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Outline

• Scaling, of everything

• Walls, of all sorts

• Abstraction

• Heterogeneity

• 3D CMOS

• Memory-Compute, of all sorts
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Memory Price Scaling – 1957 to 2019 (market price, not cost)

https://jcmit.net/memoryprice.htm & 
J. T. Pawlowski - Where the Rubber Meets the Road, ISCA 2019
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DRAM intro NAND intro 3DXpoint intro

-8%/year DRAM

https://jcmit.net/memoryprice.htm


JTP

SRAM vs eDRAM Scaling
Intel High Capacity SRAM and IBM eDRAM cells shown 

Area (nm2) vs Node (nm)• eDRAM implemented 
in logic process

• SRAM 2x relative size 
at 14nm since 90nm

• eDRAM 2.7x since 
45nm, macros
scaling worse

• Samsung 7nm high 
capacity SRAM 531F2

• Clearly NO economic 
case for any more 
eDRAM tech nodes

4

Arbitrary starting 
points for 
projections

7

Samsung,TSMC
Intel
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3D NAND – first monolithic 3D memory technology

• 3D NAND scaling
• In 3D, the NAND chain is vertical 

instead of horizontal

• Scalable and performance advantages
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PLANAR 3D

• Planar NAND scaling
• Diminished return below 16nm

• Further shrink at TLC: could detect the loss of a 
single electron from the floating gate
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NAND Flash  - Bit Density Scaling

6Shibata et al, ISSCC, 2019 (Toshiba)

Micron 768Gb CuA, 4.29
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NAND Flash  - Capacity Scaling
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Planar shrinking Era 
-32% area/year until 2011   (nm)
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3D Layer count growth Era
+33% +50% alternating years 
until 2018                        (layers)
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Probably <2x/2yr bit 
density scaling, again
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50nm 30nm 20nm

Impacts of DRAM Process Complexity
• Large increase in number of process steps to enable shrink

• Conversion Capital Expenditure scales with number of steps

• Significant reduction in wafer output per existing cleanroom area

Number of 
Mask Levels

Cleanroom Space 
per Wafer Out

~10%

>35%

~15%

>80%

50nm 30nm 20nm

Number of non-Litho Steps 
per Critical Mask Level

~40%

>110%

Complexity comparison for enablement
of ~100% bits/wafer increase

50nm

30nm

30nm

20nm

50nm 30nm 20nm50nm 30nm 20nm

J. T.  Pawlowski, IEEE MICRO keynote, 2015
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DRAM Scaling is Slowing but Continuing

9
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DRAM - Capacity Scaling

10

2004
1Gib

1kib

First 6F2 cell,
Last drawn cell shrink

DRAM cell size has migrated:  approximately  22 – 16 – 12 – 8 – 6F2

but failed to reach 4F2 so far due to cell-sense amp subsystem SNR.
Strictly speaking, DRAM cell size is more than 6F2 now due to asymmetry, 7F2.

1Gib

1Mib

JTP

Have been below the capacity 
scaling curve since 2007 after 
spending 30 years above the curve
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Future of DRAM Technology

• 3D DRAM, obviously
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How does DRAM scaling compare to CMOS 
logic scaling?
Is Moore’s “Law” failing catastrophically?

12
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From Hennessy & Patterson, 2018, Single thread performance scaling

13
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CMOS Process Technology Introduction Rate
This curve includes CPUs and GPUs
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From this curve we get some sense of a slow-down already in the early 80’s (recall that the “law” had to 
be reformulated in 1975), BUT down to ~28nm, nodes were named for FET gate length L. Now the 
naming is arbitrary for CMOS and any 3D technology including NAND; only meaningful for DRAM.
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Hennessy, 2018

CMOS Transistor Density Growth is Slowing
And with wafer size not increasing, we are off the 2x transistor growth per 2 years now

Moore’s Law, 1975 
revision: 
economical # 
Tr/die doubles 
every 2 years.

This graph does 
not directly 
address Moore’s 
Law, does not 
account for die 
size increases.
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CMOS Transistor Count per Die – started slow fall-off ~2012, again!
This curve is only for general CPUs, not accelerators

16

2014, JTP suggested failure 
of Moore’s Law at IEEE SoC 
Design Conference Keynote

These examples are 
all multi-die (aka 
chiplets), max die 
sizes decreasing 
again, hence 
transistor count per 
die way below the 
curve, top point is 9 
die system

Cerebras 84 die
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CMOS Transistor Count per Die – falling off after ~2013
This curve is only for GPUs
Insufficient public data available for FPGAs which used to be the densest of all CMOS logic, but 
now, no significant difference

17
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Wafer Size Scaling
Larger wafers

= Lower processing cost per unit area
& Larger reticle field
= Larger die possible
= More transistors/die
Contributed to Moore’s scaling in the 
early days

Should have 
happened, 2013
But did not

J. T.  Pawlowski, ISCA 2019JTP
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Die Size Growth has nowhere to go - reached the reticle limit
This curve includes CPUs and GPUs. 
Future scaling will most likely be 3D and scale the die count both in 3D and planar

19J. T.  Pawlowski, 2019, for ACACES HiPEAC Summer School

300mm wafer
reticle field limit

200mm wafer 
reticle field limit

JTP

Intel FPGA, 1 die of 2

AMD, largest die of 9
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CMOS Die Size Growth on Log2 Scale

20

300mm wafer
reticle field limit

200mm wafer 
reticle field limit
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How do you relate DRAM and CMOS 
logic processes?

Good comparison is finest metal pitch on logic vs sqrt(xy) pitch on 
DRAM

DRAM processes are named by finest metal half pitch

Logic process names are now marketing choices

Perhaps can show more at MemSys20

21
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DRAM Bandwidth Scaling

23
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DRAM Data Signal Rate vs Year of Introduction

24
J. T.  Pawlowski, 2019, for ACACES HiPEAC Summer School
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DRAM Single Die Footprint Peak Bandwidth vs Year of Introduction

25
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DRAM Multi-DIMM, Multi-Footprint Peak Bandwidth vs Year of Introduction

26

Costly to go beyond 8-DIMM channels, yet we will, but real 
future is in serdes on finer grain channels, with abstraction

Can go to more than 6 HBM footprints, increasingly difficult to increase bandwidth of a footprint

8-HBM3
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Energy Scaling
Processors and memory

27
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Energy Observations

28

Task (256b ops) Energy (Without sequencing overhead)

Two 2-operand Double Precision
Floating Point Operations

15 pJ (10nm logic)

Small L1 Cache SRAM Read 30 pJ (10nm logic)

10mm move on logic die 180 pJ (10nm logic)

Low-Power discrete DRAM off-chip read
1500pJ (same timeframe as 10nm logic, 

DRAM portion only, add ~600 for logic side)

With the failure of Dennard scaling,
Energy is increasingly our largest issue
Data movement costs most
And don’t even ask how many pJ/b for wireless !
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Energy per Bit is Complex

• This shows just the IO energy of different architectures

• Each comprises a curve, not a point
29

• For DRAM accesses 
must amortize ACT-PRE 
and account for CLK 
power

• Hence, the highest 
energy efficiency occurs 
when the whole page is 
transferred

• Energy/b increases as 
transported data 
decreases
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Energy Scaling
• Energy scaling has been modest in DRAM

• DDRx average -12.1% / year

• LPDDRx average -9.9% / year (2008-2019)

• Greatest reductions come with new 
architectures and voltage drops

• Other memory types are less energy efficient

• From the end of Dennard scaling ~2006, 
energy reduction has been through 
purposeful process technology innovations, 
circuit design, and chip architecture concepts
• Now, little “natural” assistance, unlike before 

2007

• This figure shows an excellent 35.4% annual 
energy reduction “Koomey’s Law”, efficiency 
doubling every 2.3 years 

• In 2011 Koomey pronounced that the 
average doubling time since 2000 is 2.6 years

Is this true? 30
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Still Good Evidence of Ops/W Scaling
• From analysis of the TOP500 list

• Long duration job, average 
power is measured

• Hence can be equated to 
compute per unit energy

• Shows more aggressive 
Ops/W scaling than Koomey
revised prediction but using 
unrealistic Linpack

• New Nov’19 Green #1 is not 
much improved, released 
today

• Generally, Koomey’s estimate seems reasonable

31

Is HPC 
Ops/W 
stalled?
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The Memory Wall
• Original paper on the Memory Wall compared processor latency with DRAM latency and 

showed a widening gap

• The often quoted Hennessey & Patterson figure e.g. Computer Architecture 5th edition
page 73
graphs the inverse of time
between memory references
as processor performance
and the inverse of DRAM
access latency as memory
performance

• This is a legitimate comparison
for a single core single memory
system but not useful in
high core count multi-threaded
systems which have many
memory responders

32
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The Memory Wall
• In 1990’s, began to devote transistors to SRAM cache

• Provided more ILP, found more memory accesses, and more Flops/s

• Enabled by applications which have plenty of locality

• Caches are here to stay 

• Even if memory suddenly became low latency and processors were radically 
redesigned there would still be an energy problem

33
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The Power Wall

34P Kogge, MemSys 2017

• Is this the wall?    Yes, A WALL. Not THE WALL.
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The Wall is now the Locality Wall (PKogge) Energy Wall (JTP)

35

• Power is a problem, but breaks down as energy for each operation times the 
operation rate

• Energy increases as we lose locality and must traverse distance

• Horowitz, Asfalk, Dally, Horst, Kogge, JTP all
presented similar data showing energy 
increase with larger structures and
increasing communication distance

• The Great Wall is now Energy

Greg Asfalk, HP
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How Low Can Memory Access Energy Go?
• Today:  0.24pJ/b for a large capacity SRAM 256b access vs. 7pJ/b for the 

most efficient memory (about a tie between LPDDR5 and HBM2E)

• 4.5pJ/b for Hynix HBM2E full 1kiB page access

• ~3.5pJ/b projected for Samsung HBM3 full page access

• By doing everything possible can get to sub-2pJ/b in high capacity DRAM

• Potentially 1pJ/b with some major architecture improvements

36
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Memory Abstraction
• Memory has been a second-class citizen in processor-memory systems for a long while

• There surely is potential for accelerated functions on the memory side

• Why not make it easier? Encourage innovation, nay, ENABLE IT? Mitigate the “warts”? 
Accommodate different technologies?

• HMC protocol inspired the world

• Gen-Z’s starting point was HMC protocol

• CCIX started shortly after Gen-Z

• Intel stymied abstraction initiatives but then finally released its response:  CXL

• This is a great thing for the entire industry, enormous potential despite the PHY limitations

• Repeating my words from the first MemSys panel, 2015…

• “shame on us if we propose another memory architecture that is not abstracted”

• “the degree of sensible abstraction is proportional to the latency of memory, low latency 
memory must be very lightly abstracted, high latency memory can be richly abstracted”

37
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Near-Term Future System Concept

DRAM 
DIMMs

Multiple Processor 
Cores and Uncore

Host with Fast Near Memory
Such as HBM ~80ns Load-to-

use latency (L2U)

Storage
SSD

> 50,000 ns best 
L2U

3D XPoint™

Logic and 
Cache

Far Memory
3D XPoint™? 

Memory
Latency TBA

Working 
Memory

Bulk DRAM
~80ns L2U

Near Memory DRAM QLC 3D NAND

Logic and 
Cache

Industry-standard protocol(s) for ease of attachment

38

Is 3D Xpoint really going to have an impact?  Inspirational, but otherwise minor. Superior technologies will 
emerge with much greater potential, <100ns L2U system latency. Let’s use 3DX only as a temporary proxy. 
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Systems Have Become Heterogeneous

• Apple A12X with 46 specialty accelerators

• 122mm2, >10B transistors, 7nm CMOS
39

• Apple A12, 83.2mm2, 6.9B transistors, 7nm CMOS
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All Top Supercomputers Are Heterogeneous
Both within their Processors/Accelerators and their Memories

• World’s Top:  Summit  200 PetaFlops at 14MW
• 4,608 nodes

• 9,216 IBM POWER9 22-core CPUs and 27,648 Nvidia Tesla GPUs
• > 95% of Flops comes from GPUs

• Over 600 GiB of coherent memory per node 
• 6×16 = 96 GiB HBM2
• 2×8×32 = 512 GiB DDR4 SDRAM
• Addressable by all CPUs and 

GPUs

• 800 GB of non-volatile RAM 
that can be used as a burst 
buffer or as extended memory

• Challenging to program system 
with heterogeneity
• Not all software can be ported

40
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Opportunity of Memory Heterogeneity
• Why have systems become heterogeneous?

• Slowdown in frequency scaling, lithography scaling, interconnect scaling
• Increase in specialization, problems that are embarrassingly parallel, higher intensity compute
• Mixed compute requirements - variable access patterns, some very regular, others very irregular 

such as pointer chasing, indirection
• High energy and latency of data movement - finer grain accelerators, data transformations
• Advent of emerging memory technologies
• Advances in packaging

• Challenges
• Compute and Software - offload and communications overhead, variable performance, 

determinism, programming complexity, mapping increasingly varied workloads
• Emerging memory explosion

• Recent introduction of STT-MRAM, ReRAM into foundries, introduction of 3DXpoint by 
Intel/Micron, 5 classes of NAND Flash – fast SLC, SLC, MLC, TLC, QLC, with varied maturity and 
performance

• Attaching the memory into hardware
• Additional memory tiers presents challenge to app’s software and operating system
• Data movement between memory types
• Widened variety of data access patterns

41
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Processing In, At, or Near Memory

42
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It is Time for 3D CMOS
• Process scaling is slowing, and we will observe more slowdown if we keep 

transistors in single plane
• No Dennard’s Law to save us, diminished power reductions

• 10-20% per node now, pressure on circuit design and architecture for help
• Reduced performance gains, domination by wires, diminishing cost reduction per 

process node

• Future technology improvements beyond TSVs
• Small pitch for high-density, high-bandwidth, Cu-Cu bonding at 1um pitch without stress 

keep-out zones
• Gains from system partitioning and het. integration for reduced cost and higher yields
• Logic folding for additional energy benefits – reduced distances

• Monolithic 3D CMOS is possible
• For what layer count?

• EDA tools will be a limiting factor
• Of course, many 3D integration concepts are in various stages of development
• The opportunity for Compute Memory is regulated by what is (or is not) done 

in CMOS 
43
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The Memory, the way we use Memory, and Memory Economics are 
all Problems

44

Intrinsic, on die, Memory BW is high, but is 
constrained by the off die system bus

• If we stay with today’s paradigm, 
the memory bottleneck continues
• Memory energy is interconnect 

dominated

• Memory bandwidth is pin and 
locality constrained

• A tighter integration of compute 
and memory is a possible path 
forward
• Reduce external bw requirement

• Employ internal compute 
parallelism
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Compute Deeper in Memory

45

Move Compute Primitives onto the Memory “Core”

Consider putting some compute as 
part of the memory core

▪ Math and/or logical functions 
operating on an entire page

▪ Further increase in on memory 
die compute parallelism for 
specific tasks

▪ Operations would need to be 
vectors

▪ Favorable kernels would have high 
Bytes to Ops ratio
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Merger of Compute and Memory for AI Accelerators

46

Possibly enabled by the storage Physics of some Emerging Memory Technologies

Exploit the unique physics of 
“emerging memory” technologies for 
in memory neural fabrics

▪ Summing (threshold) and sigmoid 
(triggering) behavior

▪ Analog “weight” storage to some 
degree

▪ Many recent papers based on 
resistive, magnetic, and floating 
gate technologies, with digital and 
analog processing techniques 
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Breaking the Energy Wall

47

• If memory-bound, can consider moving compute to the memory-side of the 
pinch-point

• 6 potential solution categories

Near MemoryP Kogge illustration, MemSys17

1

2 3

4

6

5
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Is in-situ the Best Approach?

48

• Operations in the memory array itself

• E.g. enable more than a read or write in column by activating more than one row
• Can easily construct simple Boolean operations this way
• A big problem with this approach is the need to test a vast number of activation 

combinations, whereas currently there are no combinations, just single row activations

• Another problem is energy
• Each activation adds to the 

energy requirement
• Cannot keep arbitrarily

increasing it without
impacting power delivery and
thermal management

• CAM is an example of in-situ
• Also neuromorphic compute
• And several recent papers at

ISCA, VLSI, ISSCC, MemSys

Near Memory
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At the Sense Amps?

49

• At the point after where the digit lines become true Boolean signals

• Can be quite wide, and must use it at full width for highest efficiency
• Amortize the control overhead energy

• Easy approach is 1b ops, e.g. 1ki vector of 1b ops

• With additional complexity, can make ops >1b

• More complex:  perform bit-serial successive operations 

• Also simple search functions

• More practical than in-situ
• Eliminates the test permutations

problem of the multiple rows
activated in parallel

• Another example:
Cray 2 Terasys SRAM chip

• Must be pitch-matched to sense
amps

Near Memory
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At the Bank?   Or in the Inter-Bank Routing?

50

• After the column multiplexors

• There is less bandwidth, fewer bits, more space to add higher complexity circuitry, greater potential 
utilization of the added silicon

• Can range from ALUs to entire cores

• Examples
• Execube 8-core (each core access to 1/8th memory)
• Micron Yukon test vehicle with 256 8b ALUs in eDRAM technology, early 2000’s was in the inter-bank 

routing area
• Associative computing from 

Mikamonu, acquired by GSI
• Can be implemented at bank or

at inter-bank routing
• Micron’s HMC compute was at 

inter-bank routing, as was IBM’s
offshoot of it
• Bottom of vault in 3D structure
• Could also classify as On-Memory

• UpMem – 1 Data Processor Unit
at each bank, 14-stage pipe, etc.

• Complication: need to transpose
row and column bits; data layout
is sensitive issue

Near Memory
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On Memory?

51

• On the same die as memory – after the inter-bank routing resources

• Typically a complete processor(s)

• Sees all the memory on die but nothing off-chip

• Chip interface may be memory-like

• E.g. Berkeley Vector IRAM (MIPS off to the side + Vector processors down the center spine); 
Mitsubishi M32R/D (processor core in the middle surrounded by 4 DRAMs)

• Both were eDRAM proposals

• Poor idea unless transistors and
interconnect are improved 

Near Memory



JTP

Near Memory?

52

• Inside or in the vicinity of the memory controller

• Allows access to all memory unless some optimization deems that unwise

• Does the near-memory processor see logical or physical memory map?
• A choice that can add tremendous complication

• In the case of a construction such as HMC where bottom die is
foundry CMOS, processor could be as capable as any, power permitting
• Production HMC did incorporate atomic Boolean, integer, and 

scatter/gather functions but did not yet incorporate a full processor

• In the case of an HBM-like construction where bottom die is in 
DRAM node, processor is much more limited in performance.

• Lucata (formerly known as Emu, Peter Kogge et al)
has a brilliant approach – work moving via migratory threads
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And the memory company’s nightmare…processing without external memory.  
Memory and logic integrated in logic process only

53

• Cerebras example, eliminates the need 
for external memory, problems are 
mapped into the network of chips
• 84 die stitched together on wafer, including 

IO circuitry between them
• Works fine until the problem exceeds the 

chip capability
• Begs for 3D solution instead of planar 

extension of chips
• Lots of weaknesses – off-chip IO, cost, etc.

• Neuromorphic example is the opposite: 
memory and thin logic integrated into 
memory process 
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Common Challenges with Memory-Compute

54

• A common problem with all of these in/at/near memory compute
approaches is inherited from the DRAM system situation
• E.g. if incorporated on DRAMs of a DIMM, data is interleaved across all 

DRAMs of a rank – no single DRAM sees the whole data variable
• Optimizing data layout is preeminent issue

• Another common problem is disruption of host processes – conflict with local 
computations
• Is it still a memory, or an accelerator

with private memory?

• Ecosystem support is the
elephant in the room – enabling
simple access to the programmer
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But, Opportunities Too

55

• Memory manufacturers have focused memory technology on inexpensive bits

• As the pressure to perform compute in memory mounts,
performance can be economically addressed (increased)
• Vastly improved interconnect and transistor performance is possible
• This upsets all the analysis done to date – research anew
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Final Thoughts

56

• HBM vs HMC concepts

• Must propagate and advantageously utilize abstraction
• Enable selective memory-processing

• Must properly seize the advantages of 3D in both logic and memory

• Are chiplets a stop-gap measure only for 
planar scaling or does it have a future in 3D?


