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Overview
• Emerging memory-centric architectures
– fundamentally different from conventional systems
– require different approaches to obtain high 

performance
• This work: optimizing data layouts
– focus on applications with irregular data access 

patterns 
• makes static optimizations hard
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Outline
• Migratory Thread Architecture
– Emu
– Data Layouts

• Framework for optimizing data layouts
– cost model
– optimization: block placement

• Case Study
– Sparse Matrix Vector Multiply
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Migratory Thread Architecture
• Studied in this work: Emu
• “Cheaper” to move program instead of data
• Threads migrate to remote data on reads

– migration context: ~ 200 bytes (live registers, PC)
– stores performed as remote updates (thread does not migrate)
– no direct analogue to this on conventional systems

• Consequences
– data layout directly impacts work distribution and hardware load 

balancing
• load balance != equally distributing data
• cannot pin/isolate threads to hardware resources
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The Emu Architecture
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• Gossamer Core (GC)
– cache-less
– supports up to 64 concurrent light-

weight threads
• Nodelets combined to form nodes
• Threads move between nodelets

– intra-node: migration engine
– inter-node: Serial RapidIO link(s) 

• Partitioned Global Address Space 
(PGAS)

• Migrations performed by 
hardware
– no user intervention
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System used in our work: Emu Chick
8 nodes (32 nodelets), Arria10 FPGA hardware
Nodes requiring two hops:

0 ßà7       1 ßà6         2 ßà5         3 ßà4



Data Layouts on Emu
• Data layout is everything on Emu
– data layout is the only “knob” we can control

• Performance metrics to characterize “bad” 
layouts:
– induces many thread migrations

• migrations are expensive
– induces poor load balancing

• thread migration hot spots
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Problem Statement
• Question: How should we lay out our data to achieve high 

performance?
• Answer: it depends on the data access pattern of the 

application
– not known until runtime for irregular applications

• Proposed framework
– profile-driven data layout optimizations

• Focus of this work: block distributions
– chunk up data into blocks and distribute blocks to nodelets
– blocks can have different sizes
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Profile-driven Data Layout Optimizations

program P that 
accesses data D

Emu 
simulator

Data-centric 
memory profiler

Cost modelOptimization(s)test new layout
on hardware

memory trace memory access 
profile for D

costs for each block of 
D and each nodelet

new layout 
for D

specify that 
we want to 
optimize D
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Emu hardware
memory access costs



Profile-driven Data Layout Optimizations

Cost modelOptimization(s)test new layout
on hardware

costs for each block of 
D and each nodelet

new layout 
for D
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Focus of this talk

In full paper: details of data-centric 
profiler and block distribution library



Optimization: Block Placement
• Optimization to consider:
– INPUT: existing data layout (mapping of blocks to nodelets)
– OUTPUT: new data layout
– move a block from its original nodelet to another such that 

its total memory access cost is reduced
– but also avoid creating migration hot spots

• Need a cost model to help guide optimization
– This talk à high level overview
– Full paper à more formal description
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Cost Model
• Step 1.) How much does an access cost?

13

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

Measure cycles per access 
between nodelets

Produced by hardware 
benchmark 



Cost Model
• Step 1.) How much does an access cost?

14

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x



Cost Model
• Step 1.) How much does an access cost?

15

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

sr
c

no
de

le
t

dest nodelet

locals (diagonal)
1x

intra-node migrations
2x more cycles than locals

node 0, nodelets 0 – 3



Cost Model
• Step 1.) How much does an access cost?
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Cost Model
• Step 1.) How much does an access cost?
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Cost Model (cont.)
• Step 2.) What is the memory access cost for 

each block?
– For a given nodelet i and block b on nodelet j
• (# accesses to b) X (cost of access from i to j)

– Sum up across all nodelets to get a “total” latency 
for the block, measured in cycles
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Cost Model (cont.)
• Step 2.) What is the memory access cost for 

each block?
– For a given nodelet i and block b on nodelet j
• (# accesses to b) X (cost of access from i to j)

– Sum up across all nodelets to get a “total” latency 
for the block, measured in cycles
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Steps 1—2 tell us how to find 
nodelet that will give the lowest 
memory access cost for a given block

But need way to consider 
load balancing of resources



Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Memory profiler provides info about how threads 

access blocks (and nodelets) over time
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Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access 

blocks (and nodelets) over time
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Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access 

blocks (and nodelets) over time
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Cost Model (cont.)
• Step 3.) How are the threads moving around?
– Profiler provides info about how threads access 

blocks (and nodelets) over time
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Cost Model (cont.)
• Step 4.) Compute performance impact of each 

block à prioritize the blocks
– Experiments showed that attempting to move all 

blocks is generally bad
– Also found that the order in which we attempt to 

move blocks is crucial
• Considers memory access latency (based on its 

current placement) as well as block load
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Cost Model (cont.)
• Step 5.) Compute placement cost of block b on 

nodelet n
– Considers both memory access latency and the 

resulting load on nodelet n IF block b were to be 
placed on nodelet n

– Does not require re-running or profiling of application 
to compute à relies on existing profiler data only
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Optimization Algorithm
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• See full paper for details
• Basic idea:

– prioritize/sort blocks based on performance impact
– Place block b on the nodelet n that gives the lowest placement cost

• Update model between placements
– does not require re-running the program

• Complexity: O(BlogB + BN2)
– N = # nodelets = 32 (not data dependent)
– B = # blocks
– Common case B == N à O(N3)



Case Study: SpMV
• Sparse Matrix Vector Multiply

– fundamental kernel in graph analytics
• Ax = b

– A à sparse matrix
– x à dense input vector
– b à dense output vector

• x is split into equal sized blocks
– default layout (block i on nodelet i).

• System: 32 nodelets (8 nodes), 192 threads per nodelet à
6,144 migrating threads total
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Already had existing migration hot spot
à current optimization does not “fix” hot spots
à best addressed with another optimization



Future Work
• Consider more optimizations

– copy/replicate blocks
– adjust block sizes
– optimize layout for more than one data structure at a time

• More refined cost model
– better understanding of thread activity
– consider memory consumption

• Evaluate more applications
• Runtime optimizations

– not feasible with current Emu hardware
30



Conclusions
• Data placement is crucial to performance on 

migratory thread architectures
– fundamental differences in how to approach data 

layouts when compared to conventional systems
• Our framework is application independent
– relies on memory trace analysis and cost model
– target use cases: iterative applications

• cost of profiling/optimization can be amortized
31



• Emerging memory-centric architectures
– fundamentally different from conventional systems
– require different approaches to obtain high 

performance
• This work: optimizing data layouts
– focus on applications with irregular data access 

patterns
– run à profile à model à optimize
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