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Heterogeneous memory introduces a number of performance 
and portability challenges for application developers
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Some of the challenges are fundamental issues with hardware/software:

§ Limited capacity of high-bandwidth/low-latency memories

§ Not all memory locations can be accessed from everywhere

§ Increased cost of allocations (2 orders of magnitude slower than malloc)
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Other concerns are related to software engineering

§ Code must be portable to different memory systems
— Vendor-specific APIs required to access some hardware

§ Applications need to leverage the underlying hardware without introducing too much 
complexity
— Have to balance this against losing power from being restricted to the "lowest common denominator" 

feature set

§ Memory usage between applications & libraries must be coordinated
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Addressing these challenges requires a powerful and portable 
layer between the application and hardware
§ This layer must be simple, but expose the 

full features of the underlying hardware

§ It should allow applications developers to 
reason about different memory areas 

§ Tools should be provided to help mitigate 
any performance impact

§ It must balance simplicity and power
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§ Provides software abstractions to enable 
portability and co-ordination across 
applications and libraries

§ Reduces cost of memory allocations using 
memory pools

§ Leverages power of underlying hardware 
via vendor-specific APIs

§ Allows introspection into allocations and 
kinds of memory to deal with limited 
space

Umpire is a library that provides concepts that address both the 
fundamental limitations and software engineering challenges

Umpire

Application

Implementations

Hardware

libnuma

???

CUDA

DDR GDDR

HIP

HBM



7
LLNL-PRES-797199

§ No single strategy works for all applications, and multiple paths to success have 
emerged

§ Key points across all applications:
1. Pools used to mitigate cost of allocations
2. Data partitioned into different "kinds", allocated in different ways
3. Memory motion is a first-class concern, avoiding memory motion is a key to performance

Umpire is being leveraged by production applications at LLNL, 
running on Sierra
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§ SW4 is a 3D seismic modeling code that solves the wave 
equation on Cartesian and curvilinear grid 

§ Managed memory is initialized on the host and then 
transferred to the device once

§ All kinds of device memory allocated in pools to mitigate 
allocation costs

§ 9% reduction in memory usage, 11% runtime 
improvement

SW4 uses managed memory for transfers, data reuse on device 
amortizes cost of memory motion
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§ ARES is a massively parallel, multi-dimensional, multi-physics 
code

§ Pools are used for different kinds of data:
— Simulation state (stored in unified memory)
— Temporary data (uses device memory)
— Communication buffers (pinned memory)

§ Managed memory is used for data that needs to move 
between CPU and device memory
— But unnecessary transfers avoided at all costs!

ARES uses explicit data transfers for performance, with managed 
memory for libraries and code simplicity

Idealized ICF Simulation
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§ ARDRA is a 3D Sn deterministic particle transport code

§ CHAI provides smart arrays that migrate data between host and device automatically, 
but use explicit data transfers

§ Different kinds of arrays will be allocated using different pools

ARDRA uses CHAI to automatically move data, but data only 
moves when used

chai::ManagedArray<float> a(100);
chai::ManagedArray<const float> b(100);

const float x = 1.0;

forall<cuda_exec>(0, 100, [=] (int i) {
a[i] = a[i]*x + b[i];

});

forall<seq_exec>(0, 100, [=] (int i) {
std::cout << “a[i] = “ << a[i];
std::cout << std::endl;

});
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CPU GPU Umpire handles data 
allocation and motion

Caching handled 
by CHAI
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§ Applications can then apply these tools in the way that makes most sense

§ “Kinds” of memory and transfers between them become first-class concerns in 
portable application

§ Developers need to think about their data, so it's essential that they have the tools to 
do so

§ Libraries like Umpire provide these tools, and have enabled performance and 
productivity gains on heterogenous HPC systems at LLNL

Developers need tools to reason about and control memory & 
data
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