Optimizing Data Layouts For Irregular Applications on a Migratory Thread Architecture

Thomas Rolinger1,2, Christopher Krieger2, Alan Sussman1

1 University of Maryland
2 Laboratory for Physical Sciences
Overview

• Emerging memory-centric architectures
 – fundamentally different from conventional systems
 – require different approaches to obtain high performance

• This work: optimizing data layouts
 – focus on applications with irregular data access patterns
 • makes static optimizations hard
Outline

• Migratory Thread Architecture
 – Emu
 – Data Layouts

• Framework for optimizing data layouts
 – cost model
 – optimization: block placement

• Case Study
 – Sparse Matrix Vector Multiply
Migratory Thread Architecture

• Studied in this work: **Emu**
• “Cheaper” to move program instead of data
• Threads **migrate** to remote data on **reads**
 – migration context: ~ 200 bytes (live registers, PC)
 – stores performed as remote updates (thread does not migrate)
 – no direct analogue to this on conventional systems
• Consequences
 – data layout directly impacts work distribution and hardware load balancing
 • load balance != equally distributing data
 • cannot pin/isolate threads to hardware resources
The Emu Architecture

• Gossamer Core (GC)
 – cache-less
 – supports up to 64 concurrent light-weight threads
• Nodelets combined to form nodes
• Threads move between nodelets
 – intra-node: migration engine
 – inter-node: Serial RapidIO link(s)
• Partitioned Global Address Space (PGAS)
• Migrations performed by hardware
 – no user intervention
The Emu Architecture

- **Gossamer Core (GC)**
 - cache-less
 - supports up to 64 concurrent light-weight threads
- **Nodelets** combined to form **nodes**
- Threads move between nodelets
 - intra-node: migration engine
 - inter-node: Serial RapidIO link(s)
- Partitioned Global Address Space (PGAS)
- Migrations performed by hardware
 - no user intervention

Single Node with 4 nodelets
The Emu Architecture

- **Gossamer Core (GC)**
 - cache-less
 - supports up to 64 concurrent lightweight threads
- **Nodelets** combined to form **nodes**
- Threads move between nodelets
 - intra-node: migration engine
 - inter-node: Serial RapidIO link(s)
- Partitioned Global Address Space (PGAS)
- Migrations performed by hardware
 - no user intervention

System used in our work: Emu Chick
8 nodes (32 nodelets), Arria10 FPGA hardware
Nodes requiring two hops:

0 ↔ 7 1 ↔ 6 2 ↔ 5 3 ↔ 4
Data Layouts on Emu

• Data layout is everything on Emu
 – data layout is the only “knob” we can control

• Performance metrics to characterize “bad” layouts:
 – induces many thread migrations
 • migrations are expensive
 – induces poor load balancing
 • thread migration hot spots
Problem Statement

• **Question**: How should we lay out our data to achieve high performance?

• **Answer**: it depends on the data access pattern of the application
 – not known until runtime for *irregular applications*

• Proposed framework
 – *profile-driven* data layout optimizations

• Focus of this work: block distributions
 – chunk up data into blocks and distribute blocks to nodelets
 – blocks can have different sizes
Profile-driven Data Layout Optimizations

program \(P \) that accesses data \(D \)

Emu simulator

Data-centric memory profiler

Emu hardware

Optimization(s)

Cost model

specify that we want to optimize \(D \)

memory trace

memory access profile for \(D \)

memory access costs

costs for each block of \(D \) and each nodelet

new layout for \(D \)

test new layout on hardware
Profile-driven Data Layout Optimizations

Focus of this talk

- test new layout on hardware
- Optimization(s)
- Cost model

new layout for D

costs for each block of D and each nodelet

In full paper: details of data-centric profiler and block distribution library
Optimization: Block Placement

• Optimization to consider:
 – **INPUT**: existing data layout (mapping of blocks to nodelets)
 – **OUTPUT**: new data layout
 – move a block from its original nodelet to another such that its **total memory access cost is reduced**
 – but also **avoid creating migration hot spots**

• Need a cost model to help guide optimization
 – This talk → high level overview
 – Full paper → more formal description
Cost Model

• **Step 1.** How much does an access cost?

Measure cycles per access between nodelets
Produced by hardware benchmark
Cost Model

• **Step 1.)** How much does an access cost?
Cost Model

- **Step 1.** How much does an access cost?

![Diagram](image)

- **src nodelet**
- **dest nodelet**

- **node 0, nodelets 0 – 3**

- **intra-node migrations**
 - **2x more cycles than locals**

- **locals (diagonal)**
 - **1x**
Cost Model

• **Step 1.** How much does an access cost?

![Diagram showing cost model with nodelets and migrations]

- **locals (diagonal):** 1x
- **intra-node migrations:** 2x more cycles than locals
- **inter-node migrations:** 3x more cycles than locals
Cost Model

• **Step 1.** How much does an access cost?

![Diagram showing cost model with nodes and nodelets labeled.]

- **Node 0, nodelets 0–3:** inter-node migrations, Two hops, **4x more cycles than locals**
- **Node 7, nodelets 28-31:** inter-node migrations, Single hop, **3x more cycles than locals**
- **Intra-node migrations:** **2x more cycles than locals**
- **Locals (diagonal):** **1x**
Cost Model (cont.)

• **Step 2.** What is the memory access cost for each block?
 – For a given nodelet i and block b on nodelet j
 • ($\#$ accesses to b) \times (cost of access from i to j)
 – Sum up across all nodelets to get a “total” latency for the block, measured in cycles
Cost Model (cont.)

• **Step 2.** What is the memory access cost for each block?

 – For a given nodelet i and block b on nodelet j

 • (# accesses to b) \times (cost of access from i to j)

 – Sum up across all nodelets to get a “total” latency for the block, measured in cycles

Steps 1—2 tell us how to find nodelet that will give the lowest memory access cost for a given block

But need way to consider load balancing of resources
Cost Model (cont.)

• **Step 3.** How are the threads moving around?
 – Memory profiler provides info about how threads access blocks (and nodelets) over time
Step 3.) How are the threads moving around?

– Profiler provides info about how threads access blocks (and nodelets) over time

![Threads Accessing Blocks](chart)

- Maximum threads supported per nodelet → 192
Cost Model (cont.)

• **Step 3.** How are the threads moving around?
 – Profiler provides info about how threads access blocks (and nodelets) over time

![Threads Accessing Blocks](chart)

- **block 0**: heavy load
 - Hard to find acceptable nodelet placement

- **block “load”**: independent of its placement
Cost Model (cont.)

- **Step 3.** How are the threads moving around?
 - Profiler provides info about how threads access blocks (and nodelets) over time.

Active Threads on Nodelets

- **nodelet 0:** heavy “load” → probably not good to relocate blocks there.
- **nodelet “load”** → aggregation of all blocks on nodelet as well as all other activity.
Cost Model (cont.)

• **Step 4.** Compute performance impact of each block → prioritize the blocks
 – Experiments showed that attempting to move all blocks is generally bad
 – Also found that the order in which we attempt to move blocks is crucial

• Considers memory access latency (based on its current placement) as well as block load
Cost Model (cont.)

• **Step 5.** Compute placement cost of block b on nodelet n

 – Considers both memory access latency and the resulting load on nodelet n **IF** block b were to be placed on nodelet n

 – Does not require re-running or profiling of application to compute \rightarrow relies on existing profiler data only
Optimization Algorithm

• See full paper for details
• Basic idea:
 – prioritize/sort blocks based on performance impact
 – Place block b on the nodelet n that gives the lowest placement cost
• Update model between placements
 – does not require re-running the program
• Complexity: $O(\log B + B N^2)$
 – $N = \# \text{ nodelets} = 32$ (not data dependent)
 – $B = \# \text{ blocks}$
 – Common case $B = N \rightarrow O(N^3)$
Case Study: SpMV

• Sparse Matrix Vector Multiply
 – fundamental kernel in graph analytics
• $Ax = b$
 – $A \rightarrow$ sparse matrix
 – $x \rightarrow$ dense input vector
 – $b \rightarrow$ dense output vector
• x is split into equal sized blocks
 – default layout (block i on nodelet i).
• System: 32 nodelets (8 nodes), 192 threads per nodelet \rightarrow 6,144 migrating threads total
SpMV Performance Gains
New Data Layouts Vs Default

speed-up over default

HEP-th-new cop20k_A Dubcova3 web-NotreDame inline_1 loc-Gowalla FullChip mip_1 gupta3 crankseg_1 mycielskian15 vsp_finan512 mycielskian13 parabolic_fem wiki-Talk crankseg_2 net150 Hamrle3 patents human_gene1 Freescale1 patents_main
SpMV Performance Gains

New Data Layouts Vs Default

Already had existing migration hot spot
→ current optimization does not “fix” hot spots
→ best addressed with another optimization
Future Work

• Consider more optimizations
 – copy/replicate blocks
 – adjust block sizes
 – optimize layout for more than one data structure at a time

• More refined cost model
 – better understanding of thread activity
 – consider memory consumption

• Evaluate more applications

• Runtime optimizations
 – not feasible with current Emu hardware
Conclusions

• Data placement is crucial to performance on migratory thread architectures
 – fundamental differences in how to approach data layouts when compared to conventional systems

• Our framework is application independent
 – relies on memory trace analysis and cost model
 – target use cases: iterative applications
 • cost of profiling/optimization can be amortized
• Emerging memory-centric architectures
 – fundamentally different from conventional systems
 – require different approaches to obtain high performance

• This work: optimizing data layouts
 – focus on applications with irregular data access patterns
 – run → profile → model → optimize

Contact:
Thomas Rolinger (tbrolin@cs.umd.edu)