@cs.umd.edu)

