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Introduction

• Emerging non-volatile memory (NVM) has becomes 
promising storage devices due to:
– Byte-addressability
– Non-volatility
– Low latency
– Low idle power (except for NVDIMM)

HPE 8GB NVDIMM single Rank x4 
DDR4-2133 Module



4DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction (cont.)

• Fabric-Attached Memory 
(FAM), which can be 
accessed by memory 
semantics, provides high 
bandwidth, low latency, and 
shared memory pool across 
machines in a rack scale.
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Introduction of migrations
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Introduction of migrations

• Non-live migration: the state of application is 
checkpointed entirely to storage devices, copied to 
target, and resumed at target. 

• Post-copy live migration: Processor state, registers, 
etc., are transferred first, then application is 
resumed at target. When pages are accessed at 
target, a page fault is triggered to acquire faulty 
pages
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Migrations
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Motivations

• Non-live migration can benefit from FAM directly by 
avoiding page-copying phase.

• What about post-copy migration? Can we do more 
by using FAM?
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Goal

• Almost all previous work focus on total migration time 
of “victim” application
– If we can predict the working set correctly, an approach with 

longer migration time might be better in terms of overall 
system performance

• Instead, we propose “busy time” (of source node): the 
time from the start of migration to the time “victim” 
can be killed at source node
– Meaning how long the remaining applications at source 

having to wait for the resources, such as CPU and memory, 
occupied by “victim” to be released

– Non-live migration has the optimal busy time
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Our approach

• Like non-live migration, we propose our post-copy with 
FAM by first checkpointing the “victim” into FAM
– Checkpointed-based post-copy migration
– Therefore, “victim” can be killed after checkpoint immediately

• Almost the same busy time as non-live migration

– Due to the nature of FAM, the checkpointed pages can be 
accessed by target node directly
• Achieve shorter latency of the page fault

• We have implemented our approach at CRIU 
(Checkpoint/Restart in Userspace), a Linux open 
source tool
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Existing CRIU post-copy 
migration

• All Pages are stored in memory at source. 
• Faulting pages transferred via socket interface to 

memory at target.
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Our implementation

• On background, checkpoint “victim” into FAM 
• Asynchronous accessed pages fault if pages are 

not ensured to be dumped
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Our implementation (cont.)

• Synchronously accessed if pages have known to be 
dumped
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Evaluation of benchmarks
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System model
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Demanding paging
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Active pushing
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Evaluation: Redis + YCSB
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Results of YCSB throughput
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Results of speedup
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Gen-Z DDR interface

• Ref: Gen-Z white paper: DRAM and Storage-Class Memory (SCM) Overview
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Gen-Z memory 
interfaces

• Ref: Gen-Z white paper: DRAM and Storage-Class Memory (SCM) Overview


