Optimizing Data Layouts For Irregular
Applications on a Migratory Thread
Architecture

Thomas Rolinger!2, Christopher Krieger?, Alan Sussman*

1 University of Maryland
2 Laboratory for Physical Sciences

The Laboratory for Physical Sciences

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

R

Overview

* Emerging memory-centric architectures
— fundamentally different from conventional systems
— require different approaches to obtain high
performance
* This work: optimizing data layouts

— focus on applications with irregular data access
patterns

* makes static optimizations hard

Outline

* Migratory Thread Architecture
— Emu
— Data Layouts
* Framework for optimizing data layouts
— cost model
— optimization: block placement
e Case Study
— Sparse Matrix Vector Multiply

Migratory Thread Architecture

Studied in this work: Emu
“Cheaper” to move program instead of data

Threads migrate to remote data on reads
— migration context: ~ 200 bytes (live registers, PC)
— stores performed as remote updates (thread does not migrate)
— no direct analogue to this on conventional systems

Consequences

— data layout directly impacts work distribution and hardware load
balancing
* load balance != equally distributing data
* cannot pin/isolate threads to hardware resources

The Emu Architecture

Gossamer Core (GC)

— cache-less

— supports up to 64 concurrent light-
weight threads

Nodelets combined to form nodes

Threads move between nodelets
— intra-node: migration engine
— inter-node: Serial RapidlO link(s)

Partitioned Global Address Space
(PGAS)

Migrations performed by
hardware

— no user intervention

nodelet 0
1

NCDRAM NCDRAM

MSP

|

A

GC

@&

—
\

Migr

Queue Queue Queue

Nodelet Queue
Manager

The Emu Architecture

Gossamer Core (GC) / nodelet 0 nodelet 3 \
— cache-less ' L '

NCDRAM | NCDRAM | NCDRAM | NCDRAM |
— supports up to 64 concurrent light- Msp } Msp | msp | MsP
ight thread L] L]
weig rea - S b, — =
Nodelets combined to form nodes oc| [ec| [sc Eicﬁ Eﬁ
Threads move between nodelets e S 17 A S
Run Mem Run Mem Migr
— intra-node: migration engine queve | quece | auee Dy | Eoe |
— inter-node: Serial RapidlO link(s) o e —
Partitioned Global Address Space

(PGAS) [Migration Engine)
Migrations performed by

hardware
— no user intervention

Single Node
with 4 nodelets

The Emu Architecture

Gossamer Core (GC)

— cache-less

— supports up to 64 concurrent light-
weight threads

Nodelets combined to form nodes

Threads move between nodelets

— intra-node: migration engine
— inter-node: Serial RapidlO link(s)

Partitioned Global Address Space System used in our work: Emu Chick

(PGAS) 8 nodes (32 nodelets), Arrial0 FPGA hardware
Migrations performed by Nodes requiring two hops:

hardware 0€>7 1€-6 2 €5 3&€2>4

— no user intervention

Data Layouts on Emu

* Data layout is everything on Emu
— data layout is the only “knob” we can control

e Performance metrics to characterize “bad”
layouts:

— induces many thread migrations
* migrations are expensive

— induces poor load balancing
e thread migration hot spots

Problem Statement

Question: How should we lay out our data to achieve high
performance?

Answer: it depends on the data access pattern of the
application

— not known until runtime for irregular applications
Proposed framework

— profile-driven data layout optimizations

Focus of this work: block distributions

— chunk up data into blocks and distribute blocks to nodelets
— blocks can have different sizes

Profile-driven Data Layout Optimizations

program P that
accesses data D

test new layout
on hardware

specify that
we want to
optimize D

G

Emu
simulator

memory access

memory tiace

profile for D

Data-centric
memory profiler

memory access costs

Optimization(s)

new layout
forD

e [o moved

costs for each block of

D and each nodelet
10

Profile-driven Data Layout Optimizations

Focus of this talk
A
R I R _ Optimization(s) _ Cost model
on hardware new | ‘
S~ ew layou costs for each block of

for D D and each nodelet

In full paper: details of data-centric
profiler and block distribution library

11

Optimization: Block Placement

e Optimization to consider:
— INPUT: existing data layout (mapping of blocks to nodelets)
— OUTPUT: new data layout

— move a block from its original nodelet to another such that
its total memory access cost is reduced

— but also avoid creating migration hot spots
 Need a cost model to help guide optimization

— This talk = high level overview
— Full paper =2 more formal description

Cost Model

e Step 1.) How much does an access cost?

dest nodelet
0 4 8 12 16 20 24 28 32

Measure cycles per access
between nodelets

Produced by hardware
benchmark

src nodelet

13

Cost Model

e Step 1.) How much does an access cost?

dest nodelet
0 4 8 12 16 20 24 28 32

src nodelet

[Iocals (diagonal)]
1x
14

Cost Model

e Step 1.) How much does an access cost?

dest nodelet
0 4 8 12 16 20 24 28 32

src nodelet

intra-node migrations
2x more cycles than locals

locals (diagonal)
1x

15

Cost Model

e Step 1.) How much does an access cost?

dest nodelet
0 4 8 12 16 20 24 28 32

node 0, nodelets 0 — 3

inter-node migrations
Single hop
3x more cycles than locals

node 3, nodelets 12 — 15

src nodelet

intra-node migrations
2x more cycles than locals

locals (diagonal)
1x

16

Cost Model

e Step 1.) How much does an access cost?

dest nodelet
0 4 8 12 16 20 24 28 32

inter-node migrations
Two hops
4x more cycles than locals

node 0, nodelets 0 — 3

inter-node migrations
Single hop
3x more cycles than locals

src nodelet

intra-node migrations
2x more cycles than locals

locals (diagonal)
node 7, nodelets 28-31 1x

17

Cost Model (cont.)

e Step 2.) What is the memory access cost for
each block?

— For a given nodelet i and block b on nodelet
* (# accesses to b) X (cost of access from i to)

— Sum up across all nodelets to get a “total” latency
for the block, measured in cycles

Cost Model (cont.)

e Step 2.) What is the memory access cost for
each block?

— For a given nodelet i and block b on nodelet
* (# accesses to b) X (cost of access from i to)

— Sum up across all nodelets to get a “total” latency
for the block, measured in cycles

Steps 1—2 tell us how to find
nodelet that will give the lowest
memory access cost for a given block

But need way to consider
load balancing of resources

Cost Model (cont.)

e Step 3.) How are the threads moving around?

— Memory profiler provides info about how threads
access blocks (and nodelets) over time

Cost Model (cont.)

e Step 3.) How are the threads moving around?

— Profiler provides info about how threads access
blocks (and nodelets) over time

Threads Accessing Blocks

600 Maximum threads
supported per
400 over-utilization nodelet = 192
penalty

N
()
o

of threads

o

«==BlOCK 0 ===BLOCK 1 BLOCK 2_ ==BLOCK 3
-==BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7

Cost Model (cont.)

e Step 3.) How are the threads moving around?

— Profiler provides info about how threads access
blocks (and nodelets) over time

Threads Accessing Blocks

000 block “load” >
“ block 0: heavy load independent of its
© 400 -> Hard to find acceptable placement
< nodelet placement
S 200
- 4

\
: v
. (\%
. \ ‘vv/
| J

~ gy ™

—BLOCK 0 ==—BLOCK 1 BLOCK 2- ==BLOCK 3
-==BLOCK 4 BLOCK 5 BLOCK 6 BLOCK 7

Cost Model (cont.)

e Step 3.) How are the threads moving around?

— Profiler provides info about how threads access
blocks (and nodelets) over time

Active Threads on Nodelets

600 nodelet “load” -
» nodelet 0: heavy “load” 2 aggregation of all blocks on
S 400 probably not good to nodelet as well as all other
F= relocate blocks there activity
& 200
i \

O . | SN e R ——— —
——NDLT 0 —NDLT 1 NDLT 2 «==NDLT 3

Cost Model (cont.)

e Step 4.) Compute performance impact of each
block = prioritize the blocks

— Experiments showed that attempting to move all
blocks is generally bad

— Also found that the order in which we attempt to
move blocks is crucial

* Considers memory access latency (based on its
current placement) as well as block load

Cost Model (cont.)

e Step 5.) Compute placement cost of block b on
nodelet

— Considers both memory access latency and the
resulting load on nodelet n IF block & were to be
placed on nodelet

— Does not require re-running or profiling of application
to compute =2 relies on existing profiler data only

Optimization Algorithm

See full paper for details

Basic idea:

— prioritize/sort blocks based on performance impact

— Place block b on the nodelet n that gives the lowest placement cost
Update model between placements

— does not require re-running the program
Complexity: O(BlogB + BN?)

— N = # nodelets = 32 (not data dependent)

— B =# blocks

— Common case B==N 2 O(N3)

Case Study: SpMV

Sparse Matrix Vector Multiply

— fundamental kernel in graph analytics
Ax=Db

— A - sparse matrix

— x =2 dense input vector

— b = dense output vector
x is split into equal sized blocks

— default layout (block i on nodelet i).

System: 32 nodelets (8 nodes), 192 threads per nodelet -
6,144 migrating threads total

SpMV Performance Gains
New Data Layouts Vs Default

1.60

o O O O O o
LN < m N i o
- = HA = =
}jnejap 1910 dn-paads

SpMV Performance Gains

New Data Layouts Vs Default

1.60

1.50

1.40

Already had existing migration hot spot

1.30
o 1.20

over default

—> current optimization does not “fix” hot spots
- best addressed with another optimization

7 —

7 >
'S Y A’g) ,b(Q Q,') &\ (:Q\Q \QN \,’g) Qo'} Q';O <,)'\'} Q'\r'b s\e(oo
< ATE PN KR ETE Lo
TR @ L & & &L sV
QG % & & N P
X S NS CELE LKL LO
& < ¢ Q

Future Work

Consider more optimizations

— copy/replicate blocks

— adjust block sizes

— optimize layout for more than one data structure at a time
More refined cost model

— better understanding of thread activity

— consider memory consumption

Evaluate more applications

Runtime optimizations
— not feasible with current Emu hardware

Conclusions

e Data placement is crucial to performance on
migratory thread architectures

— fundamental differences in how to approach data
layouts when compared to conventional systems

* Our framework is application independent
— relies on memory trace analysis and cost model

— target use cases: iterative applications
* cost of profiling/optimization can be amortized

* Emerging memory-centric architectures

— fundamentally different from conventional systems

— require different approaches to obtain high
performance

* This work: optimizing data layouts

— focus on applications with irregular data access
patterns

— run > profile 2 model = optimize

Contact:
Thomas Rolinger (tbrolin@cs.umd.edu)

32

