
LLNL-PRES-797199
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Software and Hardware Support for Programming 
Heterogeneous Memory
MCHPC'19

David BeckingsaleNovember 18th 2019



2
LLNL-PRES-797199

Heterogeneous memory introduces a number of performance 
and portability challenges for application developers

1

10

100

1000

10000

100000

malloc cudaMalloc

Some of the challenges are fundamental issues with hardware/software:

§ Limited capacity of high-bandwidth/low-latency memories

§ Not all memory locations can be accessed from everywhere

§ Increased cost of allocations (2 orders of magnitude slower than malloc)



3
LLNL-PRES-797199

Other concerns are related to software engineering

§ Code must be portable to different memory systems
— Vendor-specific APIs required to access some hardware

§ Applications need to leverage the underlying hardware without introducing too much 
complexity
— Have to balance this against losing power from being restricted to the "lowest common denominator" 

feature set

§ Memory usage between applications & libraries must be coordinated



4
LLNL-PRES-797199

Addressing these challenges requires a powerful and portable 
layer between the application and hardware
§ This layer must be simple, but expose the 

full features of the underlying hardware

§ It should allow applications developers to 
reason about different memory areas 

§ Tools should be provided to help mitigate 
any performance impact

§ It must balance simplicity and power

Abstraction Layer

Application

Implementations

Hardware

libnuma

???

CUDA

DDR GDDR

HIP

HBM



5
LLNL-PRES-797199

§ Provides software abstractions to enable 
portability and co-ordination across 
applications and libraries

§ Reduces cost of memory allocations using 
memory pools

§ Leverages power of underlying hardware 
via vendor-specific APIs

§ Allows introspection into allocations and 
kinds of memory to deal with limited 
space

Umpire is a library that provides concepts that address both the 
fundamental limitations and software engineering challenges

Umpire

Application

Implementations

Hardware

libnuma

???

CUDA

DDR GDDR

HIP

HBM



7
LLNL-PRES-797199

§ No single strategy works for all applications, and multiple paths to success have 
emerged

§ Key points across all applications:
1. Pools used to mitigate cost of allocations
2. Data partitioned into different "kinds", allocated in different ways
3. Memory motion is a first-class concern, avoiding memory motion is a key to performance

Umpire is being leveraged by production applications at LLNL, 
running on Sierra



8
LLNL-PRES-797199

§ SW4 is a 3D seismic modeling code that solves the wave 
equation on Cartesian and curvilinear grid 

§ Managed memory is initialized on the host and then 
transferred to the device once

§ All kinds of device memory allocated in pools to mitigate 
allocation costs

§ 9% reduction in memory usage, 11% runtime 
improvement

SW4 uses managed memory for transfers, data reuse on device 
amortizes cost of memory motion



9
LLNL-PRES-797199

§ ARES is a massively parallel, multi-dimensional, multi-physics 
code

§ Pools are used for different kinds of data:
— Simulation state (stored in unified memory)
— Temporary data (uses device memory)
— Communication buffers (pinned memory)

§ Managed memory is used for data that needs to move 
between CPU and device memory
— But unnecessary transfers avoided at all costs!

ARES uses explicit data transfers for performance, with managed 
memory for libraries and code simplicity

Idealized ICF Simulation



10
LLNL-PRES-797199

§ ARDRA is a 3D Sn deterministic particle transport code

§ CHAI provides smart arrays that migrate data between host and device automatically, 
but use explicit data transfers

§ Different kinds of arrays will be allocated using different pools

ARDRA uses CHAI to automatically move data, but data only 
moves when used

chai::ManagedArray<float> a(100);
chai::ManagedArray<const float> b(100);

const float x = 1.0;

forall<cuda_exec>(0, 100, [=] (int i) {
a[i] = a[i]*x + b[i];

});

forall<seq_exec>(0, 100, [=] (int i) {
std::cout << “a[i] = “ << a[i];
std::cout << std::endl;

});

a
b

a
b

a
b

a
b

a
b

CPU GPU Umpire handles data 
allocation and motion

Caching handled 
by CHAI



11
LLNL-PRES-797199

§ Applications can then apply these tools in the way that makes most sense

§ “Kinds” of memory and transfers between them become first-class concerns in 
portable application

§ Developers need to think about their data, so it's essential that they have the tools to 
do so

§ Libraries like Umpire provide these tools, and have enabled performance and 
productivity gains on heterogenous HPC systems at LLNL

Developers need tools to reason about and control memory & 
data



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government 
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.


