
1DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Chih Chieh Chou, Yuan Chen, Dejan Milojicic, A. L. Narasimha Reddy,
and Paul V. Gratz

Optimizing Post-Copy Live Migration with
System-Level Checkpoint Using Fabric-

Attached Memory

Nov 18, 2019

2DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Outline

• Introduction
• Motivation and Goal
• Our Approach
• Conclusions
• Acknowledgements

3DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction

• Emerging non-volatile memory (NVM) has becomes
promising storage devices due to:
– Byte-addressability
– Non-volatility
– Low latency
– Low idle power (except for NVDIMM)

HPE 8GB NVDIMM single Rank x4
DDR4-2133 Module

4DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction (cont.)

• Fabric-Attached Memory
(FAM), which can be
accessed by memory
semantics, provides high
bandwidth, low latency, and
shared memory pool across
machines in a rack scale.

CPU

MEM

NVM

Gen-Z
switch

CPU

MEM

NVM

Gen-Z
switch

5DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction of migrations

Source Target

App 3

App 1

App 2

App 1

6DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction of migrations

• Non-live migration: the state of application is
checkpointed entirely to storage devices, copied to
target, and resumed at target.

• Post-copy live migration: Processor state, registers,
etc., are transferred first, then application is
resumed at target. When pages are accessed at
target, a page fault is triggered to acquire faulty
pages

7DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Migrations

Source Target

Storage/
MEM

3

App 1 App 1

1

Storage/
MEM

2

8DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Motivations

• Non-live migration can benefit from FAM directly by
avoiding page-copying phase.

• What about post-copy migration? Can we do more
by using FAM?

Source Target

Shared storage
(FAM)

2

App 1 App 1

1

9DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Goal

• Almost all previous work focus on total migration time
of “victim” application
– If we can predict the working set correctly, an approach with

longer migration time might be better in terms of overall
system performance

• Instead, we propose “busy time” (of source node): the
time from the start of migration to the time “victim”
can be killed at source node
– Meaning how long the remaining applications at source

having to wait for the resources, such as CPU and memory,
occupied by “victim” to be released

– Non-live migration has the optimal busy time

10DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Our approach

• Like non-live migration, we propose our post-copy with
FAM by first checkpointing the “victim” into FAM
– Checkpointed-based post-copy migration
– Therefore, “victim” can be killed after checkpoint immediately

• Almost the same busy time as non-live migration

– Due to the nature of FAM, the checkpointed pages can be
accessed by target node directly
• Achieve shorter latency of the page fault

• We have implemented our approach at CRIU
(Checkpoint/Restart in Userspace), a Linux open
source tool

11DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Existing CRIU post-copy
migration

• All Pages are stored in memory at source.
• Faulting pages transferred via socket interface to

memory at target.

11

app

Lazy
page

daemon

Page
server
mode

app

TCP/IP

MEM MEM

12DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Our implementation

• On background, checkpoint “victim” into FAM
• Asynchronous accessed pages fault if pages are

not ensured to be dumped

Source Target

app

lazy
page

daemon
page

server
mode

1

app

FAM
Lazy page file

2.2

page

2.3 2.5

2.1
2.4

13DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Our implementation (cont.)

• Synchronously accessed if pages have known to be
dumped

Target

lazy
page

daemon

app

FAM
Lazy page file page

14DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Evaluation of benchmarks

FAM (NVM)

File

Source
container

Target
container

app app

page

15DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

System model

Source Target

Ethernet (10Gb/s or 40Gb/s)

Gen-Z fabric network

FAM

PCM (2 GB/s) or NVDIMM (6.6 GB/s)

Add delay when transferring

Add delay
when R/W
FAM

16DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Demanding paging

17DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Active pushing

18DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Evaluation: Redis + YCSB

FAM

File

Source
container

Target
container

REDIS

2. post-copy
migration

REDIS

YCSB YCSB

1. Insert records 3. Access records

19DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of YCSB throughput

One thread four threads

0

0.5

1

1.5

2

2.5

3

3.5

10K 20K 30K 40K 50K

No
rm

al
ize

d
YC

SB
 th

ro
ug

hp
ut

FAM (2GB/s) Socket (10Gb/s)

FAM (6.6 GB/s) Socket (40Gb/s)

0

1

2

3

4

5

6

10K 20K 30K 40K 50K

No
rm

al
ize

d
YC

SB
 th

ro
ug

hp
ut

FAM (2GB/s) Socket (10Gb/s) FAM (6.6GB/s) Socket (40Gb/s)

20DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of speedup

21DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Acknowledgements

• We thank the generous support from Hewlett
Packard Enterprise and National Science
Foundation through I/UCRC (Industry–University
Cooperative Research Centers) Program

22DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Click to edit title style

Click to edit title style

23DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Gen-Z DDR interface

• Ref: Gen-Z white paper: DRAM and Storage-Class Memory (SCM) Overview

24DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Gen-Z memory
interfaces

• Ref: Gen-Z white paper: DRAM and Storage-Class Memory (SCM) Overview

