

Proceedings of

MCHPC'19: Workshop on Memory Centric
High Performance Computing

Held in conjunction with

SC19: The International Conference for High Performance Computing,
Networking, Storage and Analysis

Denver, Colorado, November 17-22, 2019

i

MCHPC’19: Workshop on

Memory Centric High Performance Computing

Table of Contents

Message from the Workshop Organizers iii

Organization .. iv

Keynote Talks …………………………………..…………………… 1

Research Papers

Emerging Memory and Architectures

1. Vladimir Mironov, Igor Chernykh, Igor Kulikov, Alexander Moskovsky, Evgeny

Epifanovsky, and Andrey Kudryavtsev, Performance Evaluation of the Intel Optane

DC Memory With Scientific Benchmarks …….………………………..……………… 2

2. Thomas B. Rolinger, Christopher D. Krieger, and Alan Sussman, Optimizing Data

Layouts for Irregular Applications on a Migratory Thread Architecture ….…..… 8

3. Chih Chieh Chou, Yuan Chen, Dejan Milojicic, A. L. Narasimha Reddy, and Paul V.

Gratz, Optimizing Post-Copy Live Migration with System-Level Checkpoint

Using Fabric-Attached Memory ……………………………………………………...…

17

Application and Performance Optimization

4. Osamu Watanabe, Yuta Hougi, Kazuhiko Komatsu, Masayuki Sato, Akihiro Musa,

and Hiroaki Kobayashi, Optimizing Memory Layout of Hyperplane Ordering for

Vector Supercomputer SX-Aurora TSUBASA …………………………………..…. 26

5. Jiayu Li, Fugang Wang, Takuya Araki, and Judy Qiu, Generalized Sparse Matrix-

Matrix Multiplication for Vector Engines and Graph Applications 34

6. Esma Yildirim, Shaohua Duan, and Xin Qi, A Distributed Deep Memory Hierarchy

System for Content-based Image Retrieval of Big Whole Slide Image

Datasets ………………………………………………………………….……….…..…… 44

ii

Unified and Heterogeneous Memory

7. Wei Der Chien, Ivy B. Peng, and Stefano Markidis, Performance Evaluation of

Advanced Features in CUDA Unified Memory …………………………..………… 51

8. Swann Perarnau, Brice Videau, Nicolas Denoyelle, Florence Monna, Kamil Iskra, and

Pete Beckman, Explicit Data Layout Management for Autotuning Exploration on

Complex Memory Topologies ………………………………………………..….…… 59

9. Hailu Xu, Murali Emani, Pei-Hung Lin, Liting Hu, and Chunhua Liao, Machine

Learning Guided Optimal Use of GPU Unified Memory ……………….…..…….. 65

Converging Storage and Memory

10. Ivy B. Peng, Marty McFadden, Eric Green, Keita Iwabuchi, Kai Wu, Dong Li, Roger

Pearce, and Maya Gokhale, UMap : Enabling Application-driven Optimizations for

Page Management …………..……….……………………………………………..…… 72

11. Kewei Yan, Anjia Wang, Xinyao Yi, and Yonghong Yan, Extending OpenMP map

Clause to Bridge Storage and Device Memory …………………………………..… 80

Panel ……………………………………………………..………………………………..… 87

Software and Hardware Support for Programming Heterogeneous
Memory

 Moderator: Maya B Gokhale (Lawrence Livermore National Laboratory)
 Panelist: Mike Lang (LANL), Jeffrey Vetter (ORNL), Vivek Sarkar (Georgia Tech),
David Beckinsale (LLNL), Paolo Faraboschi (HPE)

 iv

Organization

Organizers

Yonghong Yan, University of North Carolina at Charlotte, USA
Ron Brightwell, Sandia National Laboratory, USA

Xian-He Sun, Illinois Institute of Technology, USA

Maya B Gokhale, Lawrence Livermore National Laboratory, USA

Program Committee

Ron Brightwell, Co-Chair, Sandia National Laboratory, USA

Yonghong Yan, Co-Chair, University of North Carolina at Charlotte, USA
Xian-He Sun, Illinois Institute of Technology, USA

Maya B Gokhale, Lawrence Livermore National Laboratory, USA

Mingyu Chen, Chinese Academy of Sciences, China
Bronis R. de Supinski, Lawrence Livermore National Laboratory, USA

Tom Deakin, University of Bristol, UK

Hal Finkel, Argonne National Laboratory and LLVM Foundation, USA
Kyle Hale, Illinois Institute of Technology, USA

Jeff R. Hammond, Intel Corporation, USA

Dong Li, University of California, USA

Scott Lloyd, Lawrence Livermore National Laboratory, USA
Ivy B. Peng, Oak Ridge National Laboratory, USA

Christian Terboven, RWTH Aachen University, German

Alice Koniges, University of Hawaii, Maui High Performance Computing Center, USA
Arun Rodrigues, Sandia National Laboratory, USA

Chunhua Liao, Lawrence Livermore National Laboratory, USA

MCHPC'19: Workshop on Memory Centric High Performance Computing

 1

Keynote Talks

Prospects for Memory, J. Thomas Pawlowski

Abstract: The outlook for memory components and systems is at the all-time height of

excitement. This talk examines the path we have traversed and the likely future directions

we must pursue. We will examine scaling across many parameters, "walls" of all sorts

concluding with the one that has emerged as the true wall, the dynamics of heterogeneity

in systems and their comprising memories, the need for abstraction (still unsatisfied),

options available for processing in or nearer to memory, and the imperative technology

redirection that is required to make significant strides forward. Time permitting, a lively

question and answer period is anticipated.

Brief Bio: J. Thomas Pawlowski is a systems architect and multi-discipline design

engineer currently self-employed as a consultant and entrepreneur. He has recently retired

from Micron Technology, Inc. where he was employed for 27 years, holding titles including

Senior Director, Fellow, Chief Architect and Chief Technologist. He was at the center of

numerous new memory architectures, technologies and concepts including synchronous

pipelined burst memory, zero bus turnaround memory, double data rate memory, quad

data rate memory, reduced latency memory, SerDes memory, multi-channel memory, 3D

memory, abstracted memory, smart memory, non-deterministic finite automata

(processing in memory technology), processing in interbank memory regions, processing in

memory controllers, processing in NAND memory, processing in 3D memory stacks,

memory controllers, 3DXpoint memory management, and cryogenic memory among

others. Prior to Micron he served for almost 10 years at Allied-Signal Aerspace/Garrett

Canada (now Honeywell). In his colorful career Thomas has many design firsts including

first FPGAs, microcontrollers and custom microprocessors in aerospace applications, one

of the early laptop computer designs (with perhaps the world's first SSD comprising NOR

Flash), a novel electronic musical instrument, a line of high-end loudspeakers, and a from-

scratch 2-seat electric vehicle design achieving nearly 400mpge efficiency. Thomas holds

a BASc degree in electrical engineering from the University of Waterloo and is an IEEE

Fellow. Thomas is available for consulting opportunities and would consider employment

offers too good to refuse.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Performance Evaluation of the Intel Optane DC
Memory With Scientific Benchmarks

Vladimir Mironov
Department of Chemistry

Lomonosov Moscow State University
Moscow, Russian Federation
vmironov@lcc.chem.msu.ru

Igor Chernykh
Supercomputing lab
ICMMG SB RAS

Novosibirsk, Russian Federation
chernykh@sscc.ru

Igor Kulikov
Supercomputing lab
ICMMG SB RAS

Novosibirsk, Russian Federation
kulikov@ssd.sscc.ru

Alexander Moskovsky
RSC Technologies
Moscow, Russia

moskov@rsc-tech.ru

Evgeny Epifanovsky
Q-Chem, Inc.

Pleasanton, CA, USA
epif@q-chem.com

Andrey Kudryavtsev
Intel Corporation
Folsom CA, USA

andery.o.kudryavtsev@intel.com

Abstract—Intel Optane technology is a cost-effective solution

to create large non-volatile memory pools, which is attractive to
many scientific applications. Last year Intel® Optane™ DC
Persistent Memory in DIMM (PMM) form-factor was introduced,
which is capable of being used as main memory device. This
technology promises faster memory access comparing to Intel®
Optane™ DC P4800X SSD with Intel® Memory Drive Technology
devices available previously.

In this paper, we present new benchmark data for the Intel
Optane DC Persistent Memory. We studied the performance of
scientific application from domains of quantum chemistry and
computational astrophysics. To put performance of the Intel
Optane DC PMM in comparison, we used two memory
configurations: DDR4 only system and Optane DC SSD with Intel
Memory Drive Technology (IMDT) that is another option for
memory extension. We see that PMM is superior to IMDT in
almost all our benchmarks, to no surprise. However, PMM was
20-30% more performant in quantum chemistry and only
marginally better for astrophysics simulations. We also found,
that for practical calculations hybrid setup demonstrates on the
same order of magnitude performance as DDR4 system.

Keywords—Non-volatile memory, Intel Optane DC, benchmarks

I. INTRODUCTION
Scientific applications are one of the most important

consumers of high-performance computing (HPC) resources.
They need not only the central processing unit (CPU) power:
complex scientific problems usually operate large data volumes.
The memory capacity of a node is a common practical limit for
scientific calculations. In the past decade, the number of CPU
cores per node increased dramatically, from few to more than a
hundred. In the same time, the memory capacity per core and
thus the amount of memory per process almost did not changed.

An important limitation for extending the memory capacity
of a node is high stock price for dynamic random-access
memory (DRAM) chips, which is a usual choice for the system
memory. As a result, DRAM expenses can take up to 80-90% of
the total price for a computer system with large DRAM pool. It
is not a surprise that a lot of efforts have been made to find a less
expensive and possibly non-volatile alternative for DRAM [1]–
[5].

Traditionally, disk drives or persistent memory devices were
employed to overcome DRAM limits. The modern attractive
option is to use solid-state drives (SSDs). However, even fastest
SSDs have orders-of-magnitude less bandwidth and higher
latency than DRAM; also, these devices usually operate data is
large blocks instead of bytes. Recently Intel introduced a new
Intel Optane DC SSDs based on the low latency Optane media
technology [6]. In contrast to traditional SSDs they have much
lower latency, higher IOPS performance under low queue depth
and higher endurance, even if NMVe interface is employed by
SSD. In addition to that Optane DC SSD can be used as memory
extension of traditional DDR4 with Intel Memory Drive
technology [7]. It has been shown [8] that using Optane drives
as a software-defined memory (Intel Memory Drive
Technology, IMDT) brings acceptable system performance but
with a much less costs. However, this setup inherits the block-
based access to memory from traditional SSDs and it suffers
from operating system overheads when using data on disks [9].

In the current study, we investigate performance of next-
generation Intel Optane DC Persistent Memory Modules
(PMM). It’s the DIMM form factor product and can operate in
two modes. In App Direct mode it operates in addition to DDR4
and allows to realize a persistency through PMEM library [10].
In Memory Mode it uses DDR4 memory as cache and
transparently allows bigger volatile memory with up to 6TB
capacity even for dual-socket systems [11]. The latter
configuration should not have the above mentioned limitations
of block devices resulting in improved latency and bandwidth.

The performance studies of Intel Optane DC PMM is an
active research topic [12]–[14]. Our interest is to investigate the
performance of this novel hardware with real-life scientific
problems. Two numerical simulation packages were tested: one
is a quantum chemistry package Q-Chem [15] and another one
is an astrophysical hydrodynamics framework HydroBox3D
[16]. The Q-Chem was chosen because its implementation of
coupled-cluster methods is considered as the best-of-breed,
while those methods usually produce huge amounts of
intermediate data. HydroBox3D is a recently developed
software with fine optimizations to novel Intel AVX instruction
set, limited mostly by main computer memory volume in
producing more precise astrophysical simulations. In both cases,

we used PMM in memory mode, which does not require any
software modification.

The paper is organized as follows. First, we give a short
introduction to the novel Intel Optane PMM technology (Section
2). A brief overview of related papers on PMM benchmarking
is given in Section 3. The methodology and benchmark
description are presented in Section 4 of this paper. In Sections
5 and 6, we present and discuss the performance results. The
concluding remarks are given in Section 7.

II. OVERVIEW OF INTEL OPTANE DC PMM
Non-volatile Intel Optane DC PMM memory features much

higher capacities and lower power consumption than DRAM
memory, but at cost of increased latency and lower bandwidth.
Intel Optane PMM is currently supported only by the 2nd
generation Intel Xeon Scalable processors. This is because
PMM communicate with CPU memory controller by a
proprietary DDR-T protocol, which is implemented only in this
type of processors. DDR-T has a lot in common with a standard
DDR4 protocol, but accounts for non-volatile memory specifics.
On the Optane side, memory accesses are processed by the
Optane memory controller. It is responsible for scheduling I/O
operations to the Optane media, handling address mapping, data
encryption, power/thermal control, etc. It also includes a small
DRAM buffer for the address indirection table. It is worth
noting, that while DDR-T protocol uses 64B data granularity
(same to DDR4), data access to Optane media is 256B wide.

It was mentioned before, that Intel Optane PMM can operate
in two modes: App Direct mode and memory mode. In App
Direct mode, PMM is directly exposed to the operating system
as non-volatile memory device. It is separated from the main
memory and in order to use it one needs to rely on specialized
libraries, like PMDK [10] or install a file system on it. In this
mode the programmer control every aspect of using data on
PMM.

In memory mode, PMM are used to expand main memory of
a node transparently to the operating system and the user.
DRAM is used as a sophisticated combination of inclusive and
non-inclusive caches [17] for Intel Optane DC memory. Since
part of the data always resides in DRAM, memory mode does
not guarantee persistency.

III. RELATED WORK
Since its inception, several performance evaluations of Intel

Optane DC PMM technology have been reported. A detailed
study of PMM performance in App Direct and Memory modes
with synthetic benchmarks is presented in works [12]–[14]. The
paper [14] also focuses on power efficiency of PMM-enabled
nodes and reported advanced memory allocation techniques,
which can improve memory bandwidth or latency. The authors
of paper [14] also studied graph-processing frameworks for
performance. In the work [12] authors additionally used SPEC
and PARSEC benchmark suits to compare the performance of
PMM with DRAM. Papers [12], [18] report the performance of
database software using PMM. The work [19] is focused on the
performance of PMM in App Direct mode in virtualized
environment.

Most of these papers note the performance difference
between read and write operations on PMM: writing data on
Optane can be up to three times slower than reading it. Another
important observation is that PMM performance degrades when
large number of threads are used or data is accessed on remote
NUMA node.

However, the performance of numerical simulation software
has not been studied in details. With the current paper we focus
on the real-life examples of scientific problems that need large
amount of memory.

IV. METHODOLOGY

A. Hardware configuration
In current work we used dual-socket 2nd Generation Intel

Xeon Scalable Gold 6254 node. Each CPU has six memory
channels and three UPI links. Three hardware setups were used
for benchmarks:

1) DRAM only. In this setup the node was equipped with a
24×64 GB DRAM memory (1,536 GB total).

2) Optane SSD with Intel Memory Drive Technology
(IMDT). In this configuration we used four Optane SSD
P4800X drives to use as a part of IMDT software-defined
memory. IMDT was configured to use only 192 GB of all
DRAM memory as a cache and 1,328 GB of Optane memory
(1.5 TB total memory).

3) Intel Optane DC PMM. In the third setup a mixture of
12× 16GB DRAM modules and 12× 128GB of the novel
Optane DC DIMM modules in memory mode were used. The
resulting system memory size was 1.5TB.

The detailed node configurations for all the above cases are
presented in Table 1.

TABLE I. HARDWARE CONFIGURATION

 Optane SSD and
Intel Memory

Drive
Technology

Intel Optane DC
Persistent
Memory

DRAM
only

DRAM
memory

12x16GB reg.
ECC DDR4

12x16GB reg.
ECC DDR4

24x64 GB reg.
ECC DDR4

Optane
memory

4x 375GB Intel
Optane DC
P4800X (320GB
per drive in IMDT
memory mode)

12x128GB Intel
Optane DC PMM
(memory mode)

-

CPU 2x Intel Xeon Gold 6254 (2x18 cores, 3.1 GHz base)
Board Intel Server Board S2600WFT, BIOS FW 1.93.870CF4F0
Storage OS: 375 GB Intel SSD DC S3700

Scratch: 1.5 TB Intel Optane DC P4800X
OS CentOS Linux 7.6, kernel ver. 3.10.0
IMDT F/W 9.0.3365.41 N/A
Software Intel Parallel Studio XE 2019.4; Q-Chem v 5.2

B. Benchmark description
In current study, we used two families of benchmarks. In the

first one, we perform high-level quantum chemistry calculations
using Q-Chem program package. It is a popular quantum
chemistry software with a proprietary license. Q-Chem contains
highly efficient implementations of various quantum chemistry
methods. In this study, we targets coupled cluster method with

single and double excitations (CCSD), which is routinely used
for precise calculation of properties of small-to-medium size
molecules. The computational complexity for CCSD benchmark
is 𝑂(𝑁). Here 𝑁 denotes the size of the basis set used and
depends almost linearly on the number of atoms. This kind of
calculation consumes large amount of memory to store
intermediate data (two-electron integrals and excitation
amplitudes) and thus it is a good candidate for Optane DC PMM
benchmarking.

The other one is astrophysical hydrodynamics framework
HydroBox3D. It is a novel astrophysical package which
combines astrophysical codes AstroPhi [20], GPUPEGAS [21],
and PADME [22]. As a result, this framework can be used for
complex simulations, which accounts for both classical and
relativistic hydrodynamics, chemical reactions and magnetic
interactions. An example is modeling of supernovae type Ia
explosions (see [23]), which occurs when a white dwarf mass
reaches Chandrasekhar limit and used by astronomers as a
“standard candles” when measuring distance to remote galaxies.
Unfortunately, modeling of some physical and chemical
processes cannot be performed efficiently in multi-node
environment. In this case, a single node running multiple threads
is used. The node must contain enough memory to fit all grid
data, which is typically of terabyte scale. Thus, it is also a
relevant benchmark for novel Optane memory.

Both these benchmarks were run on all three hardware
configurations described above. The details of each benchmark
are presented below in corresponding sections.

1) Q-Chem
In this benchmark, we computed CCSD energy and

analytical gradient on the electronic ground and first excited
states of the PYP chromophore system with two water
molecules (see Fig. 1), using aug-cc-pVDZ basis set. The total
number of basis set functions is 421. For the excited state
calculation, we used equation-of-motion (EOM) CCSD method.
PYP chromophore is a model molecule for photophysical
properties of fluorescent proteins, which are common tool in
biotechnology. We used Q-Chem v5.2 to perform all quantum
chemistry benchmarks.

The time-consuming part of CCSD energy algorithm is the
iterative, self-consistent step of computing amplitudes for
singles and doubles excitation operators. It involves a set of
tensor contractions to compute molecular orbital integrals and
values of singles and doubles projections. Many of these
operations depends on the current values of amplitudes and need
to be repeated on every CCSD iteration. The CCSD gradient

calculation involves several additional steps, which also based
on tensor contraction operations.

CCSD tensor contraction routines involve multiple matrix
multiplications. In theory, they are compute-bound, but they still
may suffer from bandwidth problems, due to relatively small
size of matrices and vectors. In practice, Q-Chem coupled
cluster implementation performance may depend on the
bandwidth of the memory and storage. Q-Chem uses statically
linked Intel MKL library for performing dense linear algebra
calculations. The details of tensor contraction implementation in
Q-Chem can be found elsewhere [24].

Another time-consuming operation of CCSD method is DIIS
(Direct Inversion in the Iterative Subspace) optimization of
CCSD amplitudes. DIIS method consumes a lot of memory to
store amplitudes and errors from several CCSD iterations. It is
usually bandwidth bound.

We have used five CCSD benchmarks. The first two
benchmarks are CCSD and EOM-CCSD calculations that use
Cholesky decomposition (CD) of electron-repulsion integrals
tensor. The next two benchmarks are CCSD and EOM-CCSD
calculations, which use resolution of identity (RI) approach to
transform four-center electron repulsion integral to three-center
integrals. RI-CCSD and CD-CCSD have somewhat reduced
memory requirements comparing to the regular CCSD method,
which can affect the performance of hybrid memory setups. The
last benchmark is regular ground-state CCSD energy and
analytical gradient calculation taken for reference. In all EOM-
CCSD calculations, the gradient was computed for the excited
state.

In all Q-Chem benchmarks, we used 1.3 TB of memory, of
which 1 TB was used for intermediate data of coupled cluster
method. The final memory footprint exceeds 196 GB of DRAM
in hybrid Optane+DRAM configurations and approaches 1 TB
limit of CCSD memory. We used 36 threads to perform
calculations.

2) HydroBox3D
In this benchmark, we simulated white dwarf evolution

using AstroPhi module for numerical solution of hydrodynamics
equations. This solver uses novel numerical methods based on a
combination of Godunov's method for conservation laws by
calculating fluxes through the boundaries [25], operator splitting
method to construct a scheme to approximate the advection
terms invariant with respect to rotation [25]–[27], and Rusanov's
method to solve Riemann problems [28] for determining the
fluxes with vectorization of the calculations [29]. There are two
main approaches can be used for numeral hydrodynamics
simulations of astrophysical problems: the Lagrangian smooth
particle hydrodynamics methods and Eulerian mesh-based
methods. The most important problem of Lagrangian smooth
particle hydrodynamics methods is the inaccurate computation
of large gradients and discontinuities for astrophysical
problems. This is why mesh-based piecewise parabolic method
on the local stencil (PPML) was used in the solver. To solve the
Riemann problems, a compact scheme for a piecewise-parabolic
representation of the solution in each of the directions is used
[30]–[32]. The advantages of this numerical scheme are: 1) high
scalability; 2) accuracy on sufficiently smooth solutions and low
dissipation on discontinuous solutions; 3) guaranteed non-

Fig. 1. Chemical system used in EOM-CCSD benchmarks. Carbon,
oxygen and hydrogen atoms are colored in green, red and blue
respectively.

decrease of the entropy; 4) extensibility by hyperbolic models;
5) limiter-free and artificial-viscosity-free implementation; 6)
Galilean invariance. The numerical scheme is considered in
detail in paper [29]. The bottleneck of this calculation is the
Lagrangian stage that is parallelized using OpenMP. We used
44 OpenMP threads to perform calculations. This amount of
threads is bigger than quantity of hardware threads, but for this
benchmark the best performance is observed when the node is
slightly oversubscribed [29].

We tested different memory configurations on six tests with
increasing grid sizes (see Table 2 for details). The largest
workload size was 1TB. Each test was ran for at least three times
on each node configuration from Table 1. In this benchmark, we
collected an average time of the Lagrangian stage of the
AstroPhi solver, which is a dominant contribution to the total
time.

TABLE II. HYDROBOX3D MEMORY FOOTPRINT IN BENCHMARKS.

Grid box dimension 1024 1512 1768 2000 2304 2560
Memory size, GB 67 209 332 480 732 1000

V. RESULTS
1) Q-Chem
As expected, the highest performance values are observed

for DRAM-configured systems. The efficiency plot for hybrid
Optane+DRAM setups versus pure DRAM system is presented
in Fig. 2. For CCSD energy and gradient calculation, the hybrid
PMM memory is in average 35% slower than DRAM-only node
configuration. The IMDT configuration is roughly two times
slower than DRAM and 25% slower than Optane DC PMM.
Slightly reduced efficiency of hybrid Optane node
configurations vs DRAM is observed for RI family of methods.
For regular CCSD and CD-CCSD calculation the efficiency of
novel Optane DC PMM setup approaches 70%. Also, EOM-
CCSD method appears to be 5-10% less efficient on both
Optane-based memory setups than corresponding CCSD
calculations.

2) HydroBox3D
The results of the HyperBox3D benchmark are presented in

Fig. 3. According to these data, Both Optane-based node
configurations are approximately three times slower than
DRAM-based configuration, when the workload size exceeds
the DRAM capacity of the node (196 GB in both cases). On
small workload sizes IMDT approach is superior to PMM. At
higher values of memory footprints the performance of IMDT
and PMM become close to each other, but IMDT is somewhat
more efficient, than PMM. Only when the workload size reaches
1 TB, PMM slightly overtakes IMDT. We attribute it to the
NUMA effect. In case of IMDT and PMM we have two NUMA
memory regions of 750 GB size, which correspond to CPU
sockets. By default NUMA policy, memory is allocated first on
the one NUMA node until no space left, then on another one.
Hence, if only one NUMA node is used, then only half of the
Intel Optane DC PMMs and thus only the half of their
aggregated bandwidth. IMDT performance is slightly more
efficient in this case due to its ability to prefetch the data to the
DRAM slot that is local to CPU. The same effect is not
pronounced in quantum chemistry benchmark due to much
higher arithmetic intensity of the latter (BLAS lvl. 3 in Q-Chem
versus stencil numerical methods in HydroBox3D).

VI. DISCUSSION
As it was shown in our previous paper [8], IMDT hybrid

memory pools composed from DRAM memory and previous
generation Intel Optane drives demonstrate comparable
performance as DRAM-only memory in certain scientific
benchmarks. To run efficiently on this hybrid setup an
application kernel must have arithmetic intensity high enough to
compensate for a long time needed to deliver data from memory
to CPU. The novel Optane DC PMM have somewhat improved
bandwidth and latency characteristics, but the performance gap
between PMM and DRAM is still tangible.

We observe different behavior of our benchmark
applications on IMDT and PMM configurations. We attribute

Fig. 2. IMDT and PMM efficiency plots for Q-Chem CCSD
energy+gradient benchmark. By efficiency we mean the relative
performance of the benchrmark on hybrid memory and on DRAM
(𝑇ை௧/𝑇ோெ). Higher efficiency is better. Value 1.0 corresponds to
DRAM performance.

0.00

0.25

0.50

0.75

1.00

CCSD CD-CCSD CD-EOM-CCSD RI-CCSD RI-EOM-CCSD

Op
ta

ne
 ef

fic
ie

nc
y

CCSD benchmark type

Q-Chem

IMDT PMM

Fig. 3. IMDT and PMM efficiency plots for AstroPhi solver which was run
as a part of HydroBox3D framework. By efficiency we mean the relative
performance of the benchrmark on hybrid memory and on DRAM
(𝑇ை௧/𝑇ோெ). Higher efficiency is better. Value 1.0 corresponds to
DRAM performance.

0.00

0.25

0.50

0.75

1.00

67 209 332 480 732 1000

Op
ta

ne
 e

ffi
cie

nc
y

Memory footprint, GB

HydroBox3D

IMDT PMM

this to dissimilar memory access patterns and arithmetic
intensity of computational kernels. PMM differs from IMDT in
a number of ways. First, the latter does not have an ability to
analyze data access patterns and to prefetch data onto DRAM
before CPU needs it. It makes it less preferred for certain
workloads with a complex access patterns, when it is possible to
overlap computation and data access. Instead, PMM relies on
hardware supported caching mechanisms for the same purpose.
This is good if a workload spends a lot of time working with the
same piece of dataset (temporal locality). Second, PMM offers
higher bandwidth and lower latencies when accessing Optane
memory, which is beneficial on random or stream access
patterns. However, in practice, not all workloads can utilize new
Intel Optane PMM efficiently.

Generic recommendation would include utilizing
application and system profiling tools, such as Intel ® VTune ™
Amplifier or Platform Profiler package to identify system
bottlenecks and monitor memory bandwidth utilization
separately for DRAM cache and Optane DC PMM. Also
standard practice for NUMA locality optimizations would apply
here as well cross NUMA traffic monitoring is important as well
[33].

VII. CONCLUSION
Intel Optane DC PMM is a first massive commercially

available non-volatile DIMM product. The bandwidth and
latency characteristics puts it between DRAM and SSD tiers of
memory hierarchy. It can be used as a main computer memory
extension by hardware only. It was also possible with previous
Intel Optane generation, which is an NVMe device. However, it
requires a proprietary software-defined memory solution like
Intel Memory Drive Technology.

A lot of scientific problems, which are only limited by the
system memory capacity can benefit from Intel Optane PMM.
However, PMM advantages over IMDT is not always sound, as
we see in our benchmark tests. In any case, Intel Optane
technology becomes an affordable solution for large memory
configurations, employed for numerical simulations.

Integrating hybrid memory technologies is critical for
modern HPC infrastructure. Such memory is not faster than
traditional DDR4 memory however for certain applications
heavy on the cross-rank communications this is a way to reduce
the number of compute nodes and fabric overhead, move it
under bigger memory domain and potentially reduce the
runtime. Also with adopting different sort of the accelerator
technologies in HPC, host memory capacity plays significant
role for the data path to reduce storage bottleneck. This is
another opportunity for hybrid memory solutions. This is a
scope of the following study to explore great possibilities of the
technology.

ACKNOWLEDGMENT
I. C. and I. K. thank Russian Foundation for Basic Research

(project no. 18-07-00757, 18-01-00166) and budget project No.
0315-2019-0009. V. M. and A. M. thank the Russian Science
Foundation (project 19-73-20032). We would like to thank
Siberian Supercomputer Center for providing access to HPC
facilities.

REFERENCES
[1] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)

based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251,
2010.

[2] D. Apalkov et al., “Spin-transfer torque magnetic random access
memory (STT-MRAM),” ACM J. Emerg. Technol. Comput. Syst., vol.
9, no. 2, 2013.

[3] J. Handy, “Understanding the Intel / Micron 3D XPoint Memory,” 2015.
[4] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change

memory as a scalable DRAM alternative,” Proc. - Int. Symp. Comput.
Archit., pp. 2–13, 2009.

[5] G. W. Burr et al., “Phase change memory technology,” J. Vac. Sci.
Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas.
Phenom., vol. 28, no. 2, pp. 223–262, 2010.

[6] Intel Corporation, “Intel Optane Technology.” [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/intel-optane-technology.html. [Accessed: 29-Jan-2017].

[7] Intel Corporation, “Intel Memory Drive Technology.” [Online].
Available: https://www.intel.com/content/www/us/en/software/intel-
memory-drive-technology.html. [Accessed: 30-Aug-2019].

[8] V. Mironov, A. Moskovsky, A. Kudryavtsev, I. Kulikov, Y. Alexeev,
and I. Chernykh, “Evaluation of intel memory drive technology
performance for scientific applications,” ACM Int. Conf. Proceeding
Ser., pp. 14–21, 2018.

[9] A. Eisenman et al., “Reducing DRAM footprint with NVM in
facebook,” in Proceedings of the Thirteenth EuroSys Conference on -
EuroSys ’18, 2018, vol. 2018-Janua, pp. 1–13.

[10] The PMDK team, “Persistent Memory Programming.” [Online].
Available: https://pmem.io.

[11] Intel Corporation, “Intel Optane DC Persistent Memory.” [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html. [Accessed: 30-Aug-
2019].

[12] J. Izraelevitz et al., “Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module,” 2019.

[13] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
Empirical Guide to the Behavior and Use of Scalable Persistent
Memory,” Aug. 2019.

[14] I. B. Peng, M. B. Gokhale, and E. W. Green, “System Evaluation of the
Intel Optane Byte-addressable NVM,” Aug. 2019.

[15] Y. Shao et al., “Advances in molecular quantum chemistry contained in
the Q-Chem 4 program package,” Mol. Phys., vol. 113, no. 2, pp. 184–
215, 2015.

[16] I. Kulikov, I. Chernykh, and A. Tutukov, “A New Hydrodynamic Code
with Explicit Vectorization Instructions Optimizations that Is Dedicated
to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical
Method, Tests, and Model Problems,” Astrophys. J. Suppl. Ser., vol. 243,
no. 1, p. 4, 2019.

[17] M. Arafa et al., “Cascade Lake: Next Generation Intel Xeon Scalable
Processor,” IEEE Micro, vol. 39, no. 2, pp. 29–36, 2019.

[18] K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, R. Sen, and K. Park,
“Exploiting Intel Optane SSD for Microsoft SQL Server,” Proc. 15th Int.
Work. Data Manag. New Hardw. - DaMoN’19, pp. 1–3, 2019.

[19] Q. Ali and P. Yedlapal, “Persistent Memory Performance in vSphere 6.7
with Intel Optane DC Persistent Memory,” 2019. [Online]. Available:
https://www.vmware.com/techpapers/2018/optane-dc-pmem-
vsphere67-perf.html. [Accessed: 30-Aug-2019].

[20] I. M. Kulikov, I. G. Chernykh, A. V. Snytnikov, B. M. Glinskiy, and A.
V. Tutukov, “AstroPhi: A code for complex simulation of the dynamics
of astrophysical objects using hybrid supercomputers,” Comput. Phys.
Commun., vol. 186, pp. 71–80, 2015.

[21] I. Kulikov, “GPUPEGAS: A new GPU-accelerated hydrodynamic code
for numerical simulations of interacting galaxies,” Astrophys. Journal,
Suppl. Ser., vol. 214, no. 1, 2014.

[22] V. Protasov, I. Kulikov, I. Chernykh, and I. Gubaydullin, “PADME -
New code for modeling of planet georesources formation on
heterogeneous computing systems,” MATEC Web Conf., vol. 158, 2018.

[23] I. Iben, Jr. and A. V. Tutukov, “On the Evolution of Close Triple Stars
That Produce Type Ia Supernovae,” Astrophys. J., vol. 511, no. 1, pp.
324–334, 1999.

[24] I. A. Kaliman and A. I. Krylov, “New algorithm for tensor contractions
on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-
CCSD calculations with over 1000 basis functions on a single compute
node,” J. Comput. Chem., vol. 38, no. 11, pp. 842–853, Apr. 2017.

[25] S. K. Godunov and I. M. Kulikov, “Computation of discontinuous
solutions of fluid dynamics equations with entropy nondecrease
guarantee,” Comput. Math. Math. Phys., vol. 54, no. 6, pp. 1012–1024,
2014.

[26] V. A. Vshivkov, G. G. Lazareva, A. V. Snytnikov, I. M. Kulikov, and A.
V. Tutukov, “Computational methods for ill-posed problems of
gravitational gasodynamics,” J. Inverse Ill-Posed Probl., vol. 19, no. 1,
pp. 151–166, 2011.

[27] I. Kulikov, G. Lazareva, A. Snytnikov, and V. Vshivkov,
“Supercomputer simulation of an astrophysical object collapse by the
fluids-in-cell method,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5698 LNCS, pp.
414–422, 2009.

[28] V. V. Rusanov, “The Calculation of the Interaction of Non-Stationary
Shock Waves with Barriers,” Zh. Vychisl. Mat. Mat. Fiz., vol. 1, no. 2,
pp. 267–279, 1961.

[29] I. M. Kulikov, I. G. Chernykh, and A. V. Tutukov, “A New Parallel Intel
Xeon Phi Hydrodynamics Code for Massively Parallel
Supercomputers,” Lobachevskii J. Math., vol. 39, no. 9, pp. 1207–1216,
2018.

[30] M. V. Popov and S. D. Ustyugov, “Piecewise parabolic method on local
stencil for gasdynamic simulations,” Comput. Math. Math. Phys., vol.
47, no. 12, pp. 1970–1989, 2007.

[31] M. V. Popov and S. D. Ustyugov, “Piecewise parabolic method on a
local stencil for ideal magnetohydrodynamics,” Comput. Math. Math.
Phys., vol. 48, no. 3, pp. 477–499, 2008.

[32] I. Kulikov and E. Vorobyov, “Using the PPML approach for constructing
a low-dissipation, operator-splitting scheme for numerical simulations of
hydrodynamic flows,” J. Comput. Phys., vol. 317, pp. 318–346, 2016.

[33] Intel Corporation, “Using the Latest Performance Analysis Tools to
Prepare for Intel Optane DC Persistent Memory.” [Online]. Available:
https://techdecoded.intel.io/resources/using-the-latest-performance-
analysis-tools-to-prepare-for-intel-optane-dc-persistent-memory/.
[Accessed: 30-Aug-2019].

Optimizing Data Layouts for Irregular Applications

on a Migratory Thread Architecture

Thomas B. Rolinger∗†, Christopher D. Krieger† and Alan Sussman∗

∗ University of Maryland, College Park, MD USA
† Laboratory for Physical Sciences, College Park, MD USA

tbrolin@cs.umd.edu, krieger@lps.umd.edu, als@cs.umd.edu

Abstract—Applications that operate on sparse data induce
irregular data access patterns and cannot take full advantage
of caches and prefetching. Novel hardware architectures have
been proposed to address the disparity between processor and
memory speeds by moving computation closer to memory. One
such architecture is the Emu system, which employs light-weight
threads that migrate to the location of the data being accessed.
While smart heuristics and profile-guided techniques have been
developed to derive good data layouts for traditional machines,
these methods are largely ineffective when applied to a migratory
thread architecture. In this work, we present an application-
independent framework for data layout optimizations that targets
the Emu architecture. We discuss the necessary tools and concepts
to facilitate such optimizations, including a data-centric profiler,
data distribution library, and cost model. To demonstrate the
framework, we have designed a block placement optimization
that distributes blocks of data across the system such that access
latency is reduced. The optimization was applied towards sparse
matrix-vector multiplication on an Emu FPGA implementation,
achieving a geometric mean speed up of 12.5% across 57
matrices. Only one matrix experienced a loss of performance
of 6%, while the maximum runtime speedup was 50%.

Keywords-migratory threads, data layout, optimizations, irreg-
ular applications

I. INTRODUCTION

While processor speeds have steadily increased, memory

speed has only achieved a fraction of that scaling. As a

result, modern processors can become data-starved, as the

memory system cannot keep up with the rate at which data

is needed by the processors. Architectural advances such as

cache hierarchies have reduced memory latency, allowing

many applications to take advantage of the increase in pro-

cessor speeds. However, applications that operate on sparse

data, such as graphs and tensors, induce irregular data access

patterns that pose significant challenges due to the lack of

locality in their memory accesses.

Due to the importance of irregular applications for high

performance data analytics, optimizing both the algorithms

as well as the way in which sparse data is stored has been

an active area of research [1], [2]. On the other hand, rather

than adapting irregular applications to traditional computing

systems, another approach is to develop novel architectures

that address the challenges directly in hardware [3], [4]. While

there have been several such approaches, a common theme

among them is to provide fine-grained memory accesses and

to move computation closer to memory. One recent example is

the Emu migratory thread architecture [5]. Instead of bringing

data through a cache-memory hierarchy to the processor, the

Emu system uses light-weight migratory threads that physi-

cally move to the location of the data being accessed. By only

transferring light-weight threads on remote memory accesses,

the Emu system aims to reduce the total load on the memory

system.

For many memory-bound applications, the way in which

data is distributed across system resources is important for

performance. For the Emu system, this is critically important

because computation migrates to statically placed data, which

means that data layout explicitly controls load balancing and

utilization of compute resources. A poor data layout can

lead to a significant surge of threads migrating to the same

hardware resource, creating load imbalance.

An efficient algorithm to determine an optimal data layout

that minimizes a metric such as cache misses is not only

difficult to approximate, but it is in fact NP-hard [6]. In

response, smart heuristics and profile-guided techniques have

been developed to find “good” data layouts. However, tradi-

tional optimization methods are largely ineffective on a system

like Emu due to fundamental architectural differences, such

as a lack of hierarchical memory. Irregular applications also

defeat many static data optimizations because their data access

patterns are not known until runtime. To make matters worse,

even when all memory accesses are known for a particular

execution via profiling, it is still not obvious how the data

should be laid out. Therefore, while data layouts are crucial

to performance, there are significant challenges to determining

a high performing layout for an irregular application on Emu.

In this work, we present a framework that facilitates data

layout optimizations for the Emu architecture. This framework

is application-independent, as it only relies on memory access

behavior rather than knowledge about application intent or data

structures. The primary goal of these data layout optimizations

is to reduce memory access latency by avoiding thread migra-

tions, while still maintaining a good load balance across the

system resources.

Our contributions are as follows:

• We design and implement required tools to study and

optimize data layouts on the Emu system. These include a

data block distribution library and a data-centric memory

profiler.

• We develop a cost model for capturing the underlying

performance characteristics of data block distributions on

the Emu architecture. This cost model is used to guide

optimizations.

• We design and implement a data block placement opti-

mization that aims to redistribute blocks of data across

the system such that their memory access latency is

minimized.

• To demonstrate the cost model and block placement

optimization, we perform a case study on sparse matrix

vector multiply (SpMV) across 57 matrices. We show

that data layouts can be generated for the input vector

of SpMV that provide as much as a 50% reduction in

runtime and a geometric mean of 12.5% when compared

to a default round-robin layout. Furthermore, only one

matrix had a performance loss after optimization of 6%.

The rest of this paper is organized as follows: Section II

presents an overview of the current Emu architecture and rel-

evant aspects of its programming model. Section III describes

the foundational tools that were developed to facilitate data

layout optimizations. The cost model and block placement

optimization are presented in Section IV and V, respectively.

Section VI presents the case study of SpMV and our per-

formance results. Related work is discussed in Section VII.

Finally, future work and conclusions are discussed in Section

VIII.

II. EMU ARCHITECTURE

The basic building block in an Emu system is a nodelet. A

nodelet contains a number of cache-less, multi-threaded Gos-

samer Cores, banks of narrow channel DRAM, and memory-

side processors. A group of nodelets, connected by a migration

engine to provide a means for the movement of threads

between nodelets, is called a node in the system. Groups of

nodes are further connected over a communication network to

form a complete Emu system.

A Gossamer Core (GC) is a general purpose processing unit

developed specifically for the Emu architecture. The design

complexity of a GC is significantly reduced relative to a

traditional CPU due to the lack of caches, and thus, the lack

of cache coherency logic. A single GC can support up to 64

concurrent light-weight threads, where each thread is limited

to one active instruction at any given time.

One way that Emu addresses the challenge of irregular

access patterns is by utilizing narrow channel DRAM (NC-

DRAM) on each nodelet. The NCDRAM modules consist of

eight 8-bit channels rather than a single 64-bit interface. This

provides fine-grained memory accesses that are better suited

for applications that typically only need 8 bytes of data out of

an entire cache line.

Attached to each bank of NCDRAM is a memory-side

processor (MSP). A MSP can perform a remote operation on

behalf of an executing thread, atomically. Remote operations

Migration Engine

.....

MSP

GC

Nodelet Queue

Manager

NCDRAM

Run

Queue

Migr

Queue

Mem

Queue

nodelet 0

GC GC

MSP

NCDRAM

MSP

GC

Nodelet Queue

Manager

NCDRAM

Run

Queue

Migr

Queue

Mem

Queue

nodelet 3

GC GC

MSP

NCDRAM

Fig. 1. A single node in the Emu Chick system. Each of the 4 nodelets
contains 3 Gossamer Cores (GCs), two banks of narrow channel DRAM
(NCDRAM) and two memory-side processors (MSPs).

do not return a result and do not migrate the entire thread,

but instead generate a packet that encapsulates the operation

to perform, the data on which to perform it, and the address

at which to store the result (which also serves as a second

data operand). Once the remote operation has completed, an

acknowledgement is sent back to the issuing thread. The thread

issuing the remote operation may continue execution after the

packet has been sent off to the destination nodelet. However, a

thread cannot migrate until all outstanding acknowledgements

have been received. All writes to remote memory are automat-

ically transformed into remote writes by the Emu compiler.

The current available Emu system is called the Emu Chick.

It consists of 8 nodes, where each node is comprised of

four nodelets. Figure 1 depicts a single node in the Emu

Chick system. On each nodelet, there are three GCs and

two banks of NCDRAM, each bank with its own MSP. A

given nodelet can support up to 192 concurrently executing

threads. The nodes are connected via a Serial RapidIO (SRIO)

interconnect in a mesh-like network where each node has

direct links to 6 other nodes; the remaining nodes require two

hops for communication. Each node is implemented on an

Arria 10 FPGA. More details regarding the Emu system and

architecture can be found in the work by Dysart et al. [5].

Programs executed on an Emu system are written in C,

where specialized software routines are provided to con-

trol data allocation (see Section II-B). Parallelism is con-

trolled using the Cilk parallel extensions to C [7], where

the cilk_spawn keyword will spawn a thread to execute

a specified function. Users can give hints to cilk_spawn

to indicate the nodelet where the thread should be created,

providing a mechanism to initially distribute threads across

the system.

A. Thread Migrations

When a thread executing on a GC issues a load to a remote

memory location, the process of migrating that thread begins.

The GC directs the Nodelet Queue Manager (NQM) to migrate

the thread to the nodelet where the requested data is located.

The NQM is the entity that interfaces with the migration

engine, MSPs and GCs to service the various queues shown

in Figure 1. The thread is then packaged up into a context

containing live registers, a program counter, stack counter, and

status information [8]. The context is roughly 200 bytes long.

This thread context is placed into the migration queue on the

source nodelet to wait until it can be sent by the migration en-

gine to its destination nodelet. When serviced by the migration

engine, the thread context is sent to the remote nodelet’s NQM,

which places it into the run queue. Application developers are

virtually unaware of migrations because the entire migration

process is implemented in hardware.

B. Data Allocation and Placement

Emu implements a Partitioned Global Address Space

(PGAS) composed of the memory from each nodelet. Emu

provides a software library with routines to control how data is

allocated, distributed, and accessed within this global address

space. For allocation on a single-nodelet, the standard malloc

routine is provided to allocate memory on the nodelet where

the thread is executing. A modified allocation routine is also

provided that allows memory to be allocated on a specified

remote nodelet.

For distributed allocations, a simple block distribution rou-

tine is provided, where blocks of data are allocated and

distributed across the nodelets. Users specify the number of

blocks and the block size in bytes, but all blocks are required

to have the same size. Furthermore, the location of the blocks

is restricted to a cyclic, round-robin placement on the nodelets.

The routine returns a 2-dimensional array, where it is the

programmer’s responsibility to handle the mapping from the

original, conceptual index space to the blocked 2-dimensional

indices, typically using integer division and modulo arithmetic.

The Emu toolchain provides a utility library to assist with these

index calculations.

C. Simulating and Profiling Applications

Emu also provides an architectural simulator that can exe-

cute the same programs that run on the hardware and output

detailed metrics regarding thread migrations and memory

accesses. As the current Emu hardware does not provide any

performance counters, the simulator is crucial to understanding

an application’s behavior. The Emu simulator provides code-

centric profiling support that includes thread and migration

activity at the scope of functions and/or the entire program.

However, to provide this data, the simulator must run in

timed architectural mode, which increases the wall clock time

required to simulate a program by more than 20 times over

execution in untimed mode.

The profiler lacks direct support for data-centric views of

the program, such as showing how many migrations were

generated with respect to a specified data structure in the code.

This type of information is key to determining an efficient

data layout. Fortunately, the simulator is able to produce a

basic memory trace of an executing program without running

in timed architectural mode. From the memory trace, users can

observe every memory instruction that was issued and details

such as the source and destination nodelet, the address that was

referenced in the instruction, and a cycle time-stamp of when

the instruction was issued. With the memory trace, customized

tools can be developed to perform more advanced profiling.

III. PREREQUISITE TOOLS

The goal of this work is to develop a framework for

reasoning about data layouts on the Emu architecture, and to

apply this framework to optimize data layouts by reducing the

number of thread migrations incurred. Before we present our

approach for optimization, we discuss the prerequisite tools

and concepts that are necessary to define, manipulate and

profile data layouts on Emu.

A. Block Distribution Library

As mentioned in Section II-B, Emu provides a simple

data distribution routine that uses a cyclic round-robin block

placement strategy across nodelets with fixed sized blocks. If

a programmer chooses not to use the block distribution routine

provided by Emu, he or she can create a customized layout,

but will be responsible for directly coding data allocations

and index mappings. Consequently, any changes to a custom

layout, such as block sizes or locations, would require the

application source code to be modified to account for the new

index mapping.

To address these issues, we developed a block distribution

library that supports variable block sizes as well as the

flexibility to define block placement strategies beyond cyclic

round-robin. Additionally, the library abstracts index mapping

for the user. If the layout is subsequently modified, including

by an optimizer, the user’s code that accesses the data is

unchanged. For distributions where all the blocks are the same

size, the library will use optimized routines for indexing. These

routines incur the same amount of overhead as those provided

by the Emu toolchain. For distributions with variable block

sizes, we adopt the approach used by Global Arrays [9], which

does add overhead due to the complexity of finding the correct

block for a given access.

B. Data-centric Memory Profiler

Another fundamental prerequisite for data layout optimiza-

tions is the ability to gather performance metrics related

directly to a data layout, rather than the entire program.

To address the limitations of Emu’s code-centric profiling

capabilities, we developed a data-centric profiler that can

generate memory access profiles for specific allocations in a

program, as specified by the user.

Our profiler is split into three distinct stages. First, we

provide a light-weight API that allows users to directly specify

within their code which data allocation they wish to profile.

This involves “registering” the allocation and then making

explicit calls to start and stop “tracking” the allocation, giving

full control of when the profiling should take place. The sec-

ond stage is executing the program within the Emu simulator.

During this stage, two output files are generated: (1) tracking

TABLE I
LIST OF SYMBOLS AND THEIR DESCRIPTIONS WITHIN THE COST MODEL

Symbol Description

N number of nodelets, numbered from 1 to N

B number of blocks, numbered from 1 to B

W number of windows of activity, numbered from 1 to W

C NxN map of memory access latency, in cycles, between nodelets
P 1xB map of blocks to their current nodelet location
A NxB map of the number of memory accesses between nodelets and blocks
L NxB map of memory access latency, in cycles, between nodelets and blocks
Tmax maximum number of concurrent threads supported on a nodelet
Lb total memory access latency, in cycles, for block b across all nodelets
Lµ average total memory access latency, in cycles, across all blocks
Tblk(b, w) number of active threads for block b during window w

Tndlt(n,w) number of active threads on nodelet n during window w

Utilblk(b, w) resource utilization of block b during window w

Utilndlt(n,w) resource utilization of nodelet n during window w

Ublk(b) median resource utilization of block b across all windows
Undlt(n) median resource utilization of nodelet n across all windows
PerformanceImpactb expected performance impact of block b

PlacementCostb,n expected cost of placing block b on nodelet n

metadata and (2) a memory trace. The tracking metadata is

generated by our API and includes the address ranges of the

allocated blocks and the timestamps for when the profiling

should occur. The memory trace is generated directly by the

simulator, as discussed in Section II-C. The trace information

is not stored in memory nor made available to the running

application.

The metadata from our API and the memory trace file

are ingested during the final step, which performs the actual

profiling. A memory access event from the trace is attributed

to a data allocation if it occurred during the relevant cycle

range of profiling and if it accessed an address that was within

the distributed blocks of that allocation. The output from the

profiler consists of various files that describe metrics related to

the block distribution such as incoming and outgoing memory

accesses to/from each block. The profiler also breaks down

these metrics across discrete windows of time. With a data-

centric view of the program, we can gain insight into temporal

behavior, such as how the read and write activity from/to a

block changes over time.

IV. COST MODEL

We now have the ability to use a data distribution in a

way that allows for easy modification and the ability to gather

performance metrics for a given distribution. However, a cost

model is needed to decide which blocks the optimizations

should be applied to. The model needs to consider the penalty

of migrations while also factoring in the load over time on the

nodelets. In this section, we describe how we derived our cost

model from both the profile data as well as hardware related

metrics. In this work, we use the model only to evaluate the

benefit of relocating blocks to different nodelets, but the model

is general enough to guide other optimizations, which will be

considered in future work.

In the following subsections, we describe the components

of the model and how they are derived. We refer to the number

of nodelets in the system as N and the number of blocks in

the distribution as B. Table I presents the various symbols

used in the cost model along with a brief description of their

meaning.

A. Communication Cost Map

While the profiler produces metrics for how many memory

accesses were made to each block of the distribution, it does

not provide information about how expensive a given memory

access is. The Emu system does not have a traditional mem-

ory hierarchy, but does exhibit non-uniform memory access

latency depending on the source and destination nodelets

involved in the access. Inter-node migrations have a higher

latency than intra-node migrations since the former use the

SRIO interconnect while the latter use the faster, crossbar-

based migration engine. Furthermore, since the Emu Chick

does not have a direct all-to-all communication topology

between nodes, there are pairs of nodes where migrations

between them have an even higher multi-hop latency.

In order to capture these costs, we developed a benchmark to

measure memory access latency between all pairs of nodelets

in the system. We store these costs within an NxN map C,

where element ci,j is the cost of a migration, in cycles, from

nodelet i to nodelet j. The diagonal entries in C represent

local memory accesses and are weighted negatively. This is

done to encourage local accesses by reducing the cost metrics

derived from C.

We observe that with respect to local accesses, intra-node

migrations require 2x as many cycles. For migrations between

nodelets on separate nodes, which are connected with a single

SRIO link, the cost is 3x as much as a local access. Finally,

migrations between nodelets on separate nodes that require

two hops over the SRIO network require 4x as many cycles

as a local access.

We note that the cost model currently does not consider

remote operations. The reason is that thread migrations are

significantly more expensive, as they require moving the entire

thread context and block the thread from executing any further

instructions. Future work will incorporate remote operations

into the model, as they are relevant for other optimizations

not considered in this work.

B. Placement Map and Block Memory Access Map

One of the defining features of a block distribution is the

nodelet location of each block. This information is stored in

a one-dimensional map P, where pi represents the nodelet ID

where block i is currently placed. This information is provided

directly by the data distribution definition.

In addition to the placement of the blocks, the model needs

to know how many accesses were made to each block. The

profiler produces such information, which includes the source

nodelet for each access. We store the memory accesses in a

NxB map A, where ai,j represents the number of memory

accesses from nodelet i to block j. We can derive a complete

nodelet-to-nodelet trace of the memory accesses by looking

up block j in P.

C. Block Latency Map

Given the C and A maps, we can compute the total memory

access latency cost for each block with respect to a given

nodelet by multiplying the number of accesses made to a

block by the latency cost for those accesses. We store this

information in a NxB map L. The total memory access

latency incurred by block i across all nodelets can be computed

by simply summing up the ith column of L. We represent

this total latency value for block b as Lb. As local accesses

are negatively weighted, a block that is dominated by local

accesses will have a negative total memory access latency.

D. Resource Utilization

The cost model described thus far only has a static view of

the data layout performance. What it lacks is how the various

blocks are accessed over the execution of the program, as

well as the amount of activity on each nodelet over time. By

only considering an end-of-program cost of memory accesses,

optimizations may make poor decisions, such as relocating

all the blocks to a single nodelet. The end result would

be severe resource over-subscription, leading to increased

execution time.

To address these issues, the cost model computes a resource

utilization statistic over time. Our data-centric profiler provides

various memory access statistics over discrete windows of time

that are computed for every block and every nodelet. For a

given block, the number of unique threads that made memory

accesses to the block is logged for each window. Similarly,

the number of unique threads that made memory accesses to

any data on a nodelet is logged for each window. We consider

such threads as active threads during a given window. This

information is crucial when considering optimizations such

as block placement because regardless of where a block is

located, the threads will still issue accesses to that block. The

cost model needs to be aware of how much “load” the block

will bring to a nodelet when it is moved, as well as how much

load is already on that nodelet.

We define the load of a block as the ratio of the number

of threads that accessed the block to the maximum number of

threads supported on a nodelet. Similarly, the load on a nodelet

considers how many threads are active on the nodelet as

compared to the maximum number of threads supported. The

cost model computes the amount of over- or under-utilization,

where 0 indicates perfect utilization, negative values indicate

under-utilization and positive values indicate over-utilization.

For a given block b and nodelet n, their respective utilization

during window w is computed as:

Utilblk(b, w) =
Tblk(b, w)

Tmax

− 1 (1)

Utilndlt(n,w) =
Tndlt(n,w)

Tmax

− 1 (2)

where Tblk(b, w) and Tndlt(n,w) represent the number of

active threads for block b and nodelet n during window

w, respectively. Tmax is the number of concurrent threads

supported per nodelet, which is 192 for the current Emu Chick

system. Note that Tndlt(n,w) includes not only the threads

that are accessing data layout blocks on nodelet n during

window w, but threads that are accessing any memory on the

nodelet. This allows the cost model to account for activity on

the nodelet that is not directly related to the data layout in

question, but is still relevant for performance.

The cost model takes the median of the utilization values

across all windows to arrive at an estimate of the load over the

program execution. We will refer to these median utilization

values as simply Ublk(b) and Undlt(n) for block b and nodelet

n, respectively.

E. Block Performance Impact

Because the migratory thread architecture moves compu-

tation to the nodelet that contains needed data, changing a

block’s placement also creates a rebalancing of work. This

loading effect places an additional constraint on selecting

a block for relocation. For example, if a block is heavily

utilizing resources, it will have greater impact on performance

to relocate it since the load that it induces may lead to over-

subscription on its new nodelet. Likewise, if a block is lightly

utilizing resources, it will be much easier to move to a different

nodelet without negative performance consequences. For these

reasons, the cost model computes the performance impact of

a block by considering both the latency cost as well as the

utilization induced by the block.

This performance impact cost is used to guide the selection

of blocks for relocation and is computed as follows for a given

block b:

PerformanceImpactb = Lb + (Lµ × Ublk(b)) (3)

where Lµ is the average memory access latency across all

blocks. The purpose of using Lµ is to convert the utilization

term into the same cycle units as Lb, as well as provide for

a means to scale the performance impact by the degree of

over- or under-utilization. The more over-utilized a block is,

the higher its performance impact will be. Likewise, under-

utilization will lower the performance impact. In future work,

we plan to better understand the effect of thread activity on

the memory system and incorporate that into the model.

F. Block Placement Cost

When deciding on whether to relocate a block to a particular

nodelet, it is necessary for the model to consider the impact on

the block’s latency cost as well as the impact on the utilization

of the nodelet, which can be hosting multiple blocks. This

is important to consider, as over-utilizing the nodelet can

have negative performance effects for all blocks hosted there,

not just the block being moved. To this end, the cost model

computes a placement cost for block b on nodelet n as:

PlacementCostb,n = Lb + (Lµ × Undlt(n)) (4)

where Lb reflects the latency cost of b if it were on nodelet n

and Undlt(n) represents the median utilization of nodelet n,

assuming that b were to be placed on n.

With respect to nodelets, the Emu system is capable of

running more than Tmax threads on a nodelet, but every thread

that exceeds Tmax will be idle until it can be scheduled. Like

the block performance impact, the model discourages over-

utilization of a nodelet by increasing the block’s placement

cost by a percentage of the average block latency.

V. OPTIMIZATION: BLOCK PLACEMENT

The block placement optimization is straightforward: place

block b on the nodelet n that minimizes b’s cost as given by the

model. The high-level algorithm is presented in Algorithm 1.

In the following subsections, relevant portions of the algorithm

are explained in detail, as well as its complexity.

A. Block Selection and Sorting

Because we are focusing on irregular memory access pat-

terns, some blocks will likely have higher performance impact

than others. If the optimization attempts to move all of the

blocks, we have observed that layouts can be generated that

lead to significant performance loss (see Section VI-B). In

order to select only the most beneficial blocks for relocation,

the optimization will ignore any block with a negative perfor-

mance impact, as such blocks are dominated by local accesses

and/or are significantly under-utilized. Line 4 in Algorithm 1

performs this block selection procedure.

Before performing the actual block placement, it is impor-

tant to determine the order in which the blocks will be moved.

To this end, blocks with high performance impact are given

priority (Line 5 in Algorithm 1). Moving these “heavy” blocks

first is likely to yield the largest performance gains. We address

the performance impact of this sorting in Section VI-B.

B. Nodelet Comparisons

The main goal of the block placement optimization is to find

the nodelet n that produces the minimum placement cost for a

given block b. To achieve this, the algorithm first recomputes

b’s latency as if it were located on the prospective nodelet n.

If this recomputed latency, referred to as Lb′ in Algorithm 1,

is lower than the current “minimum” latency for b, then n can

Algorithm 1 Block Placement Optimization

INPUT: blocks, nodelets, cost model

OUTPUT: updated P map

1: for each block b do

2: compute PerformanceImpactb
3: end for

4: pick candidate blocks with positive PerformanceImpactb
5: sort candidate blocks by decreasing PerformanceImpactb
6: for each candidate block b do

7: MinLatency = Lb

8: MinCost = PlacementCostb,pb

9: MinNodelet = pb
10: for each nodelet n, n 6= pb do

11: compute Lb′ for b if it were on n

12: if Lb′ < MinLatency then

13: compute PlacementCostb,n
14: if PlacementCostb,n < MinCost then

15: MinLatency = Lb′

16: MinCost = PlacementCostb,n
17: MinNodelet = n

18: end if

19: end if

20: end for

21: pb = MinNodelet

22: update cost model

23: end for

proceed as a prospective target nodelet. By doing this, nodelets

which do not reduce the memory access latency for a given

block are excluded from consideration. This strategy targets

our original goal of reducing memory access latency.

If placement on n would produce a lower latency cost for b,

then the algorithm accounts for the utilization on n if b were to

be relocated there (Line 13). Line 14 then determines whether

the placement cost of b on n is lower than the current minimum

cost for b. If that is the case, then the algorithm updates the

state to reflect that n is the nodelet that produces the minimum

cost for b (Lines 15–17). Doing this allows for the optimization

to discourage over-utilization of resources while still aiming

to reduce memory access latency. This process is repeated for

each nodelet, at which point the block placement map P is

updated to map b to the nodelet that produces the lowest cost

(Line 21).

C. Cost Model Update

After each block placement, the cost model needs to be

updated to reflect the changes induced by relocating the

block (Line 22 in Algorithm 1). Because iteratively rerunning

the program after each block placement to determine its

new performance is prohibitively expensive, we instead infer

the changes to the memory access profile using the metrics

provided by the data-centric profiler and our understanding of

the Emu architecture, as we now describe.

For a block b, its original nodelet n and each window w,

threads that access b and do not make any other accesses on n

are subtracted from Tndlt(n,w). Similarly, for the new nodelet

location n′ and each window w, the threads that access b, and

are not already active on n′, are added to Tndlt(n
′, w).

By moving block b to a new nodelet, the number and source

of the incoming memory accesses do not change. However, the

latency cost of the accesses will change. This is reflected by

updating the block latency map L. Specifically, column b is

recomputed to account for b’s new location.

Relocating block b can change the source of incoming

accesses for other blocks. Consider a scenario where some

number of accesses were made to block b′, which is located

on a different nodelet from b itself. Furthermore, assume

that those accesses were outgoing from b, which means they

were made immediately after accessing block b. From the

perspective of b′, those accesses were incoming from b’s

original nodelet location. However, now that b has moved to

another location, those accesses are now coming from b’s new

nodelet. If b were to be moved onto the same nodelet as b′,

then those accesses would be considered local, significantly

changing the cost model. Fortunately, the data-centric profiler

keeps track of these outgoing memory accesses for the blocks,

which enables the cost model to be updated to account for such

changes.

D. Complexity Analysis

Our analysis will focus on the loop on lines 6–23 in

Algorithm 1, which dominates the complexity cost. The inner

loop on lines 10–20 performs O(N) iterations and computing

the latency of b on nodelet n (Line 11) requires O(N)
operations. Determining the placement cost of block b on

nodelet n (Line 13) is independent of the number of blocks

and nodelets, so its cost is constant. Therefore, the entire inner

loop requires O(N2) operations. The outer loop on lines 6–23

performs O(B) iterations and updating the cost model on line

22 requires O(B + N) operations. Thus, the complexity of

Algorithm 1 is O(BN2).
Commonly, the number of blocks is the same as the number

of nodelets. In that case, the complexity is simply O(N3).
This suggests that the algorithm may have scalability issues

for a system with a large number of nodelets. However, the

current Emu Chick system only has 32 nodelets. Addressing

the scalability of the algorithm is left for future work.

VI. CASE STUDY: SPARSE MATRIX VECTOR MULTIPLY

To evaluate the cost model and block placement optimiza-

tion, described in Sections IV and V, we chose sparse matrix-

vector multiply (SpMV) as our case study. SpMV is a funda-

mental kernel in sparse linear algebra and is prevalent in graph

analytics. Furthermore, our prior work investigated SpMV on

Emu and demonstrated the importance of data layout choices

for performance [10]. However, that work relied on existing

matrix reordering techniques to control data layout, which

differ from the application-independent framework presented

in this work.

In the following sections, we briefly describe the implemen-

tation details of SpMV and which aspect of its operation we

optimized. We then present performance results across a wide

range of sparse matrices and discuss their implications.

A. Implementation Details

The SpMV implementation used in this study is taken

directly from our prior work [10], where we formulate the

operation as Ax = b. A sparse matrix A is stored in Com-

pressed Sparse Row (CSR) format, where an equal number

of contiguous rows are distributed to each nodelet and then

further distributed to some number of threads that are spawned

on each nodelet. The dense vectors x and b are divided into

equal-sized blocks and distributed to the nodelets. A thread

operates on the non-zeros within its assigned rows, potentially

migrating to access elements of x that are not local. If a thread

migrates to access x, it will always migrate back to the “home”

nodelet where its portion of the CSR structure is stored so it

can process the next non-zero.

For the experiments in this work, we focus on optimizing

the data layout for the input vector x. For each experiment,

we initialize the layout of x to the default layout, in which

the blocks of x are distributed to the nodelets in a round-robin

fashion, such that block i is stored on nodelet i, and each

nodelet is given exactly one block.

B. Performance Evaluation

We evaluated 57 matrices from the SuiteSparse Matrix

Collection [11]. The matrices are drawn from a wide range

of domains, from graph analytics and optimization problems

to computational fluid dynamics and circuit simulation. The

number of non-zeros range from 200,000 to 37 million and

the fraction of non-zeros varies from 0.5 to 1.81×10−7.

The experiments were performed on all 8 nodes of the Emu

Chick system using version 19.02 of the toolchain. For each

experiment, the input vector x is partitioned into 32 blocks,

where each of the 32 nodelets receives a single block as per the

default layout. Each nodelet spawns 192 threads that operate

on the rows assigned to it.

Of the 57 matrices, the cost model determined that 22

of them would benefit from a new data layout while the

remaining 35 matrices were left unchanged. With respect to

the 22 matrices that the cost model assigned new layouts,

we observe runtime speed-ups, some as much as 50%, for

21 of the matrices. The remaining matrix suffers a small

performance loss of 6%. Overall, the geometric mean of

the speed-up of the 22 matrices is 12.5%. These results are

presented in Figure 2.

C. Discussion

We hypothesize that poor data layouts were generated for

the HEP-th-new matrix, as well as the matrices that achieved

only minimal performance gains, due to thread migration

hot spots. These matrices exhibit similar sparsity patterns,

with dense columns of non-zeros that span most of the rows

in the matrix. In particular, the execution time behavior of

the cop20k A matrix was evaluated in detail in our prior

work [10], where we showed a migration queue became

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60
sp

e
e

d
-u

p
 o

v
e

r
d

e
fa

u
lt

SpMV Performance Gains
New Data Layouts Vs Default

Fig. 2. Performance results on SpMV when using new data layouts. The vertical axis is runtime speed-up relative to the default layout for each respective
matrix. The dotted horizontal line represents neutral performance. Green bars represent performance gain while red bars represent performance loss. The
horizontal axis is sorted by increasing performance from left to right.

flooded with threads attempting to leave a nodelet at the same

time. This happens because the first block in x is needed by

almost every thread in the system at roughly the same time.

Currently, our cost model does not fully capture the detailed

behavior of the migration queue due to a lack of accurate

information from the simulator.

We observe that the matrices that benefit the most from the

data layout optimization are generally those whose non-zeros

are not clustered around the main diagonal. As shown in our

prior work, when the non-zeros are tightly clustered around

the main diagonal, SpMV on the Emu architecture benefits

greatly due to minimal migrations and good load balancing.

Therefore, the data layout optimization is unlikely to find a

higher performing layout given such a matrix.

As important as it is to achieve performance gains, it is

equally important to avoid significant performance losses. Two

algorithmic steps, down-selecting candidate blocks and sorting

the blocks prior to the optimization, discourage selection of

blocks that might reduce performance. To measure the impact

of these steps, we ran the same set of experiments with those

features removed. We found that by excluding sorting, the

maximum performance loss for the same experiments is 23%.

When the optimization does not select candidate blocks, but

instead attempts to move all of the blocks, the maximum

performance loss is 28%.

The targeted use-cases for the framework described in this

work are those where the cost of profiling and optimizing data

layouts can be amortized by executing many iterations of the

application. For example, SpMV is the underlying kernel in

conjugate gradient solvers [12], where only the values within

the input vector change during each iteration. In such a case,

the data layout would only need to be generated once.

VII. RELATED WORK

The details of the Emu architecture, including hardware and

software components, were presented by Dysart et al. [5]. In

that work, benchmarks such as Breadth First Search (BFS),

RandomAccess and SpMV were evaluated on the Emu simu-

lator. It was not until the work of Hein et al. [8], [13] that

the actual Emu Chick hardware was used in experiments,

where they provided an initial characterization of the Emu

Chick by evaluating several benchmarks and applications,

including STREAM, pointer chasing, and BFS. Rolinger and

Krieger [10] studied the impact of traditional optimizations for

SpMV on the Emu Chick, showing that common techniques

used to enforce hardware load balancing do not provide

performance gains due to the migratory nature of Emu threads.

Beyond direct application studies, Chatarasi and Sarkar [14]

conducted a preliminary study of compiler transformations

on the Emu system to reduce thread migrations, specifically

targeting graph applications. Our work differs from previous

work in that, rather than porting an application and evaluating

its performance, we now focus on developing a framework

to provide the means for application-independent data layout

optimization.

Data partitioning is one of the fundamental techniques used

in parallel and distributed computing and has been widely

studied. Challenges for performance-driven optimization in-

clude gathering the appropriate metrics that can be used

to guide optimization decisions, as well as determining the

success of such decisions. Memory trace analysis can be

very expensive, and simply re-running the entire application

to evaluate an optimization is often not feasible. Rubin et

al. [15] present a framework for finding high performing data

layouts via profile-driven feedback on shared-memory cache-

based systems. Their contribution was to simulate a candidate

layout on representative memory traces rather than re-running

the application. To address the problem of high overhead

approaches to gathering memory access information, Yu et

al. [16] proposed LWPTool, which uses light-weight address

sampling and novel methods to determine memory access

patterns to guide data layout optimization.

Our work differs from prior efforts by focusing on data

layout optimization for irregular applications on a novel mi-

gratory thread architecture, which is fundamentally different

from the architectures studied in prior works. The Emu system

has no caches or special-purpose memories, and it supports

thousands of independently migrating threads. Due to the

migratory nature of the threads, efforts to statically distribute

work evenly across the system are negated as soon as threads

begin to migrate. Furthermore, as the system is relatively new

and implemented on FPGAs, it lacks many of the low-level

hardware features that would allow for the more sophisticated

techniques used in the referenced prior work. Our work

presents a preliminary cost model for understanding memory

access performance on Emu as it relates to data layouts, as

well as the necessary tools for obtaining the metrics used in

the cost model.

VIII. CONCLUSIONS AND FUTURE WORK

With the Emu migratory thread system, data layout choices

play a crucial role in obtaining high performance. Optimiza-

tions targeting data layout for hierarchical memory systems

are ineffective on Emu due to the fundamental differences

in architecture. To address this gap, we have presented a

preliminary framework for facilitating block-based data layout

optimization on the Emu architecture.

To demonstrate the framework’s utility, we have designed

and implemented a straightforward block placement optimiza-

tion. The optimization achieves speedups of up to 50% on the

SpMV kernel, while never decreasing performance by more

than 6%.

We are developing more data layout optimizations, such as

adjusting block sizes and replicating blocks. We also believe

that the cost model could be improved by incorporating more

details of the underlying Emu architecture, such as the various

queues. Furthermore, we will include memory usage statistics

as part of the cost model, which will be crucial for the block

replication optimization. As the Emu architecture matures, we

plan to improve our tools by taking advantage of hardware

performance counters and other features that would allow us

to reduce the overhead of our framework, and perhaps move

towards performing data layout optimizations at runtime.

REFERENCES

[1] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing
breadth-first search,” Scientific Programming, vol. 21, no. 3-4, pp. 137–
148, 2013.

[2] J. Li, J. Sun, and R. Vuduc, “Hicoo: Hierarchical storage of sparse
tensors,” in SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 238–
252.

[3] P. M. Kogge, “Execube-a new architecture for scaleable mpps,” in 1994

International Conference on Parallel Processing Vol. 1, vol. 1. IEEE,
1994, pp. 77–84.

[4] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, “The dynamic
granularity memory system,” in Proceedings of the 39th Annual

International Symposium on Computer Architecture, ser. ISCA ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 548–559.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337159.2337222

[5] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein,
“Highly scalable near memory processing with migrating threads
on the Emu system architecture,” in Proceedings of the Sixth

Workshop on Irregular Applications: Architectures and Algorithms.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 2–9. [Online]. Available:
https://doi.org/10.1109/IA3.2016.7

[6] E. Petrank and D. Rawitz, “The hardness of cache conscious data
placement,” in Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’02.
New York, NY, USA: ACM, 2002, pp. 101–112. [Online]. Available:
http://doi.acm.org/10.1145/503272.503283

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of parallel and distributed computing, vol. 37, no. 1, pp. 55–69,
1996.

[8] E. Hein, T. Conte, J. Young, S. Eswar, J. Li, P. Lavain, R. Vuduc, and
J. Riedy, “An initial characterization of the Emu Chick,” in The 8th

International Workshop on Accelerators and Hybrid Exascale Systems

(AsHES), 2018.
[9] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A

nonuniform memory access programming model for high-performance
computers,” The Journal of Supercomputing, vol. 10, no. 2, pp. 169–189,
1996.

[10] T. B. Rolinger and C. D. Krieger, “Impact of traditional sparse optimiza-
tions on a migratory thread architecture,” 2018 IEEE/ACM 8th Workshop

on Irregular Applications: Architectures and Algorithms (IA3), pp. 45–
52, 2018.

[11] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

[12] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High

Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.
[13] E. R. Hein, S. Eswar, A. Yasar, J. Li, J. S. Young, T. M. Conte, Ü. V.

Çatalyürek, R. Vuduc, E. J. Riedy, and B. Uçar, “Programming strategies
for irregular algorithms on the emu chick,” CoRR, vol. abs/1901.02775,
2019. [Online]. Available: http://arxiv.org/abs/1901.02775

[14] P. Chatarasi and V. Sarkar, “A preliminary study of compiler
transformations for graph applications on the Emu system,” in
Proceedings of the Workshop on Memory Centric High Performance

Computing, ser. MCHPC’18. New York, NY, USA: ACM, 2018, pp. 37–
44. [Online]. Available: http://doi.acm.org/10.1145/3286475.3286481

[15] S. Rubin, R. Bodı́k, and T. Chilimbi, “An efficient profile-
analysis framework for data-layout optimizations,” SIGPLAN Not.,
vol. 37, no. 1, pp. 140–153, Jan. 2002. [Online]. Available:
http://doi.acm.org/10.1145/565816.503287

[16] C. Yu, P. Roy, Y. Bai, H. Yang, and X. Liu, “Lwptool: A lightweight
profiler to guide data layout optimization,” IEEE Transactions on

Parallel and Distributed Systems, vol. 29, no. 11, pp. 2489–2502, Nov
2018.

Optimizing Post-Copy Live Migration with

System-Level Checkpoint Using Fabric-Attached

Memory

Chih Chieh Chou∗[1], Yuan Chen†[2], Dejan Milojicic‡, A. L. Narasimha Reddy∗, and Paul V. Gratz∗

∗Department of Electrical and Computer Engineering

Texas A&M University

Email: {ccchou2003, reddy, pgratz}@tamu.edu
†JD.com Silicon Valley R&D Center

Email: yuan.chen@jd.com
‡Hewlett Packard Labs

Email: dejan.milojicic@hpe.com

Abstract—Emerging Non-Volatile Memories have byte-
addressability and low latency, close to the latency of main
memory, together with the non-volatility of storage devices.
Similarly, recently emerging interconnect fabrics, such as Gen-
Z, provide high bandwidth, together with exceptionally low
latency. These concurrently emerging technologies are making
possible new system architectures in the data centers including
systems with Fabric-Attached Memories (FAMs). FAMs can serve
to create scalable, high-bandwidth, distributed, shared, byte-
addressable, and non-volatile memory pools at a rack scale,
opening up new usage models and opportunities.

Based on these attractive properties, in this paper we pro-
pose FAM-aware, checkpoint-based, post-copy live migration
mechanism to improve the performance of migration. We have
implemented our prototype with a Linux open source checkpoint
tool, CRIU (Checkpoint/Restore In Userspace). According to our
evaluation results, compared to the existing solution, our FAM-
aware post-copy can improve at least 15% the total migration
time, at least 33% the busy time, and can let the migrated
application perform at least 12% better during migration.

I. INTRODUCTION

The emerging Non-Volatile Memories (NVM), such as

phase-change memory (PCM) [1], NVDIMM [2], and 3D

XPoint [3], have byte-addressability and low latency, close

to that of main memory, together with the non-volatility

of storage devices. Similarly, recently emerging interconnect

fabrics, such as Gen-Z [4], provide high bandwidth, together

with exceptionally low latency. These concurrently emerging

technologies are making possible new system architectures in

the data centers including systems with Fabric-Attached Mem-

ories (FAMs) [5]. FAMs can serve to create scalable, high-

bandwidth, distributed, shared, and byte-addressable NVM

pools at a rack scale, opening up new usage models and

opportunities. These technologies have great potential to im-

prove the system/application performance as well as to provide

scalability and reliability of applications/service. Many prior

[1] The author started this work as an intern at Hewlett Packard Labs.
[2] The author contributed while he was at Hewlett Packard Labs.

work focused on new system designs using NVM [6]–[11] and

has already shown promising performance improvements.

Migration is a crucial technique for load balancing. Migra-

tion allows system administrators to remove some applications

from stressed physical nodes in order to redistribute load, and

therefore to increase overall system performance. In addition,

migration can also provide power saving [12], and online

maintenance. Traditional approaches to migration are non-live;

that is, they require the application to be taken off-line while

the migration occurs. Non-live migration can be divided into

three steps: 1) the program is checkpointed at source, 2) the

checkpointed data are copied from source to target, and 3) the

program is restarted at target. The main drawback of non-live

migration is that its application downtime (off-line time) is

too long. To reduce this downtime, live migrations [13] are

proposed to migrate most of (or all) pages before (pre-copy)

or after (post-copy) “real” migration, and therefore to reduce

the number of migrated pages during the downtime. However,

the side effect of live migrations is that they require longer,

compared to non-live migration, busy time of source node.

Here, we define the busy time as the duration from the be-

ginning of the migration to the time that migrated applications

can be killed at source node.1 As far as we know, all prior

works of post-copy focused on total migration time. However,

we would like to make another point here that the busy time

might be more important because it has direct impacts on

the system performance; it decides when computing resources,

such as CPU and memory, occupied by migrated applications

to be released and be reallocated to remaining applications

in source node. For example, when applications are suffering

from swapping due to the lack of memory in a “hot” node,

simply migrating an application with large memory footprint

might be able to stop (after busy time) all remaining applica-

tions at source from swapping and therefore to improve the

1Note: after migration completes, the migrated applications would continue
to execute at target node.

overall system performance.

In this work, we consider that migration can greatly benefit

from FAM. Although the non-live migration techniques can be

easily improved with FAM by the removal of the copy phase

(step 2), the optimal post-copy page fault handler, however,

requires significant redesign. This new handler should rely on

the both non-volatility and shareability of FAM to provide the

optimal (shortest) busy time as well as total migration time. In

particular, we introduce FAM-aware, checkpoint-based, post-

copy live migration, which checkpoints the entire application

to FAM in the beginning and transfers all pages through

FAM, rather than through the network connection, which the

traditional migration techniques use.

The contributions of this paper are as follows:

• Propose a new, checkpoint-based, page fault handler for

post-copy migration using FAM to provide the best busy

time and better total migration time.

• Implement our FAM-aware post-copy migration on a

Linux open source checkpointing tool, CRIU (Check-

point/Restore in Userspace).

• Evaluate our enhancements of CRIU with synthetic and

realistic (YCSB+REDIS) workloads and show significant

performance improvement.

The remainder of this paper is organized as follows. Sec-

tion II describes the background and related work. Section III

presents the motivation and design overview of our FAM-

aware post-copy live migration. Section IV explains the imple-

mentation of our work by modifying and enhancing existing

CRIU in more detail. Section V presents our results of evalua-

tion of post-copy live migration using some macro benchmarks

and realistic workloads. Finally, section VI concludes.

II. BACKGROUND

A. Migration

Traditionally, in non-live migration of applications, at first

the migration program needs to stop the applications. It then

checkpoints their state (mostly as files) into local storage

devices, copies these checkpointed data to the remote storage

devices (at the target machine), and finally resumes them back

to the checkpointed state at target. The downtime is mostly

proportional to the amount of migrated memory.

Unlike non-live migration, live migration means that ap-

plication is (or appears to be) responsive during the entire

migration process. Post-copy [14], [15] transfers the processor

state, register, etc., to target and resumes immediately at

the target host. When resumed application accesses some

pages which have not yet been transferred, page faults are

triggered, and those pages are retrieved from source node

through network.

Although post-copy has the almost minimum downtime,

it would suffer from the network page fault overhead, and

therefore degrade the migrated application performance dur-

ing migration. Also, post-copy usually requires the longer

migration time (which depends on page access pattern of

application), compared with non-live one.

CPU

MEM

NVM

Gen-Z

switch

CPU

MEM

NVM

Gen-Z

switch

Fig. 1: Fabric-Attached Memory.

Sahni et al. [16] proposed a hybrid approach combining

pre-copy and post-copy to take advantage of both types of

live migration. The post-copy could suffer less page faults

if the pages of the working set have already been sent by

the pre-copy phase. Ye et al. [17] investigated the migration

efficiency under different resource reservation strategies, such

as CPU and memory reserved at target or source nodes.

CQNCR [18] considered an optimal migration plan to migrate

massive virtual machines in the data center by deciding a

migration order to have less migration time and system impact.

These works, however, largely employ traditional network-

ing as the only transfer media, thus they incur high access

latencies. Besides, they only emphasize the total migration

time, not busy time.

B. Fabric-Attached Memory

Fabric-Attached Memory (FAM) is a system architecture

component in which high performance networking fabrics are

used to interconnect NVM between multiple nodes in a rack

to create a global, shared NVM pool. In our system model,

we consider a cluster consisting of many nodes, each of which

contains both DRAM and NVM. DRAM can only be accessed

locally by local memory controller and serves as fast, local

memory in each node. NVM and the processor (in each node)

are connected to a switch fabric and these switches are inter-

connected to each other. Here we focus on Gen-Z [4] as one

such fabric because it supports hundreds gigabyte per second

bandwidth and memory semantics; however, any other fabric

of similar latency and bandwidth could be used. The CPU can

access NVM at other nodes with memory-semantics through

the fabric interface and libraries. Therefore, all interconnected

NVM can be treated as the slow, global memory pool in a

rack scale [5]. This byte-addressable, shared, high-bandwidth,

global NVM pool is so-called Fabric-Attached Memory (FAM)

in this work. Fig. 1 shows the overall memory, NVM, CPU,

and Gen-Z interconnections.

C. Checkpoint/Restore in Userspace (CRIU)

The Checkpoint/Restore in Userspace (CRIU) [19] is a

Linux open source checkpoint tool which saves the current

state of a running application into the local storage devices

and restarts the application whenever necessary. To checkpoint,

CRIU uses ptrace system call to inject a piece of parasite

Source Target

app

Lazy

page

daemon

Page

server

mode

1

app

FAM

4

3

21

Fig. 2: Existing CRIU post-copy using FAM. (1) CRIU

checkpoints all files except for page image file to FAM, and

transforms itself as a page-server. (2) At target, CRIU creates

a lazy-page daemon. (3) After (1) is completed, CRIU restores

application immediately at target. (4) If restored application at

target accesses a page and causes a page fault, it would notify

the lazy-page daemon, which then requests to and obtains from

page-server at source that faulting page.

code into the checkpointed application. Through the injected

parasite, CRIU daemonizes the checkpointed application and

lets it begin to accept commands sent by CRIU. Hereafter,

CRIU starts the checkpoint process.

The most time-consuming part of checkpoint process is to

dump pages of application. The page-dumping request asks the

application to execute vmsplice system call, which maps

the pages of VMAs of the process into pipes (kernel buffers).

Finally, after all pages have already been mapped to the pipes,

CRIU can access them directly (without the help of parasite)

through splice system call, which copies dumped pages

from pipes to a page image file in the storage devices.

CRIU also supports migration features, including non-live,

pre-copy, and post-copy live migrations. For post-copy, the

page fault handling is the main challenge. Like on-demand

paging used in virtual memory systems, CRIU’s post-copy

employs the userfaultfd system call to allow paging in the

user space. Fig. 2 shows the sequential steps of the existing

CRIU post-copy implementation. To achieve the post-copy,

like checkpoint, at first CRIU maps the pages of VMAs of

applications, at the source node, into pipes and then places

itself into a page-server mode. Then a lazy-page daemon at the

target node is created to handle the page fault and other events

requested during the following restore operations. Finally, the

migrated application is resumed at the target node. When the

restored application accesses a page which still remains in

the source, the application is halted temporarily, and sends

the page fault request to the lazy-page daemon, which in

turn communicates with page-server at the source node to

obtain that faulting page from pipes through network transfer.

Although all other checkpointed state can be sent through

FAM. The page transfer still needs to rely on socket interface

if page fault handling is not redesigned.

We note that when using pure on-demand paging, migration

process may never complete, since some pages may not be ever

accessed. CRIU thus employs a timer to trigger the active

pushing; that is, sequentially dumping all remaining pages

from source to target. The timer is kept reset whenever a page

fault event happens. Before the timer is expired, the lazy-page

daemon only handles the page fault event, and it would start

to actively push all remaining pages only after expiration.

III. MOTIVATION AND SYSTEM DESIGN OVERVIEW

In this section, we describe the motivation and design

overview of our FAM-aware post-copy live migration.

A. Fabric-Attached Memory-Aware Post-Copy Live Migration

We propose an optimized FAM-aware post-copy migration,

which exploits the properties of FAM to achieve low appli-

cation downtime, low total migration time, low application

degradation, low resume time, and especially low busy time.

To simplify the understanding of readers, we first briefly

restate some key metrics of live migration proposed by Hines

et al. [15] and we further introduce the concept of busy time.

• Downtime: The time that the application is stopped

and cannot respond while the state of the processors

and some pages are transferred. Post-copy, depending on

implementation, might transfer a few (or no) pages. Non-

live migration transfers all pages here, so its downtime is

the longest.

• Resume Time: The time from the application starts

executing to the end the entire migration process. This

time is mainly required for post-copy to handle the page

faults happening at the target node, and is near negligible

to the non-live migration.

• Busy Time: The time from the beginning of the migration

to the time that migrated applications can be killed and

their resources (especially CPU and memory) can be

released at source node. This may be the most important

metric for migration since system administrators can only

alleviate the loading of “hot” nodes after this time.

• Migration Time: The total time of downtime and resume

time. Usually the migration time (of live migration)

equals to the busy time; however, this is not the case

if we employ FAM for migration. We will discuss this

later.

• Application Degradation: The extent that application is

slowed down during the operations of the migration. The

application degradation of post-copy, because it handles

the page fault at target and needs to get the faulting pages

from source, might be the most severe.

B. Motivation and Design

Intuitively, the performance of non-live migration, espe-

cially migration time, could benefit from adopting the FAM

simply because the copy phase can be eliminated through

direct FAM accesses. Therefore, the entire migration process is

now simplified as (1) checkpoint application to FAM at source

and (2) restart application at target.

Post-copy migration is much more complicated than non-

live one because the most critical part of post-copy is page

fault handling (or network fault as termed by Hines et al. [15])

in the target. The behavior and implementation of the page

fault handler will greatly impact the resume time (application

performance degradation) and busy time. Simply removing

the copy phase, if applicable, is obviously not good enough.

Therefore, our work focuses on optimizing FAM-aware post-

copy migration based on the following three guidelines.

Checkpoint-Based Migration: The most apparent draw-

back of non-live migration is its very long downtime (which

equals to the total migration time). However, the busy time of

non-live migration is the best (compared to the live migrations)

and is also much shorter than its total migration time because

non-live migration first checkpoints everything to storage

devices, and therefore, since a complete snapshot is saved in

persistent media, the checkpointed application can be killed at

the source.

Traditional live migrations have a long busy time (which

equals to the total migration time) because they utilize memory

to temporarily store pages and transfer pages by network.

So, killing the application must wait until the completion of

entire migration. Otherwise, if target crashes before migration

completes, then the application will crash, too.

Due to the low-latency and non-volatility of FAM, storing

migrated pages to FAM directly only slightly impacts per-

formance (compared to DRAM), but it also saves the entire

migrated state to persistent media. Therefore, application can

be killed after being checkpointed and its busy time could be

very close to that of non-live migration.

Accessing FAM as Shared Memory: Most existing live

migration techniques [16]–[18], [20] still migrate their data

content through communication network because they do not

have a shared memory across multiple nodes. Therefore, their

approaches will suffer the network overhead and network

bandwidth. On the other hand, with the help of FAM, serving

as a shared memory pool within the same rack, data could be

simply migrated through memory semantics (load/store

instructions), which bypass the significant networking protocol

overhead. This could improve the critical page fault latency

and therefore resume time and application degradation.

Retrieving Faulting Pages Synchronously: The page fault

handler of the existing shared memory within a machine

is controlled by the central operating system. The OS only

needs to setup the page table of each process, then faulting

pages can be mapped to virtual space of processes correctly.

Our migration scheme, however, differs because a central

controlling OS across multiple hosts does not exist. The FAM

across machines can only be employed as a connecting media

between nodes.

Besides, our page fault handler must contain two steps: first

pages are written from source to FAM and then pages are read

from FAM to target. So, page fault handling must be executed

asynchronously through communication between the source

(writing to FAM) and target nodes (reading from FAM); that

is, the faulting address of pages must be sent to source first and

then target must wait for the response to read that page. This

communication impacts the page fault latency (even though all

pages are already transferred by FAM) as well as migration

performance, and must be avoided as much as possible by

FAM

File

Source Target

app

1. Checkpoint

2. Restore

app

page

Fig. 3: Ideal migration method using FAM.

leveraging the information of the dumped pages. The source

could notify target of the information of all dumped pages,

and therefore the following faulting pages (if they have been

dumped to FAM) can be accessed synchronously at target from

FAM without the need of communication.

Thus, our post-copy optimization is mainly based on non-

volatility and shared-ability of FAM, and can be divided into

three parts.

• to achieve the shortest downtime, we checkpoint the

processor state, registers, etc., (excluding pages of VMA)

of the victim application to FAM and resume victim

application at the target.

• to achieve low busy time, at source, after checkpointing

the necessary information, all the remaining pages con-

tinue to be dumped to FAM on the background. The

victim application can be killed right after the page

dumping is finished. This provides near optimal busy

time, which is the checkpoint time of non-live migration.

• to achieve low resume time and low application degra-

dation, all faulting pages at target will be served/received

from FAM directly and the need of asynchronous com-

munication is also tried to minimize. Therefore, with of

help of FAM, the networking overhead as well as the

page fault latency can be reduced significantly.

IV. IMPLEMENTATION

In this section, we explain our implementation of FAM-

aware, checkpoint-based, post-copy live migration in detail.

The existing CRIU [19] migration tool is used as a baseline

implementation, and augmented with our FAM-aware post-

copy technique in this work. In particular, our case study im-

plementation is based on modifying CRIU-dev branch version

3.2. Although our implementation is based upon CRIU, the

technique developed is universal and may be easily imple-

mented in other migration schemes.

Fig. 3 shows an ideal migration between nodes with FAM.

First, an empty file is created in FAM, and the migration

program at target can mmap this whole file and directly read

dumped pages without having to wait until the whole file

is dumped from the source. Ideally, (if the future can be

predicted,) the source node would write a certain page to

FAM each time before the page is needed at target. From

the perspective of migration, which means that not only the

restored application does not have to wait for the completion

of page-dumping (that is, live migration), but it also avoids

(a) 1. Background thread dumps all lazy pages to FAM. 2.1.
A page fault happens. A page fault event is sent to lazy-
page daemon by kernel. 2.2. Lazy-page daemon requests page-
server for that faulting page. 2.3. Page-server writes the entire
vector, rather than a single faulting page, to FAM. 2.4. Page-
server notifies the lazy-page daemon of the completion of
dumping. 2.5. Lazy-page daemon directly reads faulting page
from FAM.

TargetLazy

page

daemon

app

FAM

Lazy page file page

(b) The page-server and application at source are killed after
all lazy pages have been dumped. All remaining pages can be
directly/synchronously accessed from target.

Fig. 4: FAM-aware post-copy live migration.

much of the network transmission (required by the existing

CRIU and other previous implementations) through memory-

semantics.

We have implemented the concept shown in Fig. 3 in our

optimized post-copy migration in CRIU. Fig. 4 illustrates

the main difference between our post-copy design versus the

existing CRIU implementation (in Fig. 2).

Like the existing CRIU post-copy, we also employ a lazy-

page daemon and page-server mode in our implementation.

To migrate, first all required data are checkpointed as files to

FAM except for the page image file, as the existing CRIU

does. After that, CRIU at source enters a page-server mode,

and launches a background thread to dump (checkpoint) all

remaining “lazy” pages to FAM as a single lazy-page file (per

process) (arrow with number 1 in Fig. 4(a)). Without having

to wait for this background thread to finish its dumping job,

system administrator can launch a lazy-page daemon and then

can begin to restore the migrated application at the target node.

To improve the checkpoint performance by batching and to

avoid too long critical latency of page fault, we partition the

VMAs of application as several I/O vectors with the maximum

size of 2MB. Each I/O vector contains pages with contiguous

virtual addresses. Therefore, the background thread writes the

pages to FAM with at most 2MB of data at a time. When

the restored application encounters a page fault, it sends the

page fault event to the lazy-page daemon, which in turn sends

page fault request to page-server. If the faulting page has not

been dumped to FAM, the page-server waits for background

thread to finish the dumping of current I/O vector, stops the

background thread (by a spin lock), and dumps a specific I/O

vector containing the requested faulting page. After dumping

that (2MB) I/O vector, the page-server acknowledges page

fault request and resumes the background thread. Arrows

with number 2.1 to 2.4 in Fig. 4(a) illustrate this process.

Alternately, if the faulting page has been dumped, the page-

server acknowledges immediately.

The responses (arrow with number 2.4 in Fig. 4(a)) sent by

the page-server not only indicate the “completion of dumping”

of faulting pages, but they also contain some extra informa-

tion for lazy-page daemon: the background thread’s dumping

progress (the largest virtual address of dumped pages) and the

virtual address space of this entire (2MB) dumped I/O vector.

The lazy-page daemon employs such information to construct

a lookup table. (Actually, we build an LRU linked list). If the

following faulting pages whose addresses can be found at the

lookup table or are smaller than the dumping progress, they

can be read from FAM synchronously without requesting to

page-server. This can eliminate a lot of communications and

overheads between source and target.

Once the background thread dumps all the lazy pages,

the page-server actively notifies the lazy-page daemon of

the completion of the checkpoint. Hereafter, the lazy-page

daemon can synchronously read all faulting pages from FAM

without any communication with page-server. Both migrated

application and page-server can be killed at the source now as

Fig. 4(b) shows.

Our implementation has some advantages: (1) The page-

server only needs to handle faulting pages until the checkpoint

of all “lazy” pages is finished. After that, all pages can be

synchronously read from FAM. A lot of network transmissions

of pages and protocol overhead can be eliminated. (2) The

information of dumped pages is utilized to further reduce the

communication between target and source nodes. It signifi-

cantly minimizes the page fault latency and therefore improves

performance. (3) After the background thread finishes dump-

ing the lazy files, the application and page-server can be killed

and their resources can be released; that is, the busy time

would be much shorter than total migration time.

V. EVALUATION

In this section, we experimentally evaluate the performance

improvement of our optimized FAM-aware, checkpoint-based,

post-copy live migration. Our platform contains 20GB DDR3-

1600, 12GB NVM (emulated with DRAM [21]), and Intel

i7-4770 four-core 3.4 GHz processor with hyperthreading

enabled. Linux 4.15.0 is used in our platform.

A. Workloads and Experimental Setup

To examine the performance of our FAM-aware post-copy

migration scheme, we leverage the NAS Parallel benchmarks

(NPB) 3.3.1 [22] Class C, PARSEC 3.0 [23] native input, and

Fig. 5: The delay model of our evaluation.

TABLE I: Parameters for extra delay.

Media Read lat. (us) Write lat. (us) BW. (GB/s)

PCM 1 1 2
10Gb Ethernet 0 0 1.25

SPLASH-2X [24] native input benchmark suites. All work-

loads are migrated after executing twenty seconds, with the

exception of “NPB IS” which migrated after five seconds for

one thread and two seconds for four threads, and “SPLASH-

2X radix” is migrated after five seconds for four threads.

We further examine the migration of REDIS [25] to inves-

tigate application performance degradation during live migra-

tion. REDIS is an in-memory data structure store and can be

employed as database or in-memory cache. Through loading

YCSB (Yahoo! Cloud Serving Benchmark) [26] records into

REDIS, migrating REDIS to the target, and immediately

accessing REDIS with YCSB at the target before the migration

is finished, we can observe the impact of page fault overhead

on REDIS performance with different YCSB workloads.

To evaluate FAM-aware migration, two limitations must be

overcome. First, CRIU requires migrated applications to use

the original pid they were checkpointed with. This means ap-

plication cannot be “lively” migrated within the same physical

host. Next, we do not have real FAM hardware, so we do not

have a global, shared NVM across physical nodes. These two

limitations seem to contradict with each other. Fortunately,

with the help of a container virtualization technique, FAM

can be emulated within a host machine by means of container

and NVM: Two docker containers [27] are treated as target

and source nodes; the emulated NVM, which is bind-mounted

into containers so applications in containers can access NVM

concurrently, can be emulated as FAM in our platform.

To compare the performance of our FAM-aware with ex-

isting CRIU post-copy, we assume all process states, except

for memory pages, are migrated through FAM, so post-

copy migration contains only 2 steps: checkpoint from source

container and restart at target container. However, the methods

of page transfer are different: one is by FAM, the other is

through socket interface.

Furthermore, since NVM (FAM) is emulated from DRAM,

(a) One thread per benchmark. (Higher is better.)

(b) Four threads per benchmark. (Higher is better.)

Fig. 6: The busy time and total migration time performance

of FAM-aware and existing CRIU post-copy migration using

FAM. Expiration time is 100ms.

to correctly emulate the “slow” NVM, we use the same method

proposed by Volos et al. [6] to add extra delay (via busy

waiting) when accessing slow FAM (or Ethernet). Fig. 5

illustrates our delay model. The delay is added both when

writing to and reading from FAM. The latency resulted from

Gen-Z fabric is negligible compared to that of PCM [28].

Therefore, we only consider the access latency and bandwidth

of NVM (PCM or NVDIMM). The delay calculation formula

is as follows:

DelayR/W = LatencyR/W + (data/bandwidth)

The parameters of NVM (and 10 Gigabit Ethernet used

later) are shown at Table I. The bandwidth of NVM (PCM) is

assumed to be 2GB/s [29]. Therefore, to access a single 4KB

page from FAM, we have to wait around 3us and then can

access FAM.

B. Evaluation Results

Fig. 6 (a) and (b) show the normalized total migration time

and busy time performance of our FAM-aware vs. existing2

CRIU post-copy with one and four threads. All the mea-

surements are normalized to the total migration time of the

existing post-copy (socket) of the same benchmark. FAM and

socket (in Fig. 6) stand for the mechanism of page transfer by

2Note: for existing CRIU post-copy, the busy time equals to the migration
time, so only total migration times are shown.

TABLE II: Average improvements of FAM-aware post-copy

vs. existing CRIU post-copy.

of threads Mig. time imprvmt Busy time imprvmt

1 2.00X 26.74X
4 1.63X 12.72X

FAM and by socket (network). We will keep using these terms

hereafter. FAM (2GB/s) means the extra delay is added based

on the 2GB/s bandwidth of PCM. The expiration time of active

pushing timer is set as 100ms. Remember this timer would be

reset whenever a page fault happens. We think 100ms should

be a reasonable duration for workloads to access all working

set pages before timer expires. So, the total migration time

here should be a good indicator toward the different page fault

overhead of these two mechanisms.

Tab. II summarizes the performance improvements of our

FAM-aware post-copy. The number is the geometric mean of

all benchmarks. From those results, we could conclude some

useful observations.

First, instead of workload behavior, the busy time (also

checkpoint time) of post-copy is impacted mostly by the

dumped memory size. Thus, they are relatively small com-

pared to total migration time.

Second, the improvements of total migration time (2X and

1.63X) come from faster demand paging handling, proving that

our FAM-aware migration incurs less page fault overhead.

Third, the improvements of both total migration time and

busy time reduce as the number of threads increases. For mi-

gration time, that is mainly because of the available bandwidth.

We limit the FAM bandwidth as 2MB/s (PCM). On the other

hand, although the existing CRIU acquires pages from source

through socket, we do not apply any bandwidth limitation on

it. Docker containers, in a single host, utilize Linux bridge

component and bypass the NIC (network interface card) to

communicate with each other. To estimate the bandwidth

between docker containers, we use iperf3 [30] tool to measure

and get the average 7.0 GB/s throughput (compared to 2GB/s

at FAM-aware case). So, we could conclude that the reduction

of improvements of total migration time when more threads

are executed comes from the bandwidth limitations of FAM.

For busy time, the busy time of FAM-aware post-copy

is the checkpoint time, which is almost the same if the

memory footprint does not change, regardless of the number of

executing threads. As to the existing post-copy, since the busy

time is the total migration time, which would be improved

as the number of threads increases because more threads

will access pages more quickly. Therefore, the decreasing

the busy time improvement results from the total migration

time improvement of existing post-copy as more threads are

executed.

Fig. 7 shows a similar comparison of FAM-aware and

existing CRIU post-copy except that the expiration time is set

as 0ms. Only the workloads whose migrated memory sizes

are larger than 1GB are selected. All workloads are executed

Fig. 7: The comparison of busy time and total migration time

performance with the expiration time is 0ms. (Higher is better.)

TABLE III: Average improvements of FAM-aware post-copy

for realistic case (FAM (2GB/s) v.s. socket (10Gb/s)) and ideal

case (FAM v.s. socket).

Mig. time Busy time

FAM (2GB/s) v.s. socket (10Gb/s) 15.44% 33.68%
FAM v.s. socket 15.16% 47.08%

with one thread and are migrated after executing twenty

seconds. All the measurements are normalized to the total

migration time of socket (10Gb/s) of the same benchmarks.

Socket (10Gb/s) is assumed that the employed underlying

network is 10 Gigabit Ethernet. FAM (without bandwidth

limitation) means no delay is added when accessing NVM,

which can be treated as the case of NVDIMM and whose

performance is also the best among all cases. In our platform,

the average throughput of accessing DRAM via file system

write is around 6.6 GB/s (a little lower than 7 GB/s of

socket throughput between containers).

The 0ms expiration time means that the lazy-page daemon

would actively push the pages from source from the beginning.

Meanwhile, if a page fault happens, the daemon will also

try to handle page fault event at best effort. From Fig. 7,

we could conclude that (A) the bandwidth provided by the

transmission media dominates the migration performance; (B)

if the bandwidth is close to each other, FAM-aware is better

than existing post-copy due to the lighter overhead. Tab. III

summarizes the improvements.

Finally, REDIS and YCSB are utilized to investigate the mi-

gration performance, especially for performance degradation.

500K records are loaded by YCSB into REDIS at the source

node, and each record is of 100 fields and the size of each field

is fixed to 10B. This configuration will result in 939MB of

pages to be migrated. After downtime, YCSB accesses REDIS

at target immediately by different operation records (from 10K

to 50K). The YCSB workloads are all configured as uniform

distribution, readallfields and writeallfields are false, and R/W

ratio are 70/30. The YCSB employs one and four threads to

access REDIS. Fig. 8 shows the results. (a) to (c) employ

150ms expiration time and (d) to (f) employ 3ms.

Fig. 8 (a) shows the measured total migration times normal-

ized to the busy time of FAM (2GB/s). The busy times of one

0

10

20

30

40

50

60

70

10K 20K 30K 40K 50K

N
o

rm
a

li
z
e

d
 t

im
e

FAM (2GB/s) - 1 thread Socket - 1 thread

FAM (2GB/s) - 4 threads Socket - 4 threads

(a) Normalized total migration time. (Lower
is better.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10K 20K 30K 40K 50K

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

FAM (2GB/s) Socket

(b) Normalized throughput with one thread.
(Higher is better.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10K 20K 30K 40K 50K

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

FAM (2GB/s) Socket

(c) Normalized throughput with four threads.
(Higher is better.)

(d) Normalized total migration time and busy
time performance. (Higher is better.)

(e) Normalized throughput with one thread.
(Higher is better.)

(f) Normalized throughput with four threads.
(Higher is better.)

Fig. 8: Migration performance of REDIS accessed by YCSB. (a) to (c): The expiration time is 150ms; (d) to (f): The expiration

time is 3ms.

TABLE IV: Average REDIS throughput improvements of

FAM-aware post-copy of real case (FAM (2GB/s) v.s. socket

(10Gb/s)) and ideal case (FAM v.s. socket).

1 thread 4 threads

FAM (2GB/s) v.s. socket (10Gb/s) 19.8% 25.69%
FAM v.s. socket 12.7% 21.79%

and four threads are almost the same since the same amount

of data (939MB) are checkpointed. FAM-aware post-copy

improves average total migration time 23.92% and 22.48%

with one and four threads respectively. Fig. 8 (a) also indicates

that the total migration time is not related to the number of

threads of YCSB. The reason is that the REDIS is single-

threaded, so more requests (threads) from YCSB cannot make

the pages of REDIS be accessed faster. Fig. 8 (b) and (c)

show the REDIS performance during migration. FAM-aware

post-copy lets the REDIS perform 22.3% and 23.4% higher

with one and four threads. respectively. Fig. 8 (a), (b), and

(c) could prove that the total migration time and application

degradation have some correlations because they are impacted

mostly by the latency of page fault handling if the expiration

time is larger enough.

Fig. 8 (d) shows the normalized total migration time and

busy time performance with 3ms expiration time. Because

those times at different operation counts of YCSB are almost

the same, we only take the average. This result also looks like

Fig. 7. Tab. IV summarizes the results of Fig. 8 (e) and (f).

Again, Fig. 8 (d), (e), and (f) also show that the total mi-

gration time and performance degradation are both influenced

by the bandwidth of transmission media if the expiration time

is too small and active pushing is triggered soon enough. The

throughput of REDIS increases as the number of operations

increases; this is because the chances of page fault reduce as

more pages are migrated.

VI. CONCLUSION

We presented FAM-aware, checkpoint-based, post-copy mi-

gration. Through FAM, a global, shared NVM pool in a rack

scale, we can map the entire migrated memory space onto

FAM. So, the data migration can be simplified as memory-

semantics to achieve a much lower page fault latency path.

We have implemented our prototype at CRIU, and shown that

our approach has lower busy time (at least 33%), lower total

migration time (at least 15%), and migrated application can

perform at least 12% better (i.e. lower application degradation)

during migration process.

ACKNOWLEDGMENTS

We first would like to thank Dr. Jaemin Jung, who was a

postdoc at Texas A&M University, for his helpful comments

and suggestions about this paper. We also thank the anony-

mous reviewers for their valuable and useful comments and

feedback to improve the content and quality of this paper.

Finally, we want to thank the National Science Foundation,

which supports this work through grants I/UCRC-1439722 and

FoMR-1823403, and generous support from Hewlett Packard

Enterprise.

REFERENCES

[1] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE Micro, vol. 30, pp. 131–141, Mar. 2010.

[2] D. Narayanan and O. Hodson, “Whole-system persistence,” in ASPLOS

’12. London, England, UK: ACM, Mar. 2012, pp. 401–410.

[3] “Intel optane technology,” https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.html.

[4] Gen-Z specitications. https://genzconsortium.org/specifications/.

[5] K. Keeton, “Memory-driven computing,” in FAST ’17. Santa Clara,
CA: USENIX, 2017.

[6] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS ’11. Newport Beach, CA: ACM, Mar.
2011, pp. 91–104.

[7] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” in ASPLOS ’11. Newport
Beach, CA: ACM, Mar. 2011, pp. 105 – 118.

[8] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,” in FAST

’15. Santa Clara, CA: USENIX, Feb. 2015, pp. 167 – 181.

[9] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L. N. Reddy, “Spec-
ulative paging for future nvm storage,” in MEMSYS ’17. Alexandria,
Virginia: ACM, Oct. 2017, pp. 399 – 410.

[10] L. Liang, R. Chen, H. Chen, Y. Xia, K. Park, B. Zang, and H. Guan,
“A case for virtualizing persistent memory,” in SoCC ’16 Proceedings

of the Seventh ACM Symposium on Cloud Computing. Santa Clara,
CA: ACM, Oct. 2016, pp. 126 – 140.

[11] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A reliable
and highly-available non-volatile memory system,” in ASPLOS ’15.
Istanbul, Turkey: ACM, Mar. 2015, pp. 3 – 18.

[12] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu, “Virtual machine
based energy-efficient data center architecture for cloud computing: A
performance perspective,” in GREENCOM-CPSCOM ’10. IEEE, Dec.
2010, pp. 171–178.

[13] K. Chanchio and X.-H. Sun, “Communication state transfer for the
mobility of concurrent heterogeneous computing,” IEEE Transactions

on Computers, vol. 53, pp. 1260–1273, 2004.

[14] E. R. Zayas, “Attacking the process migration bottleneck,” in SOSP ’87.
Austin, TX: ACM, Nov. 1987, pp. 13–24.

[15] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS Operating Systems Review, vol. 43,
pp. 14–26, Jul. 2009.

[16] S. Sahni and V. Varma, “A hybrid approach to live migration of virtual
machines,” in CCEM ’12. Bangalore, India: IEEE, Oct. 2012.

[17] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live migration of
multiple virtual machines with resource reservation in cloud computing
environments,” in CLOUD ’11. Washington, DC: IEEE, Jul. 2011.

[18] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba,
“CQNCR: Optimal VM migration planning in cloud data centers,” in
IFIP ’14. Trondheim, Norway: IEEE, Jun. 2014.

[19] Checkpoint/Restore In Userspace (CRIU). https://www.criu.org/.

[20] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live migration
of virtual machines using shared storage,” in VEE ’13. Houston, TX:
ACM, Mar. 2013, pp. 41–50.

[21] Emulate NVDIMM in Linux. https://nvdimm.wiki.kernel.org/.

[22] D. Baliley, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The NAS parallel benchmarks-
summary and preliminary results,” in SC ’91. ACM, 1991, pp. 158–165.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in PACT ’08.
Toronto, Ontario, Canada: ACM, Oct. 2008, pp. 72–81.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in ISCA ’95. S. Margherita Ligure, Italy: ACM, Jun. 1995, pp.
24–36.

[25] Redis: An in-memory data structure store. http://redis.io/.

[26] B. F. Cooper, A. Silberstein, ErwinTam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC ’10.
Indianapolis, Indiana: ACM, Jun. 2010, pp. 143–154.

[27] Docker container. https://www.docker.com/.
[28] “Gen-z overview,” https://genzconsortium.org/wp-content/uploads/2018/

05/Gen-Z-Overview.pdf.
[29] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing

checkpoints using nvm as virtual memory,” in IPDPS ’13. Boston,
MA: IEEE, May 2013.

[30] iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/
iperf-download.php.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://genzconsortium.org/specifications/
https://www.criu.org/
https://nvdimm.wiki.kernel.org/
http://redis.io/
https://www.docker.com/
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview.pdf
https://iperf.fr/iperf-download.php
https://iperf.fr/iperf-download.php

Optimizing Memory Layout of Hyperplane Ordering

for Vector Supercomputer SX-Aurora TSUBASA

Osamu Watanabe†∗, Yuta Hougi†, Kazuhiko Komatsu‡, Masayuki Sato†, Akihiro Musa‡∗, Hiroaki Kobayashi†

†Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
‡Cyberscience Center, Tohoku University, Sendai, Japan.

∗ NEC Corporation, Tokyo, Japan.

Email: {osamu.watanabe.t5, yuta.hougi.t8}@dc.tohoku.ac.jp, {komatsu, masa, musa, koba}@tohoku.ac.jp

Abstract—This paper describes the performance optimization
of hyperplane ordering methods applied to the high cost routine
of the turbine simulation code called “Numerical Turbine” for
the newest vector supercomputer. The Numerical Turbine code
is a computational fluid dynamics code developed at Tohoku
University, which can execute large-scale parallel calculation
of the entire thermal flow through multistage cascades of gas
and steam turbines. The Numerical Turbine code is a memory-
intensive application that requires a high memory bandwidth
to achieve a high sustained performance. For this reason, it
is implemented in a vector supercomputer equipped with a
high-performance memory subsystem. The main performance
bottleneck of the Numerical Turbine code is the time-integration
routine. To vectorize the lower-upper symmetric Gauss-Seidel
method used in this time integration routine, a hyperplane
ordering method is used. We clarify the problems of the current
hyperplane ordering methods for the newest vector supercom-
puter NEC SX-Aurora TSUBASA and propose an optimized
hyperplane ordering method that changes the data layout in the
memory to resolve this bottleneck. Through the performance
evaluation, it is clarified that the proposed hyperplane ordering
can achieve further improvement of the performance by up to
2.77×, and 1.27× on average.

Index Terms—data structure, hyperplane ordering method,
turbine simulation code, vector supercomputer, performance
optimization

I. INTRODUCTION

Thanks to advances in large-scale simulations, various phe-

nomena in the real world can be reproduced more realistically

by using supercomputer systems. However, there are still many

issues to be addressed in the real world, and the impact of

problems with social infrastructures on our society is immea-

surable. There is no doubt that preventing these problems

is beneficial for promoting a safe society. For example, gas

and steam turbines are used for thermal power generation.

However, a failure of these turbines will have serious social

and economic impact.

To prevent such untoward effects, it is necessary to predict

such failures in advance. However, this is very difficult for

actual turbines. Therefore, it is necessary to conduct a numer-

ical simulation of a turbine using a supercomputer to simulate

various phenomena occurring in the turbine. Regarding these

efforts, Industry 4.0 has been proposed internationally. For

example, the manufacturing industry has rapidly moved to dig-

itize everything from design to manufacturing and operation,

and Industry 4.0 has been put to practical use at Siemens, GE,

and so on.

The internal structure of a turbine is composed of a multi-

stage stator and rotor blades, with the total number of blades

exceeding 1,000. Experimentally designing these turbines in a

short period is difficult in terms of cost and time. To design

reliable and modern gas and steam turbines, various physical

phenomena generated by thermal flow must be simultaneously

addressed. To design an efficient and highly reliable turbine, it

is necessary to develop a multiphysics computational fluid dy-

namics (CFD) technique for numerically analyzing the mathe-

matical model that simulates these multiphysics as governing

equations of thermal fluids. However, as multiphysics mutual

interference in a turbine is caused by complex interactions

with the total thermal flow field, it is necessary to analyze the

total thermal flow field in the turbine.

To solve these problems, Tohoku University has developed

a multiphysics CFD code called “Numerical Turbine” for

large-scale simulations of unsteady wet steam flow with non-

equilibrium condensation inside a turbine [1]. The code can

be used to analyze the unsteady wet steam flow in the final

multistage cascade of an actual steam turbine. The code also

applies numerical solutions for analyzing the complex thermal

flow generated inside the final stage of a steam turbine. The

code incorporating these mathematical models can numerically

elucidate the multiphysics interaction of the thermal flow

inside a turbine, and we are able to determine in advance a

catastrophic situation leading to turbine instability and blade

destruction. Thus, multiphysics CFD is very useful for next

generation turbine design.

To accurately reproduce the various phenomena occurring

inside a turbine, it is necessary to reproduce conditions of

galls and cracks on each blade in the turbine. Therefore, it is

indispensable to simulate the whole turbine. The number of

grids to be calculated exceeds 700 million, which is a huge

amount of calculation to execute the simulation. To practically

apply the analysis results, it is also necessary to complete the

calculation within the required time.

To satisfy the various computational requirements, various

processors of modern supercomputer systems have mainly

adopted vector processing mechanisms such as single in-

struction stream, multiple data stream (SIMD) processing, for

greatly improving computational performance. To use the high

computing power of a supercomputer by using such a vector

process, the simulation code must be vectorized. Although

the lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation

method [2] is used in the time integration routine, which is

one of a high-cost parts of the Numerical Turbine code, it

cannot be automatically vectorized. Therefore, a hyperplane

ordering method [3] is adopted for vectorization. Thus, the

Numerical Turbine code can be used to achieve high sustained

performance by using the high vector computing capability of

NEC’s vector supercomputer SX series [4].

Although the computational performance of supercomputers

continues to improve, improvement in memory performance

has not kept up. The gap between the computational speed

of the processors and data-transfer capability of memories has

widened. To reduce the gap, the processors of modern vector

supercomputers are equipped with an on-chip vector-cache

mechanism [5] [6]. Therefore, to achieve high computational

performance on such vector supercomputers, simulation codes

need to effectively take into account the effect of the vector-

cache. In this paper, we propose an optimized hyperplane

ordering method that changes the data layout on the memory

to further improve sustained performance.

The outline of this paper is as follows. In Section II, we

present related work regarding optimization of hyperplane

ordering methods. In Section III, we discuss the two vector

supercomputers used in our study. In Section IV, we give

an overview of the Numerical Turbine code and describe

the conventional 2D and 3D hyperplane ordering methods

and the performance results as the preliminary evaluation. In

Section V, we describe our proposed optimized 3D hyperplane

ordering method that changes the data layout to improve

memory access. In Section VI, we discuss the performance

result. We conclude the paper along with future work in

Section VII.

II. RELATED WORK

Regarding the hyperplane ordering methods implemented in

the Numerical Turbine code, we previously reported a method

suitable for SX-ACE [7]. In that report, we showed that the

3D hyperplane ordering method could not effectively use the

vector cache implemented in SX-ACE because this method

uses indirect memory accesses with long strides. Hence, we

proposed a version of the 2D hyperplane ordering method as

an alternative to the 3D hyperplane ordering method in that

study. Although this 2D hyperplane ordering method has a

shorter vector-loop length than the 3D hyperplane ordering

method, the spatial locality of the data of the 2D hyperplane

ordering method is higher than that of the 3D hyperplane or-

dering method. Thus, the vector cache can be used effectively

even though its vector length is not sufficient for SX-ACE.

The 2D hyperplane ordering method also does not need to

use indirect memory access. As a result, its performance is 4.6

times higher than that of the 3D hyperplane ordering method.

In our previous study, we argued that memory optimization

is more important than calculation optimization for modern

supercomputers.

TABLE I: Specifications of SX-ACE and SX-Aurora TSUBASA

SX-ACE
SX-Aurora

TSUBASA

Frequency 1.0 GHz 1.4 GHz

Theoretical performance / core 64 Gflop/s 268.8 Gflop/s

Number of cores 4 8

Theoretical performance / socket 256 Gflop/s 2.15 Tflop/s

Memory bandwidth 256 GB/s 1.22 TB/s

Memory capacity 64 GB 48 GB

Last level cache bandwith 1 TB/s 2.66 TB/s

Last level cache capacity 1 MB private 16 MB shared

Regarding the investigation of the optimal memory-access

pattern with hyperplane ordering methods, Burger et al.

showed that the memory-access performance improved by

changing the data layout of the 3D array used in the 3D

hyperplane ordering method [8]. This is a technique to improve

the efficiency of memory access by continuously storing the

data elements and creating a 2D array on each hyperplane.

In the technique, each row on the 2D array is vectorized.

Therefore, the vectorized loop length is still smaller than the

loop length of the 3D hyperplane ordering method.

III. MODERN VECTOR SUPERCOMPUTERS

The number of cores in modern vector supercomputer pro-

cessors has been increasing, and the theoretical computational

performance of the processors is also improving. Although the

memory bandwidth has been improving, the improvement rate

is lower than that of computational performance. To fill the

performance gap between computation and memory, vector

supercomputers are equipped with a cache mechanism for

vector processing. Effectively using such a vector cache is

indispensable for achieving a high computational performance

in executing an application on a vector supercomputer. This

section outlines the vector supercomputers SX-ACE and SX-

Aurora TSUBASA, which are suitable for memory-intensive

applications. Table I lists the hardware specifications of SX-

ACE and SX-Aurora TSUBASA.

A. SX-ACE

SX-ACE is the previous generation vector supercomputer,

launched by NEC in 2013 [5]. The SX-ACE processor is

composed of four vector cores, each consisting of a vector

processing unit (VPU) and assignable data buffer (ADB). The

VPU is an important component of SX-ACE and can process

up to 256 vector elements of 8 bytes, each with one vector

instruction. The VPU is equipped with two multiply units

and two addition units, which can operate independently with

different vector instructions. The theoretical computational

performance per core of SX-ACE is 64 Gflop/s, and the

theoretical computational performance of one processor is

256 Gflop/s. Each core is connected to a memory control

unit (MCU) via a memory crossbar network at a memory

bandwidth of 256 GB/s, and the bandwidth is shared by four

cores. Each core is equipped with a 1 MB ADB. This is a

software-controllable data buffer that the VPU can access at

a rate of 256 GB/s.

B. SX-Aurora TSUBASA

SX-Aurora TSUBASA is the newest vector supercomputer

that NEC launched in 2017 [6]. The SX-Aurora TSUBASA

system consists of a vector host (VH) and vector engines

(VEs). A VE is mounted as a PCI Express (PCIe) card

equipped with a vector processor, and the card is connected to

the VH, which is a standard x86/Linux node, via the PCIe. An

entire program with data executes on the VE with a dedicated

high bandwidth memory, while the VH mainly provides OS

functions to connected VEs. Up to eight VEs can be controlled

by one VH. A VE consists of eight vector cores, a 16-MB

last level cache (LLC), and six High Bandwidth Memory 2

(HBM2) memory modules. The VPU installed in the vector

core has three vector-fused multiply-add (VFMA) units. The

vector length of SX-Aurora TSUBASA is 256, same as that of

SX-ACE, and 256 vector elements can be processed with one

vector instruction. The theoretical computational performance

per core of a VE is 268.8 Gflop/s, and the theoretical com-

putational performance of one VE is 2.15 Tflop/s. The LLC

is directly connected to the vector register of each core and

shared by eight cores. The six HBM2 memory modules have

a high memory bandwidth of 1.288 TB/s in total.

IV. OVERVIEW OF NUMERICAL TURBINE CODE

The physical phenomenon in steam turbines is nonequilib-

rium condensation flows. The condensation observed in steam

turbines is quite important in engineering. The phase change

is governed by homogeneous nucleation and the nonequilib-

rium process of condensation. The latent heat of water is

released to the surrounding non-condensed vapor, increasing

its temperature and pressure. It is known that condensed water

droplets affect the performance of a steam turbine. The blades

of a steam turbine are occasionally damaged by erosion due

to interaction with the condensed water droplets. However,

the precise mechanism behind the erosion remains unknown.

Transonic wet-steam flows in a steam-turbine cascade channel

have been studied [9] [10] [11]. Young [11] calculated two-

dimensional wet-steam turbine cascade flows by solving the

Euler equation with the Lagrangian method for integrating the

growth equation of a water droplet through each streamline.

A. Fundamental equations

The fundamental equations consist of the conservation laws

of total density, momentum, total energy, liquid water density,

and number density of water droplets with the shear stress

transport (SST) turbulence model [12], as shown in the fol-

lowing equation.

∂Q

∂t
+

∂Fi

∂ξi
+ S +H = 0, (1)

where Q, Fi, S, H , t, and ξi (i = 1, 2, 3) are the vector of

unknown variables, flux, the viscous term, source term, phys-

ical time, and general curvilinear coordinates, respectively.

Also, the equations of state and the sound speed in wet steam,

assuming that the condensate mass fraction β is sufficiently

small (β < 0.1), are written as

p = ρRT (1− β), c2 =
Cpm

Cpm − (1− β)R

p

ρ
, (2)

where R is the gas constant and Cpm is defined as the linear

combination of the isobaric specific heats in the gas and liquid

phases by using β. Here, Q, Fi, S, and H are defined in the

following forms:

Q = J

ρ
ρw1

ρw2

ρw3

e
ρβ
ρn
ρk
ρω

, Fi = J

ρWi

ρw1Wi + ∂ξi/∂x1p
ρw2Wi + ∂ξi/∂x2p
ρw3Wi + ∂ξi/∂x3p

(e+ p)Wi

ρβWi

ρnWi

ρkWi

ρωWi

,

S = −J
∂ξi
∂xj

∂

∂ξi

0
τ1j
τ2j
τ3j

τkjwk + (κ+ κt) ∂T/∂xj

0
0
σkj

σωj

,

H = −J

0
0

ρ
(

Ω2x2 + 2Ωw3

)

ρ
(

Ω2x3 + 2Ωw2

)

0
Γ
I
Sk

Sω

,

where the nomenclature is as follows.

J Jacobian for transformation

Wi Relative contra-variant velocities

e Total internal energy per unit volume

κ Laminar thermal conductivity coefficient

β Condensate mass fraction (wetness)

κt Turbulent thermal conductivity coefficient

n Number density of water droplets per unit mass

σkj Diffusion term for k equation

k Turbulent kinetic energy

σωj Diffusion term for ω equation

ω Turbulent kinetic energy dissipation ratio

Ω Angular velocity of rotation

ρ Total density

p Static pressure

T Static temperature

wi Relative physical velocities

xi Cartesian coordinates

τij Viscous stress tensors

B. Condensation model

The mass generation rate of liquid phase, Γ, is based on the

classical condensation theory. Ishizaka et al. further simplified

the following equation [13].

Γ =
4

3
πρl

(

Ir3∗ + 3ρnr2
dr

dt

)

. (3)

C. Numerical schemes

To calculate these equations, the Numerical Turbine code

uses the fourth-order compact MUSCL TVD (Compact

MUSCL) scheme [14] and the Roe approximate Riemann

solver [15] for the finite-difference scheme in Eq. (1). The

viscous term is calculated using the second-order central-

difference scheme. The SST turbulence model is used for the

turbulence modeling [16], and the LU-SGS method [2] is used

for time integration.

Figure 1 shows the flowchart of the main iteration loop of

the Numerical Turbine code. Its performance is primarily dom-

inated by calculations of the space difference, time integration,

and physical model routines.

D. 2D and 3D hyperplane ordering methods

Since the Numerical Turbine code is a memory-intensive

code [4], it has been executed on vector supercomputers

with high memory bandwidth. The space difference routine

and physical model routine are automatically vectorized by

the SX Fortran compiler because of non-dependency among

computational data. The LU-SGS method used in the time

integration routine cannot be automatically vectorized, because

the Gauss-Seidel method has dependencies on the calculated

results of its predecessor.

The Gauss-Seidel method has data dependency as shown

in Fig. 2. As this figure shows, grid point q(i, j, k) refers

to grid points q(i − 1, j, k), q(i, j − 1, k), and q(i, j, k − 1)
in the i-, j-, and k-directions for the calculation, and the

calculation of grid point q(i, j, k) depends on grid points

q(i − 1, j, k), q(i, j − 1, k), and q(i, j, k − 1). Therefore,

Calculation of unknown variables

Updating of unknown variables

ITERATION START

Done?
No

Space difference scheme

Physical models

Time integration

Boundary conditions

(Data communications)

Yes

Fig. 1: Flowchart of the iteration loop of the Numerical Turbine
code.

q(i,j,k)

q(i,j,k-1)

q(i-1,j,k)
q(i,j-1,k)

Fig. 2: Data dependency on the LU-SGS method.

the method cannot be vectorized. To vectorize this method

used in the time integration routine of the Numerical Turbine

code, a hyperplane ordering method is applied to avoid such

data dependencies. Although the time integration routine is

vectorized by applying a hyperplane ordering method, the

main performance bottleneck in the iteration loop is still the

time integration routine. Therefore, it is necessary to improve

the computational performance of this routine.

The hyperplane ordering method is a parallelization method

that avoids such data dependencies by changing the order

of calculation. As described in Fujino et al.’s study [3],

there are 2D hyperplane ordering and 3D hyperplane ordering

methods. Figure 3(a) is a diagram of the ordering with the

3D hyperplane ordering method. In this figure, the orange

plane is composed of grid points that are not dependent on

each other, and each plane is a skew-cutting plane through the

grid points that are ordered in the 3D space. Such a plane is

called a “hyperplane.” When calculating grid point q(i, j, k)
on this hyperplane, grid points q(i−1, j, k), q(i, j−1, k), and

q(i, j, k− 1) are not updated. Therefore, the data dependency

related to grid point q(i, j, k) can be avoided, and the calcu-

lation of the grid points on the hyperplane can be vectorized.

(a) 3D hyperplane. (b) 2D hyperplane.

Fig. 3: Hyperplane ordering.

With the 3D hyperplane ordering method, a loop length for

the vectorization can be generally increased. Since indirect

memory access is used, however, long stride memory access

occurs and the memory load increases. Vector supercomputers

prior to SX-ACE had a high ratio of a memory bandwidth

to a high floating-point operation ratio, known as Bytes per

Flop ratio. Therefore, the 3D hyperplane ordering method is

effective in increasing the loop length for exploiting the high

sustained performance of such vector supercomputers.

Although the computational performance and memory

bandwidth of the previous model SX-ACE have improved,

the improvement rate of memory bandwidth is lower than that

of computational performance. Therefore, the 3D hyperplane

ordering method cannot exploit the high computational per-

formance of SX-ACE due to the high memory load caused by

the method.

To exploit the performance of SX-ACE, we have the 2D

hyperplane ordering method to effectively use an ADB, which

is an on-chip memory of SX-ACE. As shown in Fig. 3(b), a

hyperplane of the 2D hyperplane ordering method does not

consist of a set of grid points with no dependency in the

3D space. However, there is a set of grid points with no

dependency on a 2D plane, and each hyperplane in the 2D

hyperplane ordering method can be vectorized with the higher

locality of data reference than that with the 3D hyperplane

ordering method. Since the 2D hyperplane ordering method

has a simple structure, it uses direct memory accesses to refer

to the grid points by calculating the location of these points

instead of the indirect memory accesses, resulting in reducing

memory load.

E. Preliminary evaluation

To clarify the performance characteristics of the hyperplane

ordering method, the preliminary evaluation is conducted. Two

types of kernel codes of the 2D and 3D hyperplane ordering

methods are created for this evaluation. The performance eval-

uation of these methods using these kernel codes is conducted

using one node of each SX-ACE and SX-Aurora TSUBASA.

One node of SX-ACE corresponds to one CPU, and one node

of SX-Aurora TSUBASA corresponds to one VE.

To evaluate the performance of the hyperplane ordering

methods in various problem sizes, the matrix size of the kernel

codes is changed. The matrix size is N , N , and 181 in the i-,
j-, and k-directions, respectively, and the range of N is from

31 to 141. These matrix sizes are set in consideration of the

actual model sizes used in the Numerical Turbine code.

Figure 4 shows the results of the performance evaluation of

the 2D hyperplane ordering and the 3D hyperplane ordering

methods on SX-ACE and SX-Aurora TSUBASA. As shown

in Fig. 4(a), in SX-ACE, when matrix size N is 54 or

more, the performance of the 2D hyperplane ordering method

is higher than that of the 3D hyperplane ordering method.

On the other hand, on SX-Aurora TSUBASA, as shown in

Fig. 4(b), the performance of the 3D hyperplane ordering

method is better than that of the 2D hyperplane ordering

method regardless of the matrix size. The high computational

performance of SX-ACE can be exploited when the cache hit

ratio and average vector length is balanced well. However,

on SX-Aurora TSUBASA, the cache hit ratio is almost 100%

regardless of any matrix size for the 2D hyperplane ordering

method.

It is clear from Fig. 4(b) that there is a cross-point of the

performance of the 2D hyperplane ordering method and the 3D

hyperplane ordering method at a lager matrix size. However,

the matrix size considered in the actual simulation is from 31

to 141. Therefore, the matrix size smaller than the cross-point

is appropriate for the evaluation.

Figure 4 indicates that precipitous performance degradation

appears at some matrix sizes in both SX-ACE and SX-Aurora

TSUBASA . The memory system of both systems uses a multi-

bank interleave memory, and the degradation is due to the bank

conflict. With regard to the performance of the 2D hyperplane

ordering method in SX-Aurora TSUBASA, the degradation

is greatly mitigated. This is because the decrease in memory

access is caused by the high cache hit ratio in SX-Aurora

TSUBASA.

This preliminary evaluation suggests that SX-Aurora TSUB-

ASA prefers the 3D hyperplane ordering method rather than

the 2D one because the 3D hyperplane ordering method

provides a longer vector length, even with an ineffective use

of the cache. That is, on SX-Aurora TSUBASA, the increase

in the cache capacity may diminish the effectiveness of the

improvement in the cache hit ratio. In such a case, it has

become obvious that the effect of other factors, such as

vector length, on the performance of these hyperplane ordering

methods increases. However, since the 3D hyperplane ordering

method is accompanied by a high memory load, it is necessary

to reduce indirect memory accesses causing memory load to

further improve performance.

V. OPTIMIZING MEMORY-ACCESS PATTERN OF 3D

HYPERPLANE ORDERING METHOD

The 3D hyperplane ordering method is expected to be more

effective than the 2D hyperplane ordering method on SX-

Aurora TSUBASA. However, it has drawbacks: the distance

of stride access in the memory is long and indirect memory

access is used for accessing each grid point. It is necessary

to mitigate the drawbacks to make calculation with the 3D

hyperplane ordering method even faster. Therefore, we pro-

pose an optimized 3D hyperplane ordering method to improve

0

5

10

15

20

25

30

35

31 41 51 61 71 81 91 101 111 121 131 141

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Matrix size

2D Hyperplane

3D Hyperplane

(a) Performance on SX-ACE.

0

10

20

30

40

50

60

70

80

90

31 41 51 61 71 81 91 101 111 121 131 141

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Matrix size

2D Hyperplane

3D Hyperplane

(b) Performance on SX-Aurora TSUBASA.

Fig. 4: Performance of the 2D and 3D hyperplane ordering methods.

Direction of

hyperplanes

(a) Original 3D data layout.

Direction of

hyperplanes

Direction of memory access

(b) New 1D data layout.

Fig. 5: Changing 3D data layout to 1D data layout.

memory access performance by changing the data layout on

the memory. With the proposed method, the grid points on

each hyperplane of the 3D hyperplane ordering method are

continuously stored in a 1D array so that the grid points

into the 1D array corresponding to each hyperplane can be

sequentially accessed.

A. Changing data layout on memory for sequential access

Figure 5(a) shows the data layout from the 3D hyperplane

ordering method and Fig. 5(b) shows the new 1D data layout

of the proposed method. As shown in Fig. 5(a), with the 3D

hyperplane ordering method, each hyperplane is a skew-cutting

plane through the 3D space. Thus, the distance to the adjacent

grid points on the hyperplane on the memory is long, and

indirect memory accesses are used for accessing grid points

on each hyperplane. To reduce these indirect memory accesses

in the new 1D data layout in the proposed method, grid points

on each hyperplane are arranged in order of calculation. Thus,

the grid points of each hyperplane are stored in a 1D array

corresponding to the hyperplane, as shown in Fig. 5(b). Hence,

the memory can be continuously accessed by using the grid

points in each 1D array.

For each grid point (i, j, k) on a hyperplane, the sum of

i, j, and k is the same value, and each hyperplane can be

indexed using this sum. Therefore, as shown in Fig. 6, each

1D array corresponding to the hyperplane is arranged in the

4 5 6 7 8 9

7 8 9

1 2 3 4 5 6

1 2 3

7

1

Direction of memory access

3

8

3

5

2

3 4

3

3

21

76

21

21

2

Plane1 (I+J+K=5)

Plane2 (I+J+K=6)

Plane3 (I+J+K=7)

Plane4 (I+J+K=8)

Plane5 (I+J+K=9)

Plane6 (I+J+K=10)

Plane7 (I+J+K=11)

Plane8 (I+J+K=12)

Plane9 (I+J+K=13)

D
ir

e
c
ti
o

n
 o

f
h

y
p
e

rp
la

n
e

s

1 3

654

7 8 9

43 65

1 654 987

94

2

1 2

5 6 7

10 11 12

10 11 12 13

10 11 12

10 11 12

10 11 12

Fig. 6: 1D data layout and each plane number.

order of hyperplanes, and grid points (i−1, j, k), (i, j−1, k),
and (i, j, k− 1), which are referred for the calculation of grid

point (i, j, k) in a 1D array, are in the adjacent 1D array. To

be described later, this data layout is created using an array of

structures whose member is a 1D array, and each hyperplane

is specified using the index of the array of this structure. In

Fig. 6, for example, to access the fifth hyperplane (plane 5),

the fifth element of the structure array is referred to. When

storing grid points in each 1D array, it is necessary to store

the grid points on the boundary area on each hyperplane as

shown in Fig. 6. Translucent circles indicate grid points on the

boundary areas.

B. Implementation of memory-efficient data layout

To create this data structure, the structure is dynamically

allocated with the number of hyperplanes and number of grid

points on each hyperplane. The specific allocation method is

shown in Listing 1. Here, these 1D arrays are allocated in the

hyperplane order shown in Fig 6.

Derived type ARRAY1D is declared as a hyperplane struc-

ture. This structure has member ARRAY, and this member

is a dynamically allocatable array to store grid points on

a hyperplane. Then, array A_ in Listing 1 is declared as a

Listing 1: Define and allocate dynamic allocatable arrays

· · ·
TYPE ARRAY1D

REAL*8,ALLOCATABLE,DIMENSION(:):: ARRAY

END TYPE ARRAY1D

TYPE(ARRAY1D),PUBLIC,ALLOCATABLE,DIMENSION(:):: A_

· · ·
ALLOCATE(A_(0:NUM_OF_PLANES+1))

· · ·
DO M=0,NUM_OF_PLANES+1

· · ·
ALLOCATE(A_(M)%ARRAY(MDIM1_MAX(M)))

· · ·
ENDDO

· · ·

Listing 2: Copy data to the 1D layout arrays

· · ·
DO K=KK1,KKF

DO J=JJ1,JJF

!$NEC vovertake

DO I=II1,IIF

LHP = LIST_3DA(I,J,K,L)

· · ·
M = I+J+K-(MMIN-1)

A_(M)%ARRAY(LHP) = A(I,J,K)

ENDDO

ENDDO

ENDDO

· · ·

dynamically allocatable array of the structure. Next, the array

is allocated according to the number of hyperplanes. Finally,

structure member ARRAY is allocated to store each hyperplane

according to the number of grid points on the hyperplane. Each

element of array MDIM1_MAX stores the number of grid points

on each hyperplane.

With the proposed method, as shown in Listing 2, it is

necessary to copy data in the arrays into the 1D arrays.

This data-copy is not, of course, necessary in the original

3D hyperplane ordering method. Array LIST_3DA stores the

position of each grid point in each 1D array. Specifically,

the number of the respective grid points is stored, as shown

in Fig. 6. Such data copies are a time-consuming process

because the copies occur every time the time integration

routine is called. To shorten this time, the compiler directive

vovertake of SX-Aurora TSUBASA is used. With this

directive, all vector stores in the loop might be over-taken

by the subsequent vector load so that the data copy time can

be reduced.

Listing 3 shows the calculation part when using the

proposed method. In Listings 1, 2, and 3, M indicates

the hyperplane number. In the original code, an access

to grid points A(I,J,K), A(I-1,J,K), A(I,J-1,K)

and A(I,J,K-1) is an indirect memory access. On the

other hand, in the code using the 1D array, accesses to

A_(M)%ARRAY(LHP) corresponding to A(I,J,K) are se-

quential, and the number of indirect memory accesses can be

Listing 3: 3D hyperplane ordering using 1D layout arrays

· · ·
DO LHP=1,LIST_3DC(M,L)

I = LIST_3DI(LHP,M,L)

J = LIST_3DJ(LHP,M,L)

K = LIST_3DK(LHP,M,L)

IM=LIST_3DA(I-1,J ,K ,L)

JM=LIST_3DA(I ,J-1,K ,L)

KM=LIST_3DA(I ,J ,K-1,L)

· · ·
AIM = (A_(M-1)%ARRAY(IM)*A_(M)%ARRAY(LHP))*0.5D0

AJM = (A_(M-1)%ARRAY(JM)*A_(M)%ARRAY(LHP))*0.5D0

AKM = (A_(M-1)%ARRAY(KM)*A_(M)%ARRAY(LHP))*0.5D0

· · ·
ENDDO

· · ·

0

20

40

60

80

100

120

31 41 51 61 71 81 91 101 111 121 131 141

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Matrix size

2D Hyperplane

3D Hyperplane

3D Hyperplane using 1D data layout

Fig. 7: Performance of three types of the hyperplane ordering method
on SX-Aurora TSUBASA.

reduced. In the code using a 1D array, since the 1D arrays

are arranged in the order of hyperplane numbers as the array

of structure, adjacent grid points can be found in the adjacent

array of the structure, and the access distance to adjacent grid

points is closer than that with the 3D hyperplane ordering

method.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed method

compared with the 3D hyperplane ordering method on SX-

Aurora TSUBASA. Figure 7 shows the evaluation results. The

horizontal axis indicates the matrix size, and the vertical axis

indicates the computational performance of these methods.

The proposed method using the 1D arrays performes better

than the original 3D hyperplane ordering method for any

matrix size. The performance improves by up to 2.77×, and

1.27× on average. The performance of the proposed method

improves as the matrix size increases.

The reason why the performance of the proposed method

increases as the matrix size increases is the ratios of calculation

time to data-copy time for calculation preparation. Figure 8

shows these ratios as a function of the matrix size with the

proposed method. The horizontal axis indicates the matrix

size, and the vertical axis indicates these ratios. The blue

portion indicates the ratio of calculation time and the red

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

7
5

7
9

8
3

8
7

9
1

9
5

9
9

1
0
3

1
0
7

1
1
1

1
1
5

1
1
9

1
2
3

1
2
7

1
3
1

1
3
5

1
3
9

R
a

o

 o
f

ca
lc

u
la

o

n

m
e

 a
n

d
 d

a
ta

 c
o

p
y

m

e

Matrix size

Fig. 8: Cost distribution of data copy and calculation with proposed
method.

portion indicates that of data-copy time. These results indicate

that as the matrix size increases, the ratio of calculation time

increases; thus, the performance of the time integration routine

improves. In other words, reducing the data-copy time can

result in superior performance of the proposed method.

VII. CONCLUSIONS

We discuss two types of the hyperplane ordering methods

used for the time integration routine of the Numerical Turbine

code on the newest vector supercomputer SX-Aurora TSUB-

ASA. With the 2D hyperplane ordering method, although the

cache hit rate is almost 100%, computational performance of

the short vector length harmfully affects the sustained perfor-

mance. On the other hand, the 3D hyperplane ordering method

provides a longer vector length, even with an ineffective use

of the cache. Since the 3D hyperplane ordering method uses

indirect memory accesses, long stride memory accesses occur

and the memory load increases.

To further improve the performance of the 3D hyperplane

ordering method to reduce the indirect memory accesses, we

propose an optimized 3D hyperplane ordering method using

a 1D data layout. To sequentially access the grid points, we

rearrange the data layout to access the grid points of each

hyperplane in a 1D array fashion. Thus, the memory for the

grid points in a 1D array can be continuously accessed. To

demonstrate the effectiveness of the proposed method, we

evaluated its performance. The experimental results indicate

that the proposed method reduces the execution time for the

Gauss-Seidel kernel by up to 2.77×, and 1.27× on average,

compared with the 3D hyperplane ordering method method

without the 1D array layout, and its performance further

improves as the matrix size becomes larger. We confirm

that indirect memory accesses can be reduced by enabling

sequential memory accesses for the 3D hyperplane ordering

method, resulting in further performance improvement.

Although we evaluate the proposed method using a kernel

code in this study, we will implement the method in whole

Numerical Turbine code and evaluate the effect of the method

on the performance. We will also examine the effect of the

method on widely used SIMD architectures with larger cache

capacity such as Intel Xeon and AMD EPYC processors.

ACKNOWLEDGMENT

This research was supported in part by MEXT as “Next

Generation High-Performance Computing Infrastructures and

Applications R&D Program,” entitled “R&D of A Quantum-

Annealing-Assisted Next Generation HPC Infrastructure and

its Applications.” The authors thank Satoru Yamamoto,

Takashi Furusawa, and Hironori Miyazawa of Tohoku Uni-

versity for their fruitful discussions and variable comments.

REFERENCES

[1] S. Miyake, I. Koda, S. Yamamoto, Y. Sasao, K. Momma, T. Miyawaki,
and H. Ooyama, “Unsteady Wake and Vortex Interaction in 3-D Steam
Turbine Low Pressure Final Three Stages,” Proc. ASME Turbo Expo
2014, Düsseldorf, Germany, GT2014-25491, 2014.

[2] S. Yoon and A. Jameson, “Lower-upper Symmetric-Gauss-Seidel
method for the Euler and Navier-Stokes equations,” AIAA Journal, 26
(1988), 1025-1026.

[3] S. Fujino, M. Mori, and T. Takeuchi, “Performance of hyperplane
ordering on vector computers,” Journal of Computational and Applied
Mathematics, 38 (1991), 125-136, North-Holland.

[4] H. Kobayashi, “Feasibility Study of a Future HPC System for Memory-
Intensive Applications: Final Report,” Sutained Simulation Performance
2014, Springer, (2014), 3-16.

[5] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa, and
H. Kobayashi, “Potential of a Modern Vector Supercomputer for Practi-
cal Applications - Performance Evaluation of SX-ACE,” The Journal of
Supercomputing 73(9), 3948-3976 (2017), DOI: 10.1007/s11227-017-
1993-y.

[6] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M.
Yokokawa, T. Aoyama, M. Sato, and H. Kobayashi, “Performance
Evaluation of a Vector Supercomputer SX-Aurora TSUBASA,” Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis,2018.

[7] 26th International Conference on Parallel Computational Fluid Dynam-

ics, Parallel CFD 2016,
http://www.conf.kit.ac.jp/parcfd2016/conference.html.

[8] M. Burger and C. Bischof, “Optimization the memory access perfor-
mance of FASTEST’s sipsol routine,” 6th European Conference on
Computational Fluid Dynamics, ECFD VI, July 2014, Barcelona, Spain.
DOI: 10.13140/RG.2.2.32568.14089.

[9] F. Bakhtar and M.T. Mohammadi Tochai, “An Investigation of Two-
Dimensional Flows of Nucleating and Wet Steam by the Time-Marching
Method,” Int. J. Heat Fluid Flow, Vol.2, No.1(1980), pp.5-18.

[10] M. Moheban and J. B. Young, “A Study of Thermal Nonequilibrium
Effect in Low-Pressure Wet-Steam Turbine Using a Blade-to-Blade
Time-Marching Technique,” Int. J. Heat and Fluid Flow, Vol.6, (1985),
pp.269-278.

[11] J. B. Young, “Two-Dimensional, Nonequilibrium, Wet-Steam Calcula-
tions for Nozzles and Turbine Cascades,” Trans. ASME, J. Turboma-
chinery, 114 (1992), 569-579.

[12] F. R. Menter, “Two-equation Eddy-viscosity Turbulence Models for
Engineering Applications,” AIAA Journal, 32 (1994), 1598-1605.

[13] K. Ishizaka, T. Ikohagi, and H. Daiguji, “A High-Resolution Finite
Difference Scheme for Supersonic Wet-steam Flow,” Proceedings of 6th
International Symposium on Computational Fluid Dynamics (in Japan),
Vol.1, (1995), pp.479-484.

[14] S. Yamamoto and H. Daiguji, “Higher-Order-Accurate Upwind Schemes
for Solving the Compressible Euler and Navier-Stokes Equations,”
Computers and Fluids, 22 (1993), 357-372.

[15] P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes,” J. Comp. Phys., 43 (1981), 357-372.

[16] F. R. Menter, “Two-equation Eddy-viscosity Turbulence Models for
Engineering Applications,” AIAA Journal, 32 (1994), 1598-1605.

Generalized Sparse Matrix-Matrix Multiplication for

Vector Engines and Graph Applications

Jiayu Li

Intelligent Systems Engineering

Indiana University

Bloomington, USA

jl145@iu.edu

Fugang Wang

Intelligent Systems Engineering

Indiana University

Bloomington, USA

fuwang@indiana.edu

Judy Qiu

Intelligent Systems Engineering

Indiana University

Bloomington, USA

xqiu@indiana.edu

Takuya Araki

Data Science Research Laboratories

NEC

Kanagawa, Japan

t-araki@dc.jp.nec.com

Abstract—Generalized sparse matrix-matrix multiplication
(SpGEMM) is a key primitive kernel for many high-performance
graph algorithms as well as for machine learning and data
analysis algorithms. Although many SpGEMM algorithms have
been proposed, such as ESC and SPA, there is currently no
SpGEMM kernel optimized for vector engines (VEs). NEC SX-
Aurora is the new vector computing system that can achieve
high performance by leveraging high bandwidth memory of
1.2TB/s and long vector of VEs, where the execution of scientific
applications is limited by memory bandwidth. In this paper, we
demonstrate significant initial work of SpGEMM kernel for a
vector engine and implement it to vectorize several essential
graph analysis algorithms: Butterfly counting and Triangle count-
ing. We propose a SpGEMM algorithm with a novel hybrid
method based on sparse vectors and loop raking to maximize the
length of vectorizable code for vector machine architectures. The
experimental results show that the vector engine has advantages
on more massive data sets. This work contributes to the high
performance and portability of the SpGEMM kernel to a new
family of heterogeneous computing systems, which is Vector Host
(VH) equipped with different accelerators or VEs.

Index Terms—Sparse Linear Algebra Kernel, NEC Vector
Engine, Graph

I. INTRODUCTION

Generalized sparse matrix-matrix multiplication

(SpGEMM) is a primitive kernel for many high-performance

Graph analytics and Machine Learning algorithms. Although

many SpGEMM algorithms have been proposed, there is

currently no SpGEMM kernel optimized for vector engines.

The NEC SX-Aurora TSUBASA is a vector processor

of the NEC SX architecture family[1], a CPU Machine

with Vector Engine (VE) for accelerated computing using

vectorization. The concept is that the full application runs

on the high-performance Vector Engine, and the operating

system tasks are taken care of by the Vector Host (VH),

which is a standard x86 server.

As shown in Figure 1, a NEC SX-Aurora node, also called

a Vector Island (VI), is comprised of a Vector Host (VH)

and one or more Vector Engines (VEs). The VH is an x86

server with one or more standard server CPU running Linux

operating system. One or multiple VEs are connected to each

VH CPU. Inside each VE, it has 8 cores and dedicated

memory.

Fig. 1. Hardware configuration of NEC SX-Aurora VH and VEs

Figure 2 shows the detailed architecture of a VE. The

Vector Engine Processor integrates 8 vector-cores and 48

GB of high bandwidth memory (HBM2), providing a peak

performance of up to 2.45 TeraFLOPS. The computational

efficiency is achieved by the unrivaled memory bandwidth of

up to 1.2 TB/s per CPU and by the latency-hiding effect of

the vector architecture. The single Vector Engine Processor

core arithmetic unit can execute 32 double-precision floating-

point operations per cycle with its vector registers holding 256

floating-point values. With 3 fused-multiply-add units (FMA),

each core has a peak performance of 192 FLOP per cycle or up

to 307.2 GigaFLOPS (double precision). The Vector Engine

has a peak performance of up to 2.45 TeraFLOPS.

In this paper, we design a new SpGEMM kernel for the

vector engine (VE) as an addition to the family of accelerators

and further study two subgraph counting algorithms: Triangle

counting [2] and Butterfly counting [3]. Our main contribu-

tions in this paper are:

Fig. 2. NEC SX-Aurora VE architecture

• We propose a unique hybrid method that enlarges vector

length for non-zeros values and leverages the High Band-

width Memory (HBM). This enables vector architectures

to exert their potentials at 1.2TB/s of HBM and 256

elements of long vector length.

• We deploy loop raking to vectorize a loop and increase

the memory access efficiency.

• The SpGEMM kernel is used to implement several im-

portant graph analysis algorithms on the vector machine.

The experimental results show that the vector engine achieves

high performance on large data sets. We implemented the

algorithms in C++ and have made the open-source code

available on Github1[4].

II. RELATED WORK

Counting subgraphs from a large network is fundamental in

graph problems. It has been used in real-world applications

across a range of disciplines, such as in bioinformatics [5],

social networks analysis, and neuroscience [6]. Many graph

algorithms have been previously presented in the language

of linear algebra [7], [8]. The matrix-based triangle counting

algorithm we use is mainly based on the text [2]. [3] proposed

a fast butterfly counting algorithm, which we converted into

a matrix operation form. We make it highly parallel and take

full advantage of vector machines.

SX-Aurora TSUBASA is a vector engine developed by

NEC. Comparison of SX-Aurora TSUBASA with other com-

puting architectures includes: [9][10]. The hybrid SpGEMM

algorithm we propose is based on the following related work:

ESC Algorithm [11], Hash-based SpGEMM [12] [13], and

SPA Algorithm [14]. They will be explained in the next

section, together with our implementation.

III. IMPLEMENTATION OF SPGEMM ON VECTOR ENGINE

In the Compressed Sparse Row (CSR) format, we represent

a matrix Mm×n, by three 1-D arrays or vectors called as A,

1https://github.com/dsc-nec/frovedis matrix

IA, JA. Let NNZ denote the number of non-zero elements

in M.

Fig. 3. CSR representation of a sparse matrix

The A vector is of size NNZ, and it stores the values of

the non-zero elements of the matrix. The values appear in

the order of traversing the matrix row-by-row. The JA vector

stores the column index of each element in the A vector. The

IA vector is of size m+1 stores the cumulative number of non-

zero elements up to (not including) the i-th row. For example,

to calculate the number of non-zero elements in row 0, just

calculate IA[1]-IA[0] = 2 = NNZrow0.

SpGEMM can be used for various kinds of graph al-

gorithms, including triangle counting and butterfly counting

that are addressed in this paper. Since both of the matrices

are sparse, its implementation is not straightforward; there

exist several algorithms called ESC algorithm, the hash-based

algorithm, and sparse accumulator (SPA).

Figure 4 shows basic structure of SpGEMM algorithm. It

shows C = A ·B ; we assume that the sparse matrices are in

CSR format.

Fig. 4. Basic structure of SpGEMM algorithm

Here, each row of A·B creates each row of C; we focus on

kth row. The kth row of A has two non-zero elements, whose

column indices are i and j. Because other elements are zero,

we only need to care about ith and jth row of the matrix B.

They are multiplied by the corresponding non-zero elements

of the kth row of A and added to create the kth row of C.

There are several algorithms to add these sparse vectors.

We implemented these algorithms on SX-Aurora TSUB-

ASA using the technique called loop raking, and propose a

novel hybrid method. To the best of our knowledge, this is the

first attempt to implement SpGEMM on a vector architecture.

A. Loop raking

Loop raking is a long-forgotten technique that was proposed

in the early ’90s to implement radix sort [15]. However, it is

an essential technique to enhance vectorization and enlarge

vector length. The key idea of loop raking is viewing each

element of a vector register as a virtual processor. Here we

take the union of sets as an example to introduce the loop

raking technique.

Set operations (union, intersection, merge, difference, etc.)

of sorted integer can be easily implemented, but vectorizing

them is not trivial.

The traditional algorithm compares two lists one by one,

and the result of the comparison will determine which pointer

is increased. It contains the following steps:

1) Set the pointers to the first elements of the sets.

2) Compare the data of the pointers.

3) Output smaller data and increase the pointer of it; If the

data are the same, output it and increase both pointers.

4) Goto 2).

In contrast, the loop raking method divides the data set into

many groups (in our case, 256 groups, since the length of

vector register is 256), and comparing the first element in all

groups at the same time. It consists of the following steps:

1) Divide the data into groups.

2) The first unused element of each group is placed in the

vector register.

3) Compare the two vector registers (vectorized).

4) Goto 2).

1
3
7
8
...

2
3
5
6
...

1

...

1
3
7
8
...

2
3
5
6
...

1
2

...

1
3
7
8
...

2
3
5
6
...

1
2
3

...

1
3
7
8
...

2
3
5
6
...

1
2
3
5
...

1<2
Output 1

3>2
Output 2

3=3
Output 3

7>5
Output 5

(a) Sequential algorithm

3
7
8

10
17
23
27
38
40
41

2
3
5
6
9
11
13
17
29
30
42

1 1741 ..

1

2 1742 ..
T F T ..

F T F ..

Mask Registers

Vector
register
(left)

.. ..

left < right ?

left == right ?

Compare
Vector
register
(right)

1 17 41

Output
(b) Loop Raking

Fig. 5. Comparison of sequential algorithm and loop raking.

Loop raking makes it possible to vectorize a loop that

cannot be vectorized otherwise. Besides, it can be used to

enlarge vector length. However, it has several drawbacks. One

drawback is that memory access becomes non-contiguous.

Especially, if the memory access becomes scatter or gather

(e.g., access like a[b[i]]), the performance of memory access

becomes non-optimal. Another drawback is the performance

of the branch. If the computation of each virtual processor

becomes complex, it might contain a branch. A loop that

contains a branch can be vectorized, but it is implemented

using a mask register. That is, the value of the condition is

stored in the mask register, and the instruction is executed

regardless of the condition; the result is reflected to register

or memory according to the mask value. Therefore, if the

condition becomes complex, many of the results end up

unused.

B. ESC Algorithm

ESC algorithm [11] is proposed by Bell et al. for GPU.

It consists of three phases, which are expansion, sorting, and

compression. In the expansion phase, it creates sparse vectors

multiplied by non-zeros of A, as explained above. This phase

is done for all the rows of A (and C) in parallel. In the sorting

phase, the resulting non-zeros of the sparse vectors are sorted

according to the row and column indices. In the compression

phase, the non-zeros that have the same row and column index

are added to one non-zero value. The result becomes the matrix

C. Each phase of this algorithm has a high parallelism. As for

the sorting phase, which is the most time-consuming part of

this algorithm, we used radix sort based on loop raking that

is proposed in [15].

Fig. 6. Esc Algorithm

In the implementation of vector architecture, we separate the

matrix A into blocks and do the steps block by block to utilize

the cache (LLC), which is similar to the strategy proposed by

Dalton et al. [16].

Besides, we added individual case support for matrices that

have only 0 or 1 as the values (which means non-zero values

are always 1). This is typical if the matrix is an adjacency

matrix, and the edge weights of the graph are always 1. In

this case, we can speed up the sort phase, because we only

sort indices instead of pairs of index and value.

C. Hash based Algorithm

The SpGEMM algorithm in the cuSPARSE library uses the

hash table for the addition of sparse vectors [12]. Where the

column index becomes the key of the hash table; the value is

inserted if the key is not stored in the hash table. Otherwise,

the value is accumulated to the already stored value. After this

process, we can get the result row by extracting the stored key

value pairs from the hash table. We can do this process for all

the rows in parallel.

We used loop raking technique to implement hash based

algorithm; each virtual processor (element of vector register)

processes different rows. In this case, each virtual processor

updates the hash table for the corresponding rows sequentially;

we do not have to worry about the parallel update of the

hash table. To handle the collision, if a collision occurs, the

key is stored in a different array; the contents of the array is

processed again by adding 1 to the hash value, which realizes

open address linear probing.

The column indices of the result matrix are not sorted in

the case of the hash-based algorithm. Since some algorithms

assume that they are sorted, we added an option to sort them,

though it decreases the performance.

Fig. 7. Hash based Algorithm

D. Sparse Accumulator (SPA)

Sparse accumulator (or SPA) is a classic algorithm proposed

by Gilbert et al. [14]. It uses dense vectors whose size is the

same as the number of columns of C. The sparse vectors are

added into the dense vector. There is another flag vector that

contains the information if the index of the vector contains

a value or not. If the corresponding index of the flag vector

is false, it is set to true, and the index is saved into another

vector; this vector stores the non-zero part of the dense vector

after the process. By using this vector, the non-zero part can

be known without scanning the flag vector or the dense vector

that contains the value.

Fig. 8. SPA Algorithm

Though SPA is a quite efficient algorithm, implementations

of SpGEMM for highly parallel architectures, such as GPUs,

usually avoid it. This is because if multiple rows of A are

processed in parallel, the required number of the dense vectors

is the number of parallelisms, which is too large and not

affordable memory size.

In the implementation of vector architecture, adding sparse

vectors into the dense vector is processed in a vectorized way

without loop raking technique to avoid using too many dense

vectors. In this case, parallelism (which corresponds to vector

length) is limited by the number of non-zeros of each sparse

vector. Saving the non-zero index is done by loop raking

manner; separate memory space is assigned to each virtual

processor, and indices are stored independently. Like the hash-

based algorithm, The column indices of the result matrix is not

sorted. We also added an option to sort them.

E. Hybrid Algorithm

As described above, The parallelism of SPA is limited by

the number of non-zero elements of each sparse vector. In

practical applications, the number of non-zero elements per

row will vary greatly, as they usually follow the power-law

distribution. Therefore, we propose a novel hybrid method. It

combines SPA and other methods according to the average

numbers of the non-zeros of intermediate sparse vectors. For

example, that of kth row of A in Figure 4 is (3 + 4) / 2 = 3.5.

First, the average number of non-zeros of each row is

calculated, and the rows are sorted according to this value.

Then, the matrix is divided by the user-defined threshold;

the part with a higher average number of the non-zeros is

processed by SPA, another part is processed by ESC or hash-

based algorithm.

Liu et al. proposed a method that separates the matrix

into bins and uses different algorithms for each bin [17]. It

is similar to our method in that it uses multiple algorithms.

However, our method is unique in that it uses an efficient SPA

algorithm for the part where the average number of the non-

zeros is high to enlarge vector length for vector architecture.

F. Parallelization of SpGEMM with Vector Engine

SpGEMM can be parallelized by dividing the matrix by

row and assigning them to each processor. However, to get

better scalability, it is essential to assign tasks evenly to the

processors for load balancing. In our implementation, we count

the number of non-zero of intermediate sparse vectors and

divide the matrix according to the number, which achieved

better load balancing.

Figure 9 illustrates this process. For the two operand ma-

trices of SpGEMM - A and B, we applied 1D decomposition

[18] by row for the left side matrix, i.e., we leave the right side

matrix B untouched, but for the left side matrix A we split it

into row blocks. However, to achieve better load balancing, we

do not split the rows evenly but based on the number of non-

zeros (denoted by a solid dot). In this example, matrix A is

split into 4 slices. Although the number of rows is not the same

for each slice, getting the non-zeros evenly distributed can help

Slice A1

Slice A2

Slice A3

Slice A4

A (m x p) B (p x n)

SpGEMM(A1,B)
VE Core 1

SpGEMM(A2,B)
VE Core 2

SpGEMM(A3,B)
VE Core 3

SpGEMM(A4,B)
VE Core 4

Final result
C (m x n)

MPI Reduce

Fig. 9. Parallelizing SpGEMM using MPI with partitioned row blocks

achieve better load balance. We utilize MPI for parallelization,

and each slice is assigned to a different MPI process so that

the work can be conducted in parallel on the VE cores. For

actual datasets, the split number could be in thousands.

G. Evaluation

We evaluated our implementation using sparse matrices

from the SuiteSparse Matrix Collection [19] that are com-

monly used in papers like [13]. Table I shows the matrix used

for evaluation.

TABLE I
MATRICES FOR EVALUATION

nnz/row max nnz/row intermed. nnz

Protein 119.3 204 555,322,659

FEM/Accelerator 21.7 81 79,883,385

webbase 3.1 4700 69,524,195

cit-patents 4.4 770 82,152,992

wb-edu 5.8 3841 1,559,579,990

Circuit 5.6 353 8,676,313

The performance is evaluated by A
2. The FLOPS is cal-

culated as (the number of non-zero of intermediate sparse

vectors) * 2 / (execution time), which is commonly used as

SpGEMM evaluation. The execution time does not contain I/O

but contains the counting cost for load balancing.

We measured the performance using 1, 2, 4, and 8 VEs.

Since SX-Aurora TSUBASA (A300-4) contains 4 VEs per

server. We used two servers for evaluation of 8 VEs, which are

connected via InfiniBand. We used MPI also for parallelization

within the VE (flat-MPI); in the case of 8 VEs, there are 64

ranks in total.

To compare absolute performance, we also evaluated

the performance on Xeon using Intel MKL. We used 1

Protein FEM
Accelerator

webbasecit-patents wb-edu Circuit

0

2

4

6

P
e

rf
o

rm
a

n
c
e

im
p

ro
ve

m
e

n
t

1 socket 2 sockets

Fig. 10. Performance improvement over CPU. Calculated by
NEC-Hybrid GFLOPS

CPU GFLOPS
. NEC-Hybrid has an average performance improvement of

139% over CPU, with a maximum performance improvement of 6.43x.

and 2 sockets of Xeon 6126 Gold. The API we used is

mkl_sparse_spmm and mkl_sparse_order; the API

mkl_sparse_order is for sorting the index of the result.

We utilized shared memory parallelization for MKL that is

provided by the library.

Figure 11 shows the evaluation result. Hybrid is a hybrid of

ESC and SPA method. We used the single-precision floating-

point as the value and 32bit integer as the index. All the results

include the sorting time of the index.

The matrices are grouped into three categories. As for

Protein and FEM/Accelerator, the NNZ per row is relatively

large. Therefore, SPA performs better than other methods. As

for webbase and cit-patents, NNZ per row is small; There-

fore, the ESC shows better performance than the SPA. For

wb-edu, the network size is relatively large, and the maximum

NNZ per row is much larger than average. Therefore, our

hybrid method performs the best. Our hybrid method shows

stable performance. Although it is not the best performer in

all situations, it avoids some of the noticeable shortcomings

of ESC and SPA. In all the cases, the hash-based method

does not show better performance than other methods. Since

it consists of a complex branch in the loop raking technique

to implement the hash table; the overhead of loop raking

caused poor performance. Our implementation shows better

performance than CPU and also shows good scalability.

IV. VECTORIZATION OF GRAPH ALGORITHMS WITH

SPGEMM

We have implemented a high-performance linear algebra

kernel SpGEMM on the vector engine. In this section, we will

introduce two important graph analysis algorithms: triangle

counting and butterfly counting. We will use linear algebra

operations, mainly SpGEMM, to implement these algorithms

so they can take advantage of the NEC vector engine.

A. Triangle Counting

A triangle is a special type of a subgraph that is commonly

used for computing important measures in a graph. The

triangle counting algorithm consists of the following steps:

hash ESC SPA NEC-Hybrid CPU

Protein FEM
Accelerator

webbase cit-patents wb-edu Circuit

10
−1

10
0

10
1

G
F

L
O

P
S

(a) 1 socket

Protein FEM
Accelerator

webbase cit-patents wb-edu Circuit

10
−1

10
0

10
1

G
F

L
O

P
S

(b) 2 sockets

Protein FEM
Accelerator

webbase cit-patents wb-edu Circuit

10
0

10
1

G
F

L
O

P
S

(c) 4 sockets

Protein FEM
Accelerator

webbase cit-patents wb-edu Circuit

10
0

10
1

G
F

L
O

P
S

(d) 8 sockets

Fig. 11. Evaluation of SpGEMM kernels on VE

1) Split A into a lower triangular L and an upper trian-

gular U: Given an adjacency matrix A, as shown in figure

12 (a) and (b), the algorithm splits A into a lower triangular

and an upper triangular pieces via A = L+U.

2) Calculate B = LU: In graph terms, the multiplication

of L by U counts all the wedges of (i, j, k) form where j
is the smallest numbered vertex. As shown in Figure 12 (c),

only one wedge (5, 2, 3) between node 5 and node 3 satisfies

2 < 5 and 2 < 3. Correspondingly, B5,3 = 1.

3) Calculate U. ∗B, the element-wise multiplication of A

and B: The final step is to find if the wedges close by doing

element-wise multiplication with the original matrix.

B. Butterfly Counting

Butterfly refers to a loop of length 4 in the bipartite

graph. It is the simplest cohesive higher-order structure in a

(a) Input graph G. There is only
one 2-path (3,2,5) between node 3
and node 5 that satisfies 2 < 3

and 2 < 5. Path (3,4,5) is not
considered since 4 > 3.

« ¬

©
«

Vertex1 0 1 1 0 0

Vertex2 1 0 1 1 1

Vertex3 1 1 0 1 1

Vertex4 0 1 1 0 1

Vertex5 0 1 1 1 0

ª®®®®®
¬

(b) Adjacency matrix A of G.
The lower triangular part L and
the upper triangular part U are
marked in blue and red.

B = LU =

1

1 1

0 1 1

0 1 1 1

·

1 1 0 0

1 1 1

1 1

1

=

0 0 0 0 0

0 1 1 0 0

0 1 2 1 1

0 0 1 2 2

0 0 1 2 3

5×5
(c) Line 3 of algorithm 1 : B = LU using SpGEMM kernel. B5,3 and B3,5

corresponds to the number of 2-paths between node 5 and 3 satisfying 2 < 3

and 2 < 5.

Fig. 12. Adjacency matrix

Algorithm 1: Triangle counting

input : Graph G = (V,E)
output: number of triangles in G

1 Generate the adjacency matrix A

2 Split A into a lower triangular L and an upper triangular

U

3 B = LU // SpGEMM Kernel

4 C = U. ∗B // Element wise multiplication

5 return
∑

Ci,j

bipartite graph. [3] presented exact algorithms for butterfly

counting, as shown in algorithm 2, which can be considered

as state-of-the-art. Although this algorithm is fast, it is a loop-

based, sequential algorithm. To achieve parallelization and

vectorization, we have improved algorithm 2 to algorithm 3

which fully utilize the linear algebra kernels. Our Butterfly

counting algorithm consists of the following steps:

1) Create the adjacency matrix A: Let G = (V =
(L,R), E) be a bipartite graph, where L and R are its left

and right parts, respectively. Suppose L = {L1, L2, . . . , Lm},
R = {R1, R2, . . . , Rn}. Then we can represent the adjacency

matrix of G as Am×n. Ai,j = 1 if and only if Li and Rj is

connected, otherwise, Ai,j = 0. In this case, A is sometimes

called the biadjacency matrix.

2) Calculate AA
⊺: According to the properties of the

adjacency matrix[20], we have: If B = AA
⊺, then the matrix

Bi,j gives the number of walks of length 2 from vertex Li

to vertex Lj . As shown in Figure 13, there are three paths

of length 2 between L1 and L2, which are marked in three

colors: red, blue, and green.

3) Set the element on the diagonal of matrix B to 0 and

add up: Since each butterfly is made up of two paths of length

2, the two paths share endpoints in L (or R). Thus, if there are

Bi,j paths between Li and Lj , then the number of butterflies

Algorithm 2: ExactBFC: Sequential Butterfly Counting

input : Graph G = (V = (L,R), E)
output: Butterfly(G)

1 if
∑

u∈L(du)
2 <

∑

v∈R(dv)
2 then

2 A← R
3 else

4 A← L

5 for v ∈ A do

6 C ← hashmap
7 for u ∈ Neighbour(v) do

8 for w ∈ Neighbour(u) do

9 C[w]← C[w] + 1

10 for w ∈ C do

11 Butterfly(G)← Butterfly(G) +
(

C[w]
2

)

12 return Butterfly(G)/2

Algorithm 3: Vectorized butterfly counting

input : Graph G = (V = (L,R), E)
output: number of butterflies in G

1 Generate the adjacency matrix A

2 B← AA
⊺ // SpGEMM kernel

3 Set the element on the diagonal of matrix B to 0.

4 return 1
2

∑

i,j

(

Bi,j

2

)

with Li, Lj as the endpoint is
(

Bi,j

2

)

. Note that we only count

2-paths that differ from the start and endpoints, so we set the

elements on the diagonal of matrix B to 0 to exclude those

paths where the start and endpoints are the same. For example,

the matrix in Figure 13 is transformed into the following form

B =

3 3 1
3 4 2
1 2 2

→

0
(

3
2

) (

1
2

)

(

3
2

)

0
(

2
2

)

(

1
2

) (

2
2

)

0

 =

0 3 0
3 0 1
0 1 0

3×3

Finally, we calculate 1
2

∑

i,j

(

Bi,j

2

)

to get the exact number

of “butterflies”.

V. EXPERIMENTS ON SUBGRAPH COUNTING

AND MACHINE LEARNING ALGORITHMS

A. System Architecture and Implementation

In the experiments, we use: 1) a single node of dual-socket

Intel(R) Xeon(R) Gold 6126 (architecture Skylake), 2) a single

node of a dual-socket Intel(R) Xeon(R) CPU E5-2670 v3

(architecture Haswell), 3) a single NEC Aurora node with 4

VEs. More details of the testbed hardware can be seen in Table

II.

B. Execution Time Breakdown

We have applied the NEC SpGEMM algebra kernels in

our triangle counting and butterfly counting implementation.

We instrumented the code to show the normalized time spent

breakdown on different portions of the code with different

(a) Input bipartite graph and 2-
paths between L1 and L2.

©
«

R1 R2 R3 R4

L1 1 1 1 0

L2 1 1 1 1

L3 0 0 1 1

ª®
¬

(b) Biadjacency matrix A of
input graph.

B = AA
⊺
=

1 1 1 0

1 1 1 1

0 0 1 1

·

1 1 0

1 1 0

1 1 1

0 1 1

=

3 3 1

3 4 2

1 2 2

3×3
(c) Line 2 of algorithm 3: B = AA⊺. B1,2 and B2,1 represents the
number of 2-paths between L1 and L2.

Fig. 13. Adjacency matrix of bipartite graph

Split NEC Hybrid SpGEMM Element-wise Product CommunicationTranspose

1 2 4 8 16 32
0%

20%

40%

60%

80%

100%

Number of Cores

(a) Triangle counting

1 2 4 8 16 32
0%

20%

40%

60%

80%

100%

Number of Cores

(b) Butterfly counting

Fig. 14. Normalized execution time breakdown.

datasets. The results are shown in Figure 14 for both triangle

counting and butterfly counting. The fact that the two computa-

tion kernels (SpGEMM and Element-wise Product) consume

the majority of the execution time was the motivation why

we have implemented and optimized the algebra kernels on

the NEC Aurora platform. We can see from the figure that

with the increasing number of cores used, the two kernels

are consuming less proportional time which suggests that the

parallel execution of the kernels has decreased the overall

execution time. On another hand, the proportion of the time

spent on non-parallelized code, which includes the preparation

of the data and other overhead introduced with handling multi-

processes (split, transpose operations, and MPI communication

and synchronizations) is increasing.

TABLE II
HARDWARE SPECIFICATIONS AND DATASETS USED

Arch Model
frequency

(GHz)

physical

cores

Vector reg-

ister width

(bits)

Vector

register

Peak Per-

formance

memory

bandwidth

(GB/s)

memory

capacity

(GB)

L1

cache

(KB)

L2

cache

(MB)

L3

cache

(MB)

CPU

Skylake

Xeon Gold

6126
2.6 12 512 2 998GF(SP) 119 125 768 12 19.25

CPU

Haswell

E5-2670

v3
2.3 12 256 1x24

883GF(SP)

441GF(DP)
95 125 768 3 30

Vector

Engine

SX-Aurora

TSUB-

ASA

1.4 8 16384 256
4.91TF(SP)

2.45TF(DP)
1200 48 32x8 2 16

TABLE III
GRAPH DATASETS USED IN THE EXPERIMENTS

Data Vertices Edges Avg Deg

mouse-gene 29.0M 28.9M 2.00

coPaperDBLP 540k 30.5M 112.83

soc-LiveJournal1 4.8M 85.7M 35.36

wb-edu 9.8M 92.4M 18.78

cage15 5.2M 94.0M 36.49

europe-osm 50.9M 109.1M 4.25

hollywood-2009 1.1M 112.8M 197.83

DBPedia-Location 172K+53K 293K 1.30

Wiki-fr 288K+3.9M 22M 5.25

Twitter 175K+530K 1.8M 2.55

Amazon 2.1M+1.2M 5.7M 1.73

Journal 3.2M+7.4M 112M 10.57

Wiki-en 3.8M+21.4M 122M 4.84

Deli 833K+33.7M 101M 2.92

web-trackers 27.6M+12.7M 140M 3.47

C. Execution Time Evaluation

We used the datasets in Table III to evaluate the performance

on a different number of processes utilizing the up to 32 cores

of the 4 VEs on the single NEC Aurora node. For butterfly

counting, we also compared the execution with the reference

BFC exact [3] running on Haswell CPU. Figure 15 shows the

execution time of triangle counting and butterfly counting for

the different datasets on single VE (1 core and 8 cores) and

4 VEs (32 cores being utilized). Figure 16 shows the speedup

of our algorithm while using one single VE comparing to the

BFC Exact result (normalized to 1). We can see from this

figure that for the larger datasets, single VE (with all 8 cores

being utilized) achieved better performance with a factor of 3-

5 comparing to the BFC Exact algorithm running on Haswell

CPU.

D. Strong Scaling Evaluation

The execution time breakdown shown in Figure 14 has

already suggested that the algebra kernels helped achieve good

strong scaling. Here we are showing this more clearly in

Figure 17 and Figure 18. Figure 17 shows the speedup when

1VE (1 Core) 1VE (8 Cores) 4VEs (32 Cores)

cage15

coPaper
europe

hollywood

mouse-gene

LiveJournal

wb-edu

10
0

10
1

10
2

E
xe

c
u
ti
o
n

ti
m

e
(s

)

(a) Triangle counting

dbpedia
twitte

r
amazon

frw
iki

enwiki

livejournal

delicious

tra
ckers

10
−1

10
1

10
3

E
xe

c
u

ti
o

n
ti
m

e
(s

)

(b) Butterfly counting

Fig. 15. Execution Time of Triangle counting and Butterfly counting

dbpedia
twitte

r
amazon

frw
iki

enwiki

livejournal

delicious

tra
ckers

0

2

4

6

S
p
e
e
d
u
p

Fig. 16. Butterfly counting speedup (1VE vs BFC Exact on CPU)

utilizing multiple VE cores comparing to one core on the left

side; and on the right side, it shows the results from the work

in [2]. For the scaling on VE most datasets showing close

to linear scalability till the number of processes reached over

10, which is better than the right side chart. Figure 18 shows

similar results for Butterfly counting, although it decreases

after 8 processes when comparing to the Triangle counting

results.

cage15 copapers europe mouse

1 2 4 8 16 32
1

2

4

8

16

Number of processes

S
p
e
e
d
u
p

(a) VE

1 2 4 8 16 32
1

2

4

8

16

Number of processes
S

p
e
e
d
u
p

(b) CPU

Fig. 17. Triangle counting scalability test on single process

1 2 4 8 16 32
1

2

4

8

16

Number of processes

S
p
e
e
d
u
p

dbpedia

twitter

amazon

frwiki

enwiki

livejournal

delicious

trackers

Fig. 18. Butterfly counting scalability with increasing number of processes

E. SpGEMM Kernel Algorithms and Parameter Options

The SpGEMM kernel provided multiple algorithms to

choose from, among HASH, SPA, SPA SORT, ESC, and

hybrid of any two of these. For the hybrid algorithm, a user

can change the default threshold parameters as part of the

function call. The evaluation we have done was using the

hybrid algorithm of ESC and HPA/HPA SORT with default

parameters. In this section, we are showing the results of alter-

native algorithms and parameters. We used triangle counting

as an example on three different datasets to show the impact

of the algorithms and parameters options. For the algorithms,

We tested the ESC alone, SPA SORT, and the hybrid of the

two; For parameters choice of the hybrid mode, a user can

specify 3 parameters N1, N2, N, meaning number of columns

to process at a time for the first separated matrix, the number

of columns to process for the second matrix, and the threshold

to separate the two matrices, respectively. The default values

for these 3 parameters are 256, 4096, and 64, in that order.

We used default values, the increased values by timing 4,

and the decreased values by dividing 4 from the default

parameters. The results are shown in Figure reffig:spgemm-

options. The columns are the SpGEMM breakdown time from

the overall execution time of running triangle counting on the

testing datasets. The left-most column for each dataset is the

hybrid algorithm with default parameters setting. We can see

from figure 19 that while this may not be the best-performed

choice among all, the hybrid mode with default parameters can

produce balanced and good enough results without the need

to get more details of the dataset beforehand. As mentioned

before in the SpGEMM kernel evaluation section, knowing

the characteristics of the dataset, e.g., the distribution of the

NNZ per row, could help choose the best algorithm/parameter

options, but our experiments were done with hybrid mode and

default parameters already show good results. For the SPA and

SPA SORT options, the difference is that with SPA SORT the

column indices of the result matrix are sorted while for SPA,

they are not. While sorting added more overhead compared

to the non-sorted version, this feature is especially useful

if the result matrix is to be chained as input to another

algorithm that assumes the column indices are sorted. E.g.,

in our triangle counting application, we have an element-wise

multiplication step after SpGEMM, which utilized another

kernel that requires the input matrices to be sorted with column

indices. Thus we would need to use the hybrid algorithm of

ESC and SPA SORT. While for butterfly counting, the order

of the column indicators does not affect the counting result.

Thus we use the hybrid algorithms of ESC and SPA to get

better performance.

coPaper livejournal hollywood

0

2

4

6

T
im

e
(s

)

Hybrid Increased Threshold

ESC

Hybrid Default Threshold

Hybrid Decreased Threshold SPA_Sort

Fig. 19. SpGEMM Time from Triangle Counting Execution Breakdown using
Different SpGEMM Algorithms and Parameter Options

VI. CONCLUSION

In this paper, we have introduced a new vectorized

SpGEMM algorithm for butterfly counting in bipartite graphs

and also adapted another vectorized triangle counting algo-

rithm, on the NEC Aurora platform. The algorithms are all

vectorized, makes it very suitable to run on the vector engine

of the NEC Aurora system.

In the SpGEMM kernel evaluation (section III-G), NEC-

Hybrid has an average performance improvement of 139%

over CPU, with a maximum performance improvement of

6.43x. In the test of the triangle counting algorithm, our

implementation shows high scalability compared to related

work [2]. In the test of the butterfly counting algorithm, our

implementation on large datasets has achieved up to 6 times

faster performance even with a single VE, and more than 10

times faster when multiple VEs are used from one node. With

the optimized linear algebra kernels such as SpGEMM, both

Graph algorithms demonstrate good performance and scalabil-

ity. This work can be extended to support other applications

and architecture-specific code optimizations in future work.

VII. ACKNOWLEDGMENT

We gratefully acknowledge the support from NEC Corp.,

NSF CIF21 DIBBS 1443054: Middleware and High Perfor-

mance Analytics Libraries for Scalable Data Science, Science

and NSF EEC 1720625: Network for Computational Nan-

otechnology (NCN) Engineered nanoBio node, NSF OAC

1835631 CINES: A Scalable Cyberinfrastructure for Sustained

Innovation in Network Engineering and Science, and Intel

Parallel Computing Center (IPCC) grants. We would like to

express our special appreciation to the FutureSystems team.

REFERENCES

[1] “Nec sx-aurora tsubasa - vector engine.” https://www.nec.com/en/global/
solutions/hpc/sx/vector engine.html. Accessed: 2019-09-05.

[2] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in 2015 IEEE International Parallel

and Distributed Processing Symposium Workshop (IPDPSW), pp. 804–
811, IEEE, 2015.

[3] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly counting
in bipartite networks,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining,
pp. 2150–2159, ACM, 2018.

[4] “Spgemm on nec vector engine.” https://github.com/dsc-nec/frovedis
matrix. Accessed: 2019-09-05.

[5] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, vol. 24, no. 13, pp. i241–i249, 2008.

[6] F. Battiston, V. Nicosia, M. Chavez, and V. Latora, “Multilayer motif
analysis of brain networks,” Chaos: An Interdisciplinary Journal of

Nonlinear Science, vol. 27, no. 4, p. 047404, 2017.
[7] J. Kepner and J. Gilbert, Graph algorithms in the language of linear

algebra. SIAM, 2011.
[8] L. Chen, J. Li, A. Azad, L. Jiang, M. Marathe, A. Vullikanti, A. Niko-

laev, E. Smirnov, R. Israfilov, and J. Qiu, “A graphblas approach for
subgraph counting,” arXiv preprint arXiv:1903.04395, 2019.

[9] I. V. Afanasyev, V. V. Voevodin, V. V. Voevodin, K. Komatsu, and
H. Kobayashi, “Analysis of relationship between simd-processing fea-
tures used in nvidia gpus and nec sx-aurora tsubasa vector processors,” in
International Conference on Parallel Computing Technologies, pp. 125–
139, Springer, 2019.

[10] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa,
M. Yokokawa, T. Aoyama, M. Sato, and H. Kobayashi, “Performance
evaluation of a vector supercomputer sx-aurora tsubasa,” in SC18:

International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 685–696, IEEE, 2018.
[11] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism

in algebraic multigrid methods,” SIAM J. Sci. Comput., vol. 34, no. 4,
pp. C123–C152, 2012.

[12] J. Demouth, “Sparse matrix-matrix multiplication on the gpu,” in Pro-

ceedings of the GPU Technology Conference, 2012.
[13] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance and

memory-saving sparse general matrix-matrix multiplication for nvidia
pascal gpu,” in Proceedings of 46th International Conference on Parallel

Processing (ICPP), 2017.
[14] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in MATLAB:

Design and implementation,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1,
pp. 333–356, 1992.

[15] M. Zagha and G. E. Blelloch, “Radix sort for vector multiprocessors,”
in Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
pp. 712–721, ACM, 1991.

[16] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse ma-
trix—matrix multiplication for the gpu,” ACM Trans. Math.

Softw., vol. 41, pp. 25:1–25:20, Oct. 2015.
[17] W. Liu and B. Vinter, “A framework for general sparse matrix-matrix

multiplication on gpus and heterogeneous processors,” J. Parallel Dis-

trib. Comput., vol. 85, pp. 47–61, Nov. 2015.

[18] A. Buluç and J. R. Gilbert, “Highly parallel sparse matrix-matrix
multiplication,” arXiv preprint arXiv:1006.2183, 2010.

[19] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

[20] R. P. Stanley, “Algebraic combinatorics,” Springer, vol. 20, p. 22, 2013.

A Distributed Deep Memory Hierarchy System for

Content-based Image Retrieval of Big Whole Slide

Image Datasets

Esma Yildirim

Department of Mathematics and

Computer Science

Queensborough Community

College of CUNY

Bayside, NY

eyildirim@qcc.cuny.edu

Shaohua Duan

Rutgers Discovery Informatics Institute

Rutgers University

Piscataway, NJ

shaohua.duan@rutgers.edu

Xin Qi

Rutgers Cancer Institute of New Jersey

Rutgers University

New Brunswick, NJ

qixi@cinj.rutgers.edu

Abstract—Whole slide images (WSIs) are very large (30-50GB
each in uncompressed format), multiple resolution tissue images
produced by digital slide scanners, and are widely used by
pathology departments for diagnostic, educational and research
purposes. Content-based Image Retrieval (CBIR) applications
allow pathologists to perform a sub-region search on WSIs to
automatically identify image patterns that are consistent with
a given query patch containing cancerous tissue patterns. The
results can then be used to draw comparisons among patient
samples in order to make informed decisions regarding likely
prognoses and most appropriate treatment regimens, leading to
new discoveries in precision and preventive medicine.

CBIR applications often require repeated, random or se-
quential access to WSIs, and most of the time the images are
preprocessed into smaller tiles, as it is infeasible to bring the
entire WSI into the memory of a computer node. In this study,
we have designed and implemented a distributed deep memory
hierarchy data staging system that leverages Solid-State Drives
(SSDs) and provides an illusion of a very large memory space
that can accommodate big WSI datasets and prevent subsequent
accesses to the file system. An I/O intensive sequential CBIR
workflow for searching cancerous patterns in prostate carcinoma
datasets was parallelized and the I/O paths were altered to
include the proposed memory system. Our results indicate that
the parallel performance of the CBIR workflow improves and our
deep memory hierarchy, staging framework produces negligible
overheads for the application performance even when the number
of staging servers and their memory sizes are limited.

Index Terms—whole slide images, distributed data staging, big
data analytics, content-based image retrieval

I. INTRODUCTION

Content-based Image Retrieval workflows require expensive

computational operations such as low-level transformations,

object segmentation, feature computation, filtering and sub-

sampling [1], [2]. In most studies [1], [2], [3], [4], [5], the

workflow starts with the preprocessing of WSI data into

smaller tiles so that they can fit into the available memory

on the system, and the computation is easily parallelized

by distributing these tiles. The very few parallel data access

methods, do not scale well [6] or introduce additional overhead

[1], [5] . In a recent study [7], we have developed efficient,

highly scalable parallel and distributed data access methods

for WSI datasets, however these methods are still impaired by

disk I/O performance because the WSI data is very large and

can only be accessed from the file system.

DataSpaces [8] is a distributed data staging framework

designed for scientific workflows. Data, represented in a multi-

dimensional tensor format, is indexed and distributed among

the memories of distributed data staging servers in a cluster

of computers and is accessed using simple get() and put()

operations, given the partial coordinate plane information with

respect to the dimension sizes in the tensor data object.

One downside of this approach is that the memory space of

each node is limited and it would require a large number of

data staging nodes to accommodate the entire WSI dataset.

Such a system could benefit from deep memory hierarchies

that include SSDs, which are faster than disk systems. SSD

performance has improved even more with the introduction of

NVM-e technology. While SATA SSDs perform much better

than hard-disk drives(HDDs), NVMe SSDs present stellar

performances in terms of bandwidth, I/O operations per second

and latency surpassing the performance of SATA SSDs [9],

[10]. Current HPC systems are turning into installing SSDs

as node-local storage to improve application I/O performance

rather than having none at all or depend on a shared parallel

disk system.

In this study, we design and implement the necessary con-

structs and algorithms for a distributed deep memory hierarchy

staging system that leverages NVMe SSDs to improve the

I/O performance of content-based image retrieval workflows,

even in the presence of limited memory space. Our proposed

architecture is coded as modules into DataSpaces. As a case

study, we have parallelized a sequential CBIR workflow

that searches for glandular cancerous structures in prostate

carcinoma datasets, using MPI [11] and OpenMP [12]. The

experimental results show that the hierarchical memory system

introduces only slight increase in data read performances

compared to the pure memory scenario and it performs very

well compared to disk access scenario.

II. CASE STUDY: A PROSTATE CARCINOMA CBIR

WORKFLOW

The example CBIR workflow is based on the feature ex-

traction and clustering stages of the work of Qi et al. [2]. We

first parallelized the stages using MPI and OpenMP and then

altered the I/O paths to integrate DataSpaces into the workflow.

The CBIR workflow consists of multiple feature extraction

and clustering stages to find the coordinates of areas (Regions

Of Interest (ROIs)) in a WSI dataset that show similar charac-

teristics to the query patch at hand. The workflow starts with

the Coarse Searching stage(Fig.1.a). In this stage, a sliding

window approach is used to compare the query patch image

to the window (a.k.a ROI) in the WSI tile. The size of the

sliding window is equal to the size of the query patch and

also each tile is a cropped piece from a much larger WSI. For

each comparison pair (query patch, ROI), the pair of images

selected are divided into rectangular rings. As a result of a fea-

ture extraction operation(e.g. colour histograms, texture), the

distance between the feature vectors are calculated and sorted

in ascending order. Then top 10% of the ROI coordinates with

best distance results are selected and fed into a Fine Searching

stage (Fig.1.b), where accesses to the WSI data is random,

because the best coordinate results can come from anywhere

from the dataset. This percentage is variable parameter and

can be decided by the user. In the Fine Searching stage, the

comparison pair is also divided into segments in addition to

the rectangular rings. After a Clustering (Fig.1.c) operation, in

which overlapping ROI coordinates are combined on the top

10% of the results of the Fine Searching stage, the distance

values of the clustered coordinates are re-calculated, which

again requires a Final Fine Searching stage.

The parallelisation process starts with constructing a list of

tile coordinates with given width and height (e.g.1024x1024

pixels) values from the entire WSI dataset. The coordinates of

the tiles are then shared among multiple MPI processes. Each

process accesses the parallel file system (GPFS) and reads

the tiles assigned to itself. Then another level of parallelism is

applied once the tile is in the memory. The feature calculations

of rectangular rings are shared among OpenMP threads. The

highest possible level of parallelism that can be achieved in

Coarse Searching and Fine Searching Stages is # of processes

x # threads, which corresponds to the number of computer

nodes of the cluster and number of cores per node respectively.

In the Clustering stage, only MPI processes are used to share

tiles due to the restrictions on the clustering algorithm.

We have redesigned the I/O paths of the workflow, so that

only in the Coarse Searching stage, the WSI dataset is read

from the parallel file system by the application and then it

is written into DataSpaces using dspaces put() interface. It

is accessed from there using dspaces get() interface by the

subsequent stages of the application (Fig. 2). Therefore the

performance of Fine Searching and the Final Fine Searching

(a) Coarse Searching

(b) Fine Searching

(c) Clustering

Fig. 1: CBIR workflow stages.

stages improves dramatically because memory access is much

faster than disk access.

III. SYSTEM ARCHITECTURE

One downside of distributed data staging is that the memory

space of each DataSpaces server can be limited and it would

require a large number of data staging servers to accommodate

if the WSI dataset is very big. Such a system could benefit

from deep memory hierarchies that include SSDs, which are

faster than disk systems. The proposed framework consists of

Fig. 2: CBIR I/O Path with DataSpaces

Persistence, Caching, and Prefetching modules that are coded

into the DataSpaces architecture.

A. Persistence Module

The Persistence Module provides a light-weight approach

for exploiting SSD as a secondary memory partition so that

Caching and Prefetching Modules can explicitly allocate mem-

ory regions therein and read/write data. The POSIX mmap()

interface offers a viable way to map files in SSD giving the

illusion that they reside in memory. We build management

structures for the efficient use of node-local SSD memory of

each DataSpaces server. The module creates one big mapped

address space during initialisation then, it manages alloca-

tion/deallocation and fragmentation of space through doubly

linked list data structures.

B. Caching Module

The Caching Module implements a Least Recently

Used(LRU) algorithm to keep recently requested data in

DRAM memory and evict less recently used data back to

SSD. Data could be located in DRAM memory, SSD or

both, therefore we mark data storage status with three types:

In memory, In ssd, and In memory ssd.

C. Prefetching Module

The Prefetching Module presents an illusion of infinite

memory by making data available in DRAM memory be-

fore the application uses it, thereby masking the latency of

the slower SSD memory. We offer a new user interface

dspaces hint() for the user application. By using this interface,

the user can hint the system of the upcoming data coordi-

nate planes the application would like to access, hence the

Prefetching Module can bring data from SSD beforehand. A

circular array data structure is used to keep the prefetching

requests. Unlike the previous modules, the Prefetching module

Fig. 3: Flowchart of a ds hint() call

operates as a concurrent thread under the main DataSpaces

server thread to maximise the performance by pipelining the

prefetching I/O operations between SSD and DRAM memory

and the I/O operations happening between client application

and DataSpaces server. Figure 3 presents the actions performed

by the prefetch module after a call to ds hint() is made.

IV. INTERFACES

The framework offers the following updated and newly

introduced interfaces:

• dspaces init() calls persistence module to create the

mapped file in SSD and launches the Prefetching thread.

• dspaces get() queries DataSpaces server to retrieve data.

If the data for the requested coordinates is in DRAM

memory, the server returns it to the client. If it is in SSD,

it caches it into DRAM and changes data storage status

into In memory ssd. If DRAM has no space, then it calls

the cache replacement algorithm in the Caching Module

to evict some data into SSD before bringing requested

data into DRAM.

• dspaces put() inserts data in DRAM and changes data

storage status into In memory. If DRAM has no space

then it calls the cache replacement algorithm before

inserting data into DRAM.

• dspaces hint() queries DataSpaces servers to check if

data is in SSD. If so, the hint is inserted into prefetching

circular array. It wakes prefetching thread if the thread

is sleeping to fetch data from SSD to DRAM. After the

operation is complete data storage status is changed into

In memory ssd.

Listing 1 presents a code snippet on how to use

dspaces hint() function in the Final Fine Searching stage. The

coordinate information regarding the current tile is stored in

vectors[i]. Before loading that tile into memory, the program

hints about the tile that will be accessed next and the infor-

mation about the next tile is stored in vectors[i+1]. The lb

and ub variables contain the dimension information while the

hint name is used to refer to a data object. After adding an

entry to the circular prefetching array structure dspaces hint()

function returns immediately.

1

2 s p r i n t f (h in t name , ”%s−%l l d−%l l d ” , v e c t o r s [i + 1] [0] .
f i l e n a m e , v e c t o r s [i + 1] [0] . t i l e x , v e c t o r s [i
+ 1] [0] . t i l e y) ;

3 u i n t 6 4 t ub [2] , l b [2] ;
4 l b [0] = 0 ;
5 ub [0] = l b [0] + v e c t o r s [i + 1] [0] . t i l e w i d t h *

v e c t o r s [i + 1] [0] . t i l e h e i g h t − 1 ;
6 l b [1] = ub [1] = 0 ;
7 d s p a c e s h i n t (h in t name , 0 , s i z e o f (u i n t 3 2 t) , ndim ,

lb , ub , b u f f e r) ;

Listing 1: Code snippet for use of dspaces hint()

V. EXPERIMENTAL RESULTS

In this section, we present the performance results of the

proposed deep memory hierarchy system on the I/O operations

of the CBIR workflow. The input dataset consists of 100

WSI images selected from the Cancer Genome Atlas [13]

Prostate Carcinoma dataset in the second resolution level

(48GB). A 500x500 pixel query patch with cancerous tissue

patterns is searched in the dataset. The experimental testbed is

a cluster residing at Rutgers Discovery Informatics Institute,

which consist of 128 24-core nodes with 256GB of memory

connected via FDR Infiniband. In this cluster, only a few nodes

were installed with the state-of-the-art NVM-e based SSDs and

we had limited access to them. Therefore, we were able to use

at most 4 NVM-e nodes to test our system.

Fig.4.a and b present the read performance of the fine

searching and final fine searching stages in which the data

is randomly accessed from 2 DataSpaces servers using pure

DRAM memory and 24G/16G/8G total DRAM + SSD mem-

ory settings and they are compared to the pure disk access

version. The number of cores represents the parallelism level

of the CBIR workflow and is ranged between 24-192. The

first observation is that the staging approach performs much

better than the parallel file system(disk) access. The effect of

introducing a hierarchical memory system produces negligible

overhead and this overhead slightly increases as we decrease

the DRAM memory size limit from 24GB to 8GB. This result

proves our claim that using SSD is a viable solution when the

memory size per staging node is limited and the number of

staging nodes are scarce for applications that stages big data.

The total execution time of the workflow (Fig.4.c) also

improves even though an extra stage of writing to DataS-

paces is introduced compared with the disk version results.

The CBIR application is a compute-intensive application: a

very large percentage of total execution time is spent on

computation rather than I/O. Therefore, although significant

I/O improvements were achieved with our system (Fig.4.a

and b) compared with the pure disk version, that showed

itself have a little impact on the total execution time and

the difference between the pure DRAM and DRAM+SSD

performances seems negligible.

In another setting, we increased the number of DataSpaces

servers from 2 to 4 (Fig. 5) but kept the total DRAM

sizes equal. We observed that it only helped improve the

performance when the number of the parallel client processes

were very high (e.g. 192). For 24 core results which are not

presented here, increasing the number of servers negatively

impacted the performance. This indicates that increasing the

number of staging servers is good only if the client application

I/O access load is very high. Otherwise the indexing and extra

I/O messaging of the staging system only causes performance

degradation.

Another observation was that although we doubled the

number of servers, it did not result in twice the speed up in

most cases. The reason for that is although we increased the

number of servers, we kept the total DRAM size equal in both

2 server and 4 server settings. While an 8GB DRAM refers to

4GB per server in 2-server setting, it refers to 2G per server

in 4-server setting. In Figure 6, the difference between the

performances of 2-server and 4-server settings is much more

significant when both settings have a 4G/server DRAM size.

VI. CONCLUSION

The proposed deep memory hierarchy system to stage big

WSI data reduced the execution time of a content-based image

retrieval workflow while only introducing very little overhead.

Combining SSDs with DRAM provided the illusion of a very

large data staging space even in the presence of limited DRAM

memory, and performed very well compared to the scenario

where data was purely accessed from the filesystem.

ACKNOWLEDGMENT

The results published or shown here are in whole or part

based upon data generated by the TCGA Research Network:

http://cancergenome.nih.gov/. This research was funded, in

part, by grants from the National Institutes of Health through

contract 5R01CA156386-10 and 7R01CA161375-06 from the

National Cancer Institute; and contract 4R01LM009239-08

from the National Library of Medicine.

REFERENCES

[1] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative
performance analysis of intel (r) xeon phi (tm), gpu, and cpu: a case
study from microscopy image analysis,” in Parallel and Distributed

Processing Symposium, 2014 IEEE 28th International. IEEE, 2014,
pp. 1063–1072.

[2] X. Qi, D. Wang, I. Rodero, J. Diaz-Montes, R. H. Gensure, F. Xing,
H. Zhong, L. Goodell, M. Parashar, D. J. Foran et al., “Content-based
histopathology image retrieval using cometcloud,” BMC bioinformatics,
vol. 15, no. 1, p. 287, 2014.

[3] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz,
“Efficient multiple instance convolutional neural networks for gigapixel
resolution image classification,” arXiv preprint, 2015.

[4] Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, I. Eric, and C. Chang, “Deep
learning of feature representation with multiple instance learning for
medical image analysis,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.
1626–1630.

 2

 4

 8

 16

 32

 64

 128

24 48 96 192

S
e
c
o
n
d
s

#cores

a)Fine Searching Stage - Tile Read Performance

DRAM
24G(12G/server)+SSD
16G(8G/server)+SSD

8G(4G/server)+SSD
Disk

 0.5

 1

 2

 4

 8

 16

24 48 96 192

S
e
c
o
n
d
s

#cores

b)Final Fine Searching Stage - Tile Read Performance

DRAM
24G(12G/server)+SSD
16G(8G/server)+SSD

8G(4G/server)+SSD
Disk

 256

 512

 1024

 2048

24 48 96 192

S
e
c
o
n
d
s

#cores

c)Total Workflow Execution Time

DRAM
24G(12G/server)+SSD
16G(8G/server)+SSD

8G(4G/server)+SSD
Disk

Fig. 4: Performance Results - #DSpaces servers=2

 0

 1

 2

 3

 4

 5

D
R
AM

24G
+SSD

16G
+SSD

8G
+SSD

S
e
c
o
n
d
s

Memory Options

a)Fine Searching Stage - Tile Read Performance - 192 cores

2 servers
4 servers

 0

 0.2

 0.4

 0.6

 0.8

 1

D
R
AM

24G
+SSD

16G
+SSD

8G
+SSD

S
e
c
o
n
d
s

Memory Options

b)Final Fine Searching Stage - Tile Read Performance - 192 cores

2 servers
4 servers

 200

 210

 220

 230

 240

 250

 260

 270

 280

D
R
AM

24G
+SSD

16G
+SSD

8G
+SSD

S
e
c
o
n
d
s

Memory Options

c)Total Workflow Execution Time - 192 cores

2 servers
4 servers

Fig. 5: Effect of Number of Staging Servers on Performance

 0

 1

 2

 3

 4

 5

Fine Searching Final Fine Searching

S
e
c
o
n
d
s

Stages

Comparison of 4G/server performances - 192 cores

2 servers
4 servers

Fig. 6: 4G/server performances of Fine Searching and Final

Fine Searching stages in DRAM+SSD setting

[5] N. Zerbe, P. Hufnagl, and K. Schlüns, “Distributed computing in
image analysis using open source frameworks and application to image
sharpness assessment of histological whole slide images,” in Diagnostic

pathology, vol. 6, no. 1. BioMed Central, 2011, p. S16.

[6] G. Bueno, R. Gonzalez, O. Déniz, M. Garcı́a-Rojo, J. Gonzalez-Garcia,
M. Fernández-Carrobles, N. Vállez, and J. Salido, “A parallel solution
for high resolution histological image analysis,” Computer methods and

programs in biomedicine, vol. 108, no. 1, pp. 388–401, 2012.

[7] E. Yildirim and D. J. Foran, “Parallel versus distributed data access
for gigapixel-resolution histology images: Challenges and opportunities,”
IEEE journal of biomedical and health informatics, vol. 21, no. 4, pp.
1049–1057, 2017.

[8] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster

Computing, vol. 15, no. 2, pp. 163–181, 2012.

[9] (2019) Nvm express overview. [Online]. Available:
https://nvmexpress.org/wp-content/uploads/NVMe Overview.pdf

[10] (2019) Nvme vs ssd vs hdd. [Online]. Available:
https://www.netweaver.uk/nvme-vs-ssd-vs-hdd/

[11] (2019) Mpi standard. [Online]. Available: http://www.mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf

[12] (2019) Openmp standard. [Online]. Available: https://www.openmp.org
[13] R. L. Grossman, A. P. Heath, V. Ferretti, H. E. Varmus, D. R. Lowy,

W. A. Kibbe, and L. M. Staudt, “Toward a shared vision for cancer
genomic data,” New England Journal of Medicine, vol. 375, no. 12, pp.
1109–1112, 2016.

Performance Evaluation of Advanced Features in

CUDA Unified Memory

Steven W. D. Chien
KTH Royal Institute of Technology

Stockholm, Sweden

wdchien@kth.se

Ivy B. Peng
Lawrence Livermore National Laboratory

Livermore, USA

peng8@llnl.gov

Stefano Markidis
KTH Royal Institute of Technology

Stockholm, Sweden

markidis@kth.se

Abstract—CUDA Unified Memory improves the GPU pro-
grammability and also enables GPU memory oversubscription.
Recently, two advanced memory features, memory advises and
asynchronous prefetch, have been introduced. In this work, we
evaluate the new features on two platforms that feature different
CPUs, GPUs, and interconnects. We derive a benchmark suite
for the experiments and stress the memory system to evaluate
both in-memory and oversubscription performance.

The results show that memory advises on the Intel-Volta/Pascal-
PCIe platform bring negligible improvement for in-memory exe-
cutions. However, when GPU memory is oversubscribed by about
50%, using memory advises results in up to 25% performance
improvement compared to the basic CUDA Unified Memory. In
contrast, the Power9-Volta-NVLink platform can substantially
benefit from memory advises, achieving up to 34% performance
gain for in-memory executions. However, when GPU memory is
oversubscribed on this platform, using memory advises increases
GPU page faults and results in considerable performance loss.
The CUDA prefetch also shows different performance impact on
the two platforms. It improves performance by up to 50% on the
Intel-Volta/Pascal-PCI-E platform but brings little benefit to the
Power9-Volta-NVLink platform.

Index Terms—CUDA Unified Memory, UVM, CUDA memory
hints, GPU, memory oversubscription

I. INTRODUCTION

Recently, leadership supercomputers are becoming increas-

ingly heterogeneous. For instance, the two fastest super-

computers in the world [17], Summit and Sierra, are both

equipped with Nvidia V100 GPUs [6], [12] for accelerating

workloads. One major challenge in programming applications

on these heterogeneous systems arises from the physically

separate memories on the host (CPU) and the device (GPU).

Kernel execution on GPU can only access data stored on the

device memory. Thus, programmers either need to explicitly

manage data using the memory management API in CUDA or

relying on programming systems, such as OpenMP 4.5 [7] and

RAJA [5], for generating portable programs. Today, a GPU can

have up to 16 GB memory on top supercomputers while the

system memory on the host can reach 256 GB. Leveraging the

large CPU memory as a memory extension to the relatively

small GPU memory becomes a promising and yet challenging

task for enabling large-scale HPC applications.

CUDA Unified Memory (UM) addresses the challenges as

mentioned above by providing a single and consistent logical

view of the host and device memories on a system. UM

uses the virtual memory abstraction to hide the heterogeneity

in GPU and CPU memories. Therefore, pages in the virtual

address space in an application process may be mapped to

physical pages either on CPU or GPU memory. Based on UM,

CUDA runtime can leverage page faults, which is supported

on recent GPU architectures, e.g., Nvidia Pascal and Volta

architectures, to enable automatic data migration between de-

vice and host memories. For instance, when a device accesses

a virtual page that is not mapped to a physical page on the

device memory, a page fault is generated. Then, the runtime

resolves the fault by remapping the page to a physical page

on the device memory and copying the data. This procedure

is also called on-demand paging. Now with the hardware-

supported page fault and the runtime-managed data migration

on UM, oversubscribing the GPU memory becomes feasible.

For instance, when there is no physical memory available on

the device for newly accessed pages, the runtime evicts pages

from GPU to CPU and then bring the on-demand page.

CUDA has introduced new features for optimizing the data

migration on UM, i.e., memory advises and prefetch. Instead

of solely relying on page faults, the memory advises feature

allows the programmer to provide data access pattern for each

memory object so that the runtime can optimize migration

decisions. The prefetch proactively triggers asynchronous data

migration to GPU before the data is accessed, which reduces

page faults and, consequently, the overhead in handling page

faults.

In this paper, we evaluate the effectiveness of these new

memory features on CUDA applications using UM. Due

to the absence of benchmarks designed for this purpose,

we developed a benchmark suite of six GPU applications

using UM. We evaluate the impact of the memory features

in both in-memory and oversubscription executions on two

platforms. The use of memory advises results in performance

improvement only when when we oversubscribe the GPU

memory on the Intel-Volta/Pascal-PCI-E systems. On Power9-

Volta-NVLink based system, using memory advises leads to

performance improvement only for in-memory executions.

With GPU memory oversubscription, it results in substantial

performance degradation. Our main contributions in this work

are as follows:

• We survey state-of-art practice in UM memory advises,

prefetch, and GPU memory oversubscription.

CPU GPU

(1) *a = 1

(2) Page fault (3) Unmap from GPU

(4) Map on Host

(5) *a = 1

Fig. 1: CPU writes to a page resident on the GPU, triggering

a page fault and the page is migrated to CPU.

• We design a UM benchmark suite consisting of six

applications for evaluating advanced memory features.

• We evaluate the performance impact of memory advises,

prefetch on two systems with Intel, Nvidia Pascal, and

Volta GPUs connected via PCI-E and a system with IBM

Power9 and Nvidia Volta GPU connected via NVLink.

• Our results indicate that using memory advises improves

application performance in oversubscription execution on

the Intel platform and in-memory executions on the IBM

platform.

• We show that UM prefetch provides a significant per-

formance improvement on the Intel-Volta/Pascal-PCI-E

based systems while it does not show a performance

improvement on the Power9-Volta-NVLink based system.

II. UNIFIED MEMORY

In this section, we introduce the underlying mechanism in

GPU UM, and the three memory advises. We also describe

the prefetching and memory oversubscription.

A. CUDA Unified Memory

UM creates a unified logical view of the physically separate

memories across host and GPU. Currently, modern CPUs sup-

port 48-bit memory addresses while Unified Memory uses 49-

bit virtual addressing, which can address both host and GPU

memories [14]. One of the main goals of Unified Memory is to

provide a consistent view of data between devices. The system

ensures a memory page can only be accessed by one process at

a time. When a process accesses a page that is not resident of

its memory system, a page fault occurs. The memory system

holding the requested page will unmap it from its page table,

and the page will be migrated to the faulting process. Figure 1

illustrates an example when the CPU accesses a page on GPU

memory, and the page is migrated to CPU memory. Similarly,

when GPU accesses a page not physically stored on GPU

memory, the page will be moved to GPU.

UM was first introduced in CUDA 6.0 [21]. Only until

the recent Nvidia Pascal microarchitecture that has hardware

support for page faults, bi-directional on-demand page migra-

tion becomes feasible [14]. Resolving a page fault has high

overhead, and memory thrashing that moves the same pages

back and forth between the memories is even a performance

bottleneck. The massive parallelism on GPU further exacer-

bates the page fault overhead because processes stall when

page faults are being resolved, and multiple threads in different

warps accessing the same page can cause multiple duplicated

faults [18].

B. Data Movement Advises

CUDA 8.0 introduces a new programming interface,

called memory advise [15]. The concept is similar to

posix_madvise in Linux, which uses application knowl-

edge about access patterns to make informed decisions on

page handling [1]. The UM advise focuses on data locality,

i.e., whether a page is likely to be accessed from the host

or device. The main objective is to reduce unnecessary page

migration and their associated overhead. Currently, developers

can specify three access patterns to the CUDA runtime:

cudaMemAdviseSetReadMostly implies a read-intensive

data region. In the basic UM, accessing a page on

a remote side triggers page migration. However, with

cudaMemAdviseSetReadMostly, a read-only duplicate

of the page will be created on the faulting side, which

prevents page faults and data migration in the future. Figure 2a

illustrates an example, where the second access (step 5) has

no page fault and is local access. This mechanism, however,

results in a high overhead if there is any update to this memory

region because all copies of the corresponding page will be

invalidated to preserve consistency between different copies.

Thus, this advice is often used in read-only data structures,

such as lookup tables and application parameters.

cudaMemAdviseSetPreferredLocation sets the preferred

physical location of pages. This advice pins a page and

prevents it from migrating to other memories. Figure 2b

illustrates a page preferred on the host side, and GPU

uses remote mapping to access the page. This advice es-

tablished a direct (remote) mapping to the memory page.

When accessing the page remotely, data is fetched through

the remote memory instead of generating a page fault. If

the underlying hardware does not support the remote map-

ping, the page will be migrated as in the standard UM.

cudaMemAdviseSetPreferredLocation is useful for

applications with little data sharing between CPU and GPU,

i.e., part of the application is executed completely on the GPU,

and the rest of the application executes on the host. Data that

is being used mostly by the GPU can be pinned to the GPU

with the advice, avoiding memory thrashing.

cudaMemAdviseSetAccessedBy establishes a direct map-

ping of data to a specified device. Figure 2c illustrates an

example of a physical page on GPU being remotely access

from the host. When cudaMemAdviseSetPreferredLocation is

applied, CUDA runtime tries to build a direct mapping to the

page to avoid data migration so that the destination can access

data remotely. Differently from cudaMemAdviseSetPreferred-

Location, this cudaMemAdviseSetAccessedBy does not try to

pin pages on a specific device; instead, its main effect is to

establish mapping on the remote device. This advice takes

effect on the creation of the memory pages. The mapping will

be re-established after the pages are migrated.

CPU GPU

2) int x = *a;

1) Mark Read-mostly 3) Page fault

4) Create read only copy

5) Access

6) Access (without fault)

(a) A read-mostly region is duplicated to the
GPU to avoid page faults in the future.

CPU GPU

(1) *a = 1

(2) page fault

(4) Remote
 access

(3) create
 mapping

(b) A host-preferred region is directly re-
mote mapped to allow remote access from
the GPU.

CPU GPU A
(1) create
 mapping

(2) *a = 1

(3) Remote access without fault

GPU B

(4) Mapping re-created even after migration

(c) A GPU-resident region with accessed-by
CPU advise can be accessed by CPU through
remote memory access.

Fig. 2: Page fault mechanism and effects of the three Memory Advise in Unified Memory.

C. Prefetching

The CUDA interface introduces an asynchronous page

prefetching mechanism, i.e., cudaMemPrefetchAsync() [15],

to trigger data migration. The data migration occurs in a

background CUDA stream to avoid stalling the computation

threads. One natural optimization for prefetching a large

number of pages is to split into multiple streams, i.e., a bulk

transfer, to prefetch pages in a batch of streams concurrently.

If the page is prefetched to the device memory before the data

access, no page faults will occur, and the GPU benefits from

the high bandwidth on its local memory.

The behavior of the prefetching mechanism might change

when used in combination with CUDA memory advises. For

example, when cudaMemAdviseSetReadMostly is set, a read-

only copy will be immediately created. Also, when prefetching

a region with cudaMemAdviseSetPreferredLocation set to an-

other destination memory, the pages will no longer be pinned

to the preferred location. Thus, our evaluation considers the

interplay between these two types of memory features.

D. Oversubscription of Device Memory

GPU memory has a relatively small capacity compared

to the system memory on CPU. One major limitation when

porting large-scale applications to GPUs is to overcome their

memory capacity to enable larger problems. UM in the post-

Pascal page fault capable GPUs can oversubscribe GPU mem-

ory, allowing GPU kernels to use more memory than the

physical capacity on the device. The memory oversubscription

is achieved through the traditional virtual memory manage-

ment, i.e., selected memory pages on the device are evicted

to CPU to make space for newly requested pages. Currently,

the CUDA runtime uses the Least Recently Used (LRU)

replacement policy to select victim pages when running out

of space [19]. Some work also proposed pre-eviction to start

page eviction early to avoid stalling on the critical path [3].

III. METHODOLOGY

We develop a benchmark suite for evaluating UM and

different data migration policies. Although several porting

efforts have been reported for specific applications, there

lacks a suite of diverse kernels for controlled experiments

across platforms. Thus, we extend the memory management in

popular GPU benchmark and applications to utilize UM with

advanced advise and prefetching features.

A. Application and Benchmarks

Our benchmark suite includes six applications, as specified

in Table I. These applications include numerical solvers,

financial application, image processing, and graph problems.

The benchmark suite is available at a repository 1.

For each application, we develop four versions in addition to

the original version that uses explicit GPU memory allocation.

Our benchmarks use long data types to support large input

problems in oversubscription executions. We use GPU kernel

execution time as the figure of merit.

We present detailed tracing results for BS, CG, and FDTD3d

on selected platforms to study the implications of data move-

ment. BS is a financial application that performs option pric-

ing. BS features good data reuse because the same input data

set is used in multiple iterations in the application lifetime. CG

is a linear solver that solves a linear system Ax = b on the

GPU. An error is computed on the host using the results from

GPU computation after the solving iteration finishes. FDTD3d

is a finite difference solver that reads and writes to two arrays

in an interleaving manner. Both arrays are being initialized

using the same data. The output eventually resides in one of

the arrays.

1) UM: The first version is an implementation that uses

UM with minimal changes. We simply replace the memory

allocation in applications from cudaMalloc() to cudaMalloc-

Managed() and eliminate explicit data copy, i.e., cudaMem-

cpy(), between host and device. After the completion of a GPU

kernel, if the application has no subsequent host computation

using the GPU results, an explicit data copy by memcpy() is

inserted to simulate a CPU computation using the results.

2) UM Advise: The second version is UM with Advise.

This version is based on the basic UM version and applies

memory advises to data structures in the application. A stall

in GPU execution, e.g., for resolving page fault, has a sig-

nificant impact on performance due to massive parallelism.

Thus, the main consideration for memory advises is to keep

data used by GPU close to GPU memory. Therefore, we

set a cudaMemAdviseSetPreferredLocation and specify the

preferred location to GPU memory after the memory allo-

cation of a data structure that is accessed by GPU in the

computation. If the data structure is initialized by the CPU,

1https://github.com/steven-chien/um-apps

https://github.com/steven-chien/um-apps

TABLE I: Applications and data input sizes on different platforms.

Name Description
Input size Intel-Pascal

(Approximate GB)
Input size Intel-Volta & P9-Volta

(Approximate GB)
In-memory Oversubscribe In-memory Oversubscribe

Black-Scholes (BS) A financial application that performs option pricing. 4 6.4 15.2 26
Matrix Multiplication (cuBLAS) A general matrix matrix multiplication in single precision using cuBLAS. 3.9 6.3 15.2 25.4
Conjugate Gradient (CG) A conjugate gradient solver that solves a sparse linear system using cusparse. 3.8 6.4 15.4 25.4
Graph500 Breadth-first search (BFS) kernel of Graph500. 3.63 7.62 8.52 N/A
Convolution 0 (conv0) A FFT-based image convolution using Real-to-Complex and Complex-to-Real FFT plans. 2.8 6.4 11.6 25.6
Convolution 1 (conv1) A FFT-based image convolution using Complex-to-Complex FFT plan. 3.5 6.7 13.6 25.5
Convolution 2 (conv2) A FFT-based image convolution using Complex-to-Complex FFT plan. 3.0 6.4 11.6 25.5
Finite Difference Time Domain (FDTD3d) A finite difference solver in three dimension. 3.8 6.4 15.2 25.3

we set a cudaMemAdviseSetAccessedBy CPU to keep the data

physically on GPU but establish a remote mapping on CPU.

With this optimization, the host data initialization performs

remote accesses to initialize data in GPU memory directly. For

constant data structures, the cudaMemAdviseSetReadMostly

advice is set after data initialization. This optimization will

only have page fault at the first access but keep all subsequent

accesses local.

3) UM Prefetch: The third version is UM with prefetch. We

apply cudaMemPrefetchAsync to trigger page migration

at appropriate sites explicitly. We prefetch large data structures

that will be accessed by GPU kernels in a background stream

while the GPU kernel is launched in the default stream.

After completing the GPU kernel execution, we prefetch the

arrays containing results to the host memory in the default

stream. One advantage of bulk transfer in prefetch, compared

to resolving individual page fault groups, is high memory

bandwidth to utilize the hardware capability fully. Explicitly

triggering page pages in bulk improves transfer efficiency.

Furthermore, to prefetch pages avoids page faults as data

already resides in the physical memory when the kernel starts

executing.

4) UM Both: Finally, in the fourth version, we combine

memory advises and prefetch to examine the mutual effects

of both techniques.

B. Test Environment

We evaluate our benchmark applications on three platforms:

1) Intel-Pascal is a single node system with Intel Core i7-

7820X processor and 32 GB of RAM. It has one GeForce

GTX 1050 ti GPU with 4GB memory. The GPU is

connected through PCIe. The operating system is Ubuntu

18.10 and the host compiler is GCC 8.3.

2) Intel-Volta is a GPU node on Kebnekaise at HPC2N in

Umeå. It has an Intel Xeon Gold 6132 processor with

192 GB of RAM. The node has two Tesla V100 GPU

with 16 GB memory and the GPU is connected through

PCIe. The operating system is Ubuntu 16.04 and the host

compiler is GCC 8.2.

3) P9-Volta is a node with an IBM Power9 processor and

256 GB of RAM. The system has four Tesla V100 GPUs

with 16 GB of HBM. The GPU is connected through

NVLINK to CPU.

Our platforms consist of two Intel systems that use Pascal

and Volta GPUs, and a Power9 system that uses Volta GPU.

All the systems use CUDA 10.1. We only use one GPU in

the experiments. For each application variation, we perform

benchmark runs up to five times and present the average GPU

kernel execution time and standard deviation. An exception is

Graph500, where we report the average and standard deviation

of BFS iterations. We separate our experiments into two

cases: when problem size fits into GPU memory and when

oversubscription of memory is required. Their problem sizes

are selected to be approximately 80% and 150% to GPU

memory, respectively. A detailed list of sizes is presented in

Table I. Due to the limitation in implementation for input

data size, we only examine Graph500 with oversubscription

on Intel-Pascal. However, the input size does not follow the

150% data size rule.

Apart from benchmark executions, we perform profiling

runs using nvprof for selected applications. We obtain the trace

by –print-gpu-trace. By selecting entries with Unified Memory

Memcpy HtoD and Unified Memory Memcpy DtoH, we can

build a time series of data movement. Through a comparison

of the time series and time spent on memory movement, it

is possible to compare and characterize the intensity of data

movement between different application variations.

IV. RESULTS

In this section, we present the performance and profiling

results of the applications in four configurations: basic UM

(UM), UM with Advise (UM Advise), UM with Prefetch (UM

Prefetch) and UM with both Advise and Prefetch (UM Both).

Each application is evaluated in each configuration with two

problem sizes: one that fits into GPU memory (in-memory

execution) and one that oversubscribes GPU memory (over-

subscription execution). We report the average and standard

deviation of GPU kernel execution time for each application.

A. In-Memory Execution

We present the GPU kernel execution time of the applica-

tions in Fig. 3. The performance of all applications decreases

when using basic UM instead of explicit data movement be-

tween CPU and GPU memories. Performances on Volta GPUs

platforms have a larger performance decrease. In particular,

our convolution and FDTD3d applications exhibit a drastic

increase in execution time. The execution time of conv2 and

FDTD3d are 14× and 9× higher respectively on P9-Volta.

Performance change is similar to Intel-Volta. Performance

decrease is less drastic but still considerable on Intel-Pascal.

The execution of both applications is 2− 3× slower than the

execution time of applications using explicit data movement.

(a) Intel-Pascal (b) Intel-Volta (c) Power9-Volta.

Fig. 3: GPU kernel execution time of applications where data fits in GPU memory.

(a) BS on Intel-Pascal (b) CG on Intel-Pascal (c) BS on P9-Volta (d) CG on P9-Volta

Fig. 4: Breakdown of total time spent handling page faults and data movement when applications are running in-memory.

(a) BS Intel-Pascal (b) CG Intel-Pascal (c) BS P9-Volta (d) CG P9-Volta

Fig. 5: UM data transfer traces when running in-memory.

After applying advises, the performance of our applications

generally improves. It is possible to improve execution time

up to 15% on Intel-based platforms. The impact of advises

is higher for the three FFT based convolution applications on

Intel platforms. Advises have a significant impact on all the ap-

plications, and execution time can be improved by up to 70%

on the P9 platform. Applications, such as CG and cuBLAS,

results in similar execution time to the original version with

explicit memory allocation. This implies that some advises are

more effective than others on the P9 platform.

Expensive page fault handling can be avoided by prefetching

data to the GPU before execution. Our results show that

prefetch has a much higher impact on Intel-based platforms

than P9-based platforms. Application performance generally

improves when prefetch is used: our results show that it has

a much higher impact on Intel-based platforms than the case

advise is used. The performance of FDTD3d improves by up

to 56% on the Intel-Pascal system. The performance of Black-

Scholes application is close to on-par with the application

version using explicit data transfer. As for Intel-Volta, the

performance of FDTD3d improves by up to 65%. Performance

improves by 50% on the P9-Volta system. However, the

improvement is less than when only advises are applied.

Despite that, we notice that when both advises and prefetch

are used together, it generally outperforms the performance of

applications using only advises or prefetch.

To better understand the difference in terms of data move-

ment between the versions, we plot the total time spent on

different UM events in Fig. 4 as stacked bar plots. They

show the total time spent on GPU page fault group handling

and data transfer, respectively. In particular, we have selected

BS and CG for the comparison. The bar plot reveals two

important information for comparison: the time spent on data

movement, which correlates to the amount and efficiency of

data transferred, as well as stalls due to page fault, which

correlates to the number of page fault and efficiency of fault

resolution.

Since the Black-Scholes application uses the same input

dataset repeatedly over iterations, when data size fits in mem-

ory, the first iteration will be slower due to page migration.

Subsequent iterations should be able to execute at full speed as

data already resides in device memory. For this particular ap-

plication, the advise cudaMemAdviseSetReadMostly is applied

to the input arrays. No other advise is applied. The same goes

for prefetch. Figs. 4a and 4c show the break down of total time

spent on data-related activities on the two platforms for the

Black-Scholes application. Comparing to Intel-Pascal, the data

transfer is much faster on P9-Volta, while the impact of stalling

is less profound on Intel-Pascal. This can be attributed to the

larger input data used and a faster interconnect on P9-Volta.

For UM Advise, the time spent on data transfer is similar

while the time spent stalling due to page fault has reduced.

This suggests that page fault handling becomes more efficient

when the advises are applied. The observation is similar for

both Intel-Pascal and Intel-Volta similarly. When prefetch is

used, the same amount of data is being transferred while the

stall due to page fault is eliminated. This implies the complete

elimination of page faults. By prefetching pages in bulk, data

can be transferred at a fast pace to avoid future page faults

when accessed. The observation can be confirmed by Figs. 5a

and 5c, where the detailed transfers are plotted as a time series.

When prefetch is applied, data is transferred as a block at a

much higher rate.

The Conjugate Gradient application solves a linear system

Ax = b iteratively. When applying advises, we set the

preferred location of matrix A and vector b to GPU mem-

ory. We also set a read-mostly advise on the sparse matrix

after completing initialization. The breakdown of time spent

on Intel-Pascal and P9-Volta are shown in Figs.4b and 4d,

respectively. The use of advises results in similar time spent on

data transfer from host to device but a slight reduction in time

on stalls on Intel-Pascal system. A considerable reduction in

time spent on the host to device transfer and stall is observed

on the P9-Volta system. One reason is the use of preferred

location advise, where the data arrays are initialized from the

host on GPU memory through remote memory access. On

Power9, it is possible for the CPU to access GPU memory

while this is not possible on Intel platforms. At the same

time, time spent on transfer from device to host is largely

eliminated on Intel-Pascal. One possible reason is due to the

read-mostly advise. Instead of migrating pages to the GPU

from host memory, a read-only copy is copied to the GPU.

This means that a copy of data exists in both memory systems.

When the Ax is being computed, A can be fetched directly in

host memory. Since P9-Volta initializes data directly in GPU

memory, a copy has to be fetched back to the host. In this

case, the naive use of prefetch results in a reduction of time

spent stalling. Despite the fact that more data is transferred

from device to host, the use of prefetch results in a higher

transfer rate. The data transfer trace is presented in Figs. 5b

and 5d. When used in combination with advises, it results in

a reduction of time for data transfer and stall.

B. Oversubscription Execution

Oversubscription of GPU memory is a key new feature

of UM. It resembles the paging of unused memory pages

to secondary storage to free up memory in classical virtual

memory management. Similarly to the CPU memory subscrip-

tion case, excessive use can lead to system slowdown and

can severely impact performance. Our results show that all

applications execute correctly, even when running out of GPU

memory. However, techniques that improved performance

for in-memory do not necessarily perform well when GPU

memory is oversubscribed. On the contrary, the use of these

techniques without careful optimization can lead to severe

performance degradation.

We present the execution time of our applications in Fig. 6.

Since the case does not exist with original versions with

explicit allocation, a comparison is not possible. Instead, the

minimal UM version is used as a baseline. By using advise,

specific applications can achieve up to over 20% improvement

on Intel platforms. Our P9 platform, on the other hand, shows

a negative impact when advises are used. To better understand

data movement, we perform tracing with the BS and CG on

Intel-Pascal, and with BS and FDTD3d on P9-Volta.

For the Black-Scholes application, the use of advise results

in performance improvement on Intel-Pascal. Fig. 7a shows

the breakdown of time spent on page-fault related events of

BS between host and device while Fig. 8a shows the detailed

tracing on Intel Pascal. One significant difference between

default UM and UM advise is that a lot less time is spent

on transferring data back to the host. The reduction in data

movement can contribute to the improvement in performance.

One possible reason for the reduction in data transfer from

device to host is that instead of migrating data from GPU to

host memory to make space, read-only data can simply be

discarded as a copy already exists on host memory. On the

other hand, on P9-Volta, significantly more time is spent on

stalls. This can be seen in Fig. 7c, where the total time is a few

times higher than when no advise is used. Fig. 8c examines

the data movement traces and clearly shows an intense data

movement in both directions. This implies that the read-mostly

advise has an interestingly negative effect on P9-Volta when

data size exceeds device memory. A naive prefetch on Intel-

Pascal provides performance improvement; however, it has

little to no effect on P9-Volta.

CG on the Intel-Pascal platform benefits from using advise.

The time breakdown for page faults and data movement

is shown in Fig. 7b. As in the case of the Black-Scholes

application, less time is spent on transferring data back to the

host than in the case of basic UM. However, we note that a

similar amount of data is sent from host to device in the two

cases. This can also be seen in the detailed tracing in Fig. 8b,

where less device to host transfer is made.

FDTD3d is a finite difference solver, and it reads and

writes to two arrays in an interleaving manner. Both arrays

are being initialized using the same data. One of the arrays is

being set to prefer GPU memory and will be accessed by

the CPU. No advise is set on the other array. Since both

arrays will be written to during execution, no read-mostly

advise is set for them. However, read-mostly is set for a small

array that contains coefficients. Fig. 7d shows the breakdown

(a) Intel-Pascal (b) Intel-Volta (c) Power9-Volta.

Fig. 6: GPU kernel execution time of applications where data do not fit in GPU memory.

(a) BS on Intel-Pascal (b) CG on Intel-Pascal (c) BS on P9-Volta (d) FDTD3d on P9-Volta

Fig. 7: Breakdown of total time spent handling page faults and data movement when input size exceeds GPU memory.

(a) BS Intel-Pascal (b) CG Intel-Pascal (c) BS P9-Volta (d) FDTD3d P9-Volta

Fig. 8: UM data transfer traces when input size exceeds GPU memory.

of time in handling data movement and page faults on P9-

Volta. Similarly to the Black-Scholes application, the usage

of advise results in much higher spent on stalling. Execution

time also increased significantly by approximately 3×. When

prefetching, only one of those two data arrays is prefetched

as they are originally identical. Interestingly, less data is seen

transferring in both directions when prefetch is used. Fig. 8d

shows the detailed tracing of the application. Smaller data

transfers at the beginning become a bulk transfer. This is also

reflected in the execution time, which is reduced from 60.9s

to 45.3s as well as a reduction in time spent stalling. One

possible reason is the size of the array being prefetched. Since

only one array, which represents 50% of the total problem

size, is prefetched, the entire array can reside entirely on GPU

memory without needed to evict previously prefetched data.

V. RELATED WORK

The separate memory system between host and GPU has

long been a programming challenge for developers. With UM,

the runtime can transparently handle data movement between

CPU and GPU. Earlier works [11], [13] have investigated

the impact of UM in applications while [13] investigated

the programming model support for UM in OpenMP through

an extended LLVM compiler. These studies lack the support

of advanced memory features, which only become available

recently. Recent efforts in the operating system, such as

Heterogeneous Memory Management (HMM) in the Linux

kernel [4], [8], [20], provides mechanisms to mirror CPU page

table on GPU and integrate device memory pages in the system

page table by adding a new type of struct page.

CPU to GPU interconnect is another factor that impacts

the performance of data movement directly. Extensive efforts

have reported evaluation on modern GPU systems [6], [9]. For

instance, [16] developed a microbenchmark tool to evaluate

the raw bandwidth performance with UM. While their works

focus on interconnect performance and provide optimization

insights, our work focuses on the impact of advanced memory

features in optimizing the locality of pages.

Some of the recent works that apply advanced features

of UM are Deep-Learning frameworks. One example is OC-

DNN [2], an extended Caffe framework that uses UM to

support the training of out-of-core batch sizes. They use

memory advises to trigger data eviction and prefetch to trigger

migration. They find these techniques useful in optimizing

training performance. However, incorrect use can lead to

performance degradation.

The memory oversubscription in GPU memory requires

efficient page eviction to make space for newly requested

pages. [3] proposed two pre-eviction policies using a tree-

based neighborhood prefetching technique to select candidate

pages. [10] introduced an ETC framework for eager page pre-

eviction and memory throttling in memory trashing. However,

these optimization techniques target future GPU designs that

require hardware modifications.

VI. CONCLUSION

In this work, we investigated the impact of UM memory

advises, prefetch, and GPU memory oversubscription, on

CUDA application performance. We found that the perfor-

mance of memory advises mostly depends on the system in

use and whether the GPU memory is oversubscribed. The

use of memory advises results in a performance improvement

only when the GPU memory is oversubscribed on the Intel-

Volta/Pascal-PCI-E systems. The use of memory advises on

Power9-Volta-NVLink based system, leads to a performance

improvement when applications run in-memory while it re-

sults in a considerable performance degradation with GPU

memory oversubscription. CUDA Unified prefetch provides

a performance improvement only on the Intel-Volta/Pascal-

PCI-E based systems while it does not show a performance

improvement on the Power9-Volta-NVLink based system.

In this work, we have set memory advises for each memory

object following best-practice guidelines from Nvidia. How-

ever, a future study on how to select optimal advise placement

would help programmers derive different combinations of

advises in different applications. In general, we found both

memory advises and prefetch to be simple and effective.

Overall, we showed that UM is a promising technology that

can be used effectively when programming applications for

GPU systems.

ACKNOWLEDGMENT

Funding for the work is received from the European Commission H2020 program,
Grant Agreement No. 801039 (EPiGRAM-HS). Experiments were performed on re-
sources provided by the Swedish National Infrastructure for Computing (SNIC) at
HPC2N and Lassen supercomputer at LLNL. Part of this work was performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 LLNL-PROC-788778. This research was also
supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration.

REFERENCES

[1] Linux programmer’s manual. http://man7.org/linux/man-pages/man3/
posix madvise.3.html, 2019.

[2] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi Lu,
and Dhabaleswar K Panda. OC-DNN: Exploiting Advanced Unified
Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core
DNN Training. In 2018 IEEE 25th International Conference on High

Performance Computing (HiPC), pages 143–152. IEEE, 2018.

[3] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Interplay
Between Hardware Prefetcher and Page Eviction Policy in CPU-GPU
Unified Virtual Memory. In Proceedings of the 46th International

Symposium on Computer Architecture, ISCA ’19, pages 224–235. ACM,
2019.

[4] Jerome Glisse. Redhat heterogeneous memory management.
https://linuxplumbersconf.org/event/2/contributions/70/attachments/
14/6/hmm-lpc18.pdf, 2018.

[5] Richard D Hornung and Jeffrey A Keasler. The raja portability layer:
overview and status. Technical report, Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), 2014.

[6] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmark-
ing. arXiv preprint arXiv:1804.06826, 2018.

[7] Ian Karlin, Tom Scogland, Arpith C Jacob, Samuel F Antao, Gheorghe-
Teodor Bercea, Carlo Bertolli, Bronis R de Supinski, Erik W Draeger,
Alexandre E Eichenberger, Jim Glosli, et al. Early experiences porting
three applications to openmp 4.5. In International Workshop on

OpenMP, pages 281–292. Springer, 2016.
[8] The kernel development community. The linux kernel 4.18.0. https:

//www.kernel.org/doc/html/v4.18/vm/hmm.html, 2019.
[9] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent,

and Kevin Barker. Tartan: Evaluating Modern GPU Interconnect via a
Multi-GPU Benchmark Suite. In 2018 IEEE International Symposium

on Workload Characterization (IISWC), pages 191–202. IEEE, 2018.
[10] Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao

Zhang, Onur Mutlu, Yang Guo, and Jun Yang. A framework for memory
oversubscription management in graphics processing units. In Proceed-

ings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 49–63, New York, NY, USA, 2019. ACM.

[11] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. An
Evaluation of Unified Memory Technology on Nvidia GPUs. In 2015

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, pages 1092–1098. IEEE, 2015.
[12] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter.

NVIDIA Tensor Core Programmability, Performance Precision. In 2018

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 522–531, May 2018.
[13] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chap-

man. Benchmarking and evaluating unified memory for OpenMP GPU
offloading. In Proceedings of the Fourth Workshop on the LLVM

Compiler Infrastructure in HPC, page 6. ACM, 2017.
[14] NVIDIA. P100 white paper. NVIDIA Corporation, 2016.
[15] NVIDIA. CUDA C Programming Guide. NVIDIA Corporation, 2019.
[16] Carl Pearson, Abdul Dakkak, Sarah Hashash, Cheng Li, I-Hsin Chung,

Jinjun Xiong, and Wen-Mei Hwu. Evaluating Characteristics of
CUDA Communication Primitives on High-Bandwidth Interconnects.
In Proceedings of the 2019 ACM/SPEC International Conference on

Performance Engineering, ICPE ’19, pages 209–218. ACM, 2019.
[17] The TOP500 project. Top500 lists. https://www.top500.org/lists/2019/

06/, 2019.
[18] Nikolay Sakharnykh. Maximizing unified memory

performance in cuda. https://devblogs.nvidia.com/
maximizing-unified-memory-performance-cuda/, 2017.

[19] Nikolay Sakharnykh. Unified memory on pascal and
volta. http://on-demand.gputechconf.com/gtc/2017/presentation/
s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf,
2017.

[20] Nikolay Sakharnykh. Unified memory on pascal and volta. In GPU

Technology Conference (GTC), 2017.
[21] Nikolay Sakharnykh. Everything you need to know about unified

memory. NVIDIA GTC, 2018.

http://man7.org/linux/man-pages/man3/posix_madvise.3.html
http://man7.org/linux/man-pages/man3/posix_madvise.3.html
https://linuxplumbersconf.org/event/2/contributions/70/attachments/14/6/hmm-lpc18.pdf
https://linuxplumbersconf.org/event/2/contributions/70/attachments/14/6/hmm-lpc18.pdf
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf

Explicit Data Layout Management for Autotuning

Exploration on Complex Memory Topologies

Swann Perarnau, Brice Videau, Nicolas Denoyelle, Florence Monna, Kamil Iskra, Pete Beckman

Argonne National Laboratory

{swann, ndenoyelle, bvideau, fmonna}@anl.gov, {iskra, beckman}@mcs.anl.gov

Abstract—The memory topology of high-performance com-
puting platforms is becoming more complex. Future exascale
platforms in particular are expected to feature multiple types
of memory technologies, and multiple accelerator devices per
compute node.

In this paper, we discuss the use of explicit management of
the layout of data in memory across memory nodes and devices
for performance exploration purposes. Indeed, many classic
optimization techniques rely on reshaping or tiling input data in
specific ways to achieve peak efficiency on a given architecture.

With autotuning of a linear algebra code as the end goal, we
present AML: a framework to treat three memory management
abstractions as first-class citizens: data layout in memory, tiling
of data for parallelism, and data movement across memory
types. By providing access to these abstractions as part of
the performance exploration design space, our framework eases
the design and validation of complex, efficient algorithms for
heterogeneous platforms.

Using the Intel Knights Landing architecture in one of its
most NUMA configurations as a proxy platform, we showcase
our framework by exploring tiling and prefetching schemes for
a DGEMM algorithm.

Index Terms—Deep memory, high-bandwidth memory, explicit
memory management

I. INTRODUCTION

As we approach exascale, high-performance computing

(HPC) platforms are increasingly featuring complex memory

topologies. Intel’s Knights Landing [1] (KNL) processor was

an early indicator of this trend, with a configuration that

can result in a single socket being split into 8 NUMA

domains: 4 quadrants for the on-chip network and 2 types

of memory (high-bandwidth MCDRAM and regular DRAM)

per quadrant. Exascale-class systems are also expected to

feature a topology including multiple accelerator devices with

their own memory banks along with their host multicore

processor. Regardless of the specific technology, these systems

will exhibit deep memory: multiple levels of cache-coherent,

byte-addressable memory.

How these complex topologies should be managed by HPC

applications is still an open research question. Vendors have

spent considerable effort on hiding most of this complexity

behind automatic mechanisms that expose a single coherent

virtual address space with each compute element pulling data

as close as possible when needed. This is a case for the cache

mode of the KNL, which uses the high-bandwidth memory

as a last-level direct-mapped cache, as well as for the unified

memory feature on Nvidia GPUs, which allows the GPU to

pull pages of data allocated on the CPU side as needed.

We believe that these automatic cache-like management

schemes are leaving performance on the table and, more

importantly, prevent the internal structure of applications from

treating the placement, movement, and shape of data as key

performance concerns. In this paper, we revisit typical memory

optimization strategies in the autotuning of dense linear alge-

bra kernels as first-class abstractions that can be part of an ap-

plication design space for heterogeneous architectures. These

abstractions are implemented in AML: a library providing

building blocks for the creation of explicit, application-aware

memory management policies. Our library allows application

and runtime developers to quickly design memory manage-

ment schemes adapted to complex memory hierarchies, while

still being agnostic to the specific hardware topology exhibited

by the architecture. As a memory management framework,

AML provides facilities to build custom data layouts, adapt

memory placement according to those layouts, and handle

coarse-grained memory movement between memory layers,

as required for prefetching mechanisms.

To motivate exposing those abstractions to application de-

velopers, we present an extensive performance exploration

study combining autotuning and careful data movement or-

chestration to achieve efficiency on large input sizes for a

DGEMM algorithm on a KNL system configured as a large

NUMA topology. We demonstrate that our library enables us

to implement efficient tiling schemes and dynamic memory

movements to prefetch inputs into the more efficient memory.

This paper is organized as follows. Section II presents

our motivation: the reproduction, using autotuning, of an

optimization strategy for DGEMM with large inputs. Using

this complex memory management optimization as a starting

point, we present in Section III three abstractions necessary

for building a complex data orchestration policy on a hetero-

geneous topology and discuss how they can be provided to

application performance specialists as building blocks inside

the same framework. We explore the full performance of our

data orchestration scheme in Section IV. Section V discusses

related work, and we conclude in Section VI with a summary

and some observations about future platform requirements.

II. MOTIVATION

Our motivating problem is the fine-grained optimization

of a DGEMM kernel (C = A ∗ B + C) for large matrix

sizes, utilizing a state-of-the-art strategy [2]. This strategy

is a bottom-up, architecture-aware approach for maximizing

performance: for each level of the memory hierarchy of the

target architecture, use subkernels and reorganize data to

achieve the best compute intensity (ratio of memory loads to

compute instructions). Such a strategy involves finely tuned

reorganization of data across cache levels in a non portable

way. For productivity and portability reasons, we would like

to generalize and simplify the memory management of this

kind of approach.

The DGEMM kernel proposed in [2] is tailored to target the

Knights Landing architecture, which is notoriously difficult to

tune for. In order to reach peak performance, every level of the

memory hierarchy needs to be accounted for. The KNL node

used in this study has 64 cores with 32 vector registers 512

bits wide (8 double-precision floats), 32 KiB of L1 cache and

1 MiB of L2 cache shared between each pair of cores. The

node also has 16 GiB of MCDRAM memory, and although it

can be used as a cache, it will exposed as a NUMA memory

node in this study. Our strategy thus involves 4 levels of kernel

optimization.

Inner Kernel: The inner kernel is optimized for register-

level data access patterns. Register reuse is achieved by careful

vectorization and limited use of load and store instructions.

Specifically, the inner kernel works on small tiles of A, B, and

C with sizes [kb,mr], [kb, nr], and [mr, nr], respectively. We

denote these tiles Â, B̂, and Ĉ (note that Â is transposed). Tile

sizes are chosen so that nr is a multiple of the vector length

(8 in our case), while mr is small enough that the whole

tile Ĉ and a row of B̂ fit inside the registers simultaneously.

Thus, for this architecture, the possible values of [mr, nr] are

(31, 8), (15, 16) and (7, 32). The last parameter, kb, should

be large enough to amortize data transfer overheads on Ĉ but

also small enough for Â to fit inside half of the L1 cache.

Intermediary Kernel: The intermediary kernel works on

sets of tiles of A, B, and C with sizes of [kb,mb], [kb, n],
and [mb, n], respectively. We denote these tilesets Ã, B̃, and

C̃. Ã is stored as mb/mr (or nblocka) consecutive tiles

of size [kb,mr] (Â), C̃ is stored as (mb/mr) ∗ (n/nr) (or

nblocka∗nblockn) consecutive tiles of size [mr, nr] (Ĉ), and

B̃ is stored as n/nr (or nblockn) tiles of size [kb, nr] (B̂).

These sizes are chosen to take advantage of L2 caches, and

in particular mb is chosen so that Ã fits inside half of the L2

cache available to a core.

Outer Kernel: The outer kernel updates a block C of

size [m,n], using a block A of size [k,m] and a block B
of size [k, n]. The layouts used here are as follows: C is

stored as m/mb (or nblockm) blocks of C̃, A is stored as

(k/kb)∗ (m/mb) (or nblockk ∗nblockm) blocks of Ã, and B
is stored as (k/kb) (or nblockk) blocks of B̃. This is where

our approach differs from [2]. In the original algorithm, the

transposition of Â is performed in the intermediary kernel,

while B̂ is transposed in the outer kernel. We extracted

those transformations to take place before the outer kernel.

This approach results in another level of blocking in the

algorithm: the outer kernel is operating on blocks of A, B,

and C with a shape of [nblockk, nblockm, nblocka, kb,mr],

1 vo id i n n e r _ k e r n e l (
2 do ub l e ah [KB] [MR] ,
3 do ub l e bh [KB] [NR] ,
4 do ub l e ch [MR] [NR]) {
5 /∗ ch += ah ∗ bh ∗ /
6 }
7

8 vo id i n t e r m e d i a r y _ k e r n e l (
9 i n t nblockn ,

10 do ub l e a t [NBLOCKA] [KB] [MR] ,
11 do ub l e b t [nb lockn] [KB] [NR] ,
12 do ub l e c t [nb lockn] [NBLOCKA] [MR] [NR]) {
13 # pragma omp p a r a l l e l f o r num_th reads (NUM_INNER_TH)
14 f o r (i n t j r = 0 ; j r < nb lockn ; j r ++) {
15 f o r (i n t i r = 0 ; i r < NBLOCKA; i r ++) {
16 i n n e r _ k e r n e l (&a t [i r] [0] [0] ,
17 &b t [j r] [0] [0] ,
18 &c t [j r] [i r] [0] [0]) ;
19 }
20 }
21 }
22

23 vo id o u t e r _ k e r n e l (
24 i n t nblockm , i n t nblockn , i n t nblockk ,
25 do ub l e ad [nb lockk] [nblockm] [NBLOCKA] [KB] [MR] ,
26 do ub l e bd [nb lockk] [nb lockn] [KB] [NR] ,
27 do ub l e cd [nblockm] [nb lockn] [NBLOCKA] [MR] [NR]) {
28 f o r (i n t p = 0 ; p < nb lockk ; p ++) {
29 # pragma omp p a r a l l e l f o r num_th reads (NUM_OUTER_TH)
30 f o r (i n t i = 0 ; i < nblockm ; i ++) {
31 i n t e r m e d i a r y _ k e r n e l (
32 nblockn ,
33 &ad [p] [i] [0] [0] [0]
34 &bd [p] [0] [0] [0] ,
35 &cd [i] [0] [0] [0] [0]) ;
36 }
37 }
38 }

Listing 1. Pseudocode for the DGEMM outer kernel.

[nblockk, kb, nblockn, nr], and [nblockm, nblockn, nblocka,
mr, nr], respectively. We denote them Ȧ, Ḃ, and Ċ. The sizes

m, n, and k are chosen so that the blocks are approximately

square and large enough to amortize the transform cost. The

pseudocode for this entire algorithm is given in Listing 1.

Top Kernel: The top kernel is responsible for orchestrating

the transformation of the input matrices and the launch of

the outer kernel. Matrix C̄ is of size [M,N], matrix Ā of

size [M,K], and matrix B̄ of size [K,N]. The matrices are

arranged in blocks of size [m,n] (C), [m, k] (A), and [k, n]
(B), respectively. Those blocks are transferred from main

memory to MCDRAM and transformed on the fly into blocks

Ċ, Ȧ, and Ḃ, respectively. Since MCDRAM can hold several

of those blocks simultaneously, computation and transfer can

overlap, and some blocks can be reused, depending on the

order of evaluation.

Challenge: This multilayered algorithm has one major

drawback: its memory management is not an explicit parame-

ter of the algorithm. Indeed, to port this algorithm to a differ-

ent architecture, one must rediscover the appropriate shapes

and sizes of the data for each topology level. To automate

this work, memory management must be made explicit and

composable enough that an application performance specialist

can automate the search for ideal parameters, using autotuning

for example. Moreover, the layouts are complex enough that

facilities to track and reason about these geometries are

required.

III. ABSTRACTIONS FOR EFFICIENT IN-MEMORY DATA

ORCHESTRATION

Our motivating problem points towards the need for a

principled approach to three memory abstractions: layout,

tiling, and movement across a topology. In order to improve

on existing algorithms and adapt our work to future platforms,

these three abstractions need to become available as first-class

constructs that we can use for implementation and for further

experimentation.

Such goal is also in line with the PADAL whitepa-

per [3], which identified that as we approach exascale, high-

performance computing platforms will move toward cheap

and massively parallel compute power while data movement

will dominate energy and performance costs. To facilitate the

development of applications on those platforms, the authors

called for the community to establish locality-preserving ab-

stractions. Data layout, tiling, and topology were identified as

critical components of such an effort.

We present here how these three abstractions can be made

available inside a single framework, as building blocks for fur-

ther performance optimization studies. Our framework should

have the following goals:

• Composable: application developers and performance ex-

perts should be able to pick and choose which building

blocks to use depending on their specific needs.

• Flexible: one should be able to customize, replace, or

change the configuration of each building block as much

as possible.

• Declarative: to the extent possible, each building block

should provide the means for users to describe how it

is used by the application, without having to change the

existing programming model.

• Hardware-oblivious: given the right initialization param-

eters, the resulting memory management policies should

work on any hardware configuration.

Given these goals, we detail the scope and intent for each

abstraction and highlight how they interact with one another.

Data Layouts: This abstraction is in charge of representing

how the bytes of a data structure are organized in a linear

virtual address space. In this paper, we focus on layouts

typically encountered when dealing with dense linear algebra

algorithms: multidimensional arrays of a single element type,

with optional strides. This abstraction provides methods to find

a single element and, more important, slicing and reshaping.

We identify slicing as the act of returning a subset of the

layout; reshaping provides the user with a view of the layout

using different dimensions (without changing the underlying

data organization).

Tiling Data: Tiling, or blocking, is a common optimization

strategy to improve the data locality of an algorithm. It can

be summarized as the action of grouping data elements to

Table I
SUMMARY OF DATA MANAGEMENT ABSTRACTIONS

Abstraction Intent Methods

Layout data organization in memory deref, reshape
Tiling generate/index slices index, slice

Movement orchestrate movement copy, transform

be placed or worked on together. Based on our motivating

problem, tiling is the abstraction in charge of providing an

indexation and generation mechanism over slices of a layout.

Indeed, for a blocked DGEMM algorithm it is critical to be

able to reason about the layout of entire input matrices as

tiles for which coordinates are available so that the tiles can

be iterated on correctly.

Moving Data: The core abstraction behind the movement

of data inside a topology can be identified by two main

functions: the means to perform the movement itself and the

type of movement being performed. Indeed, depending on the

architecture and the specific programming model, moving data

between memories can be done by a regular memcpy, by

moving physical pages of data around, by calling into device-

specific APIs (cudaMemcpy), by queuing copy operations

(clEnqueueCopyBuffer in OpenCL), or even by using

parallel runtimes (OpenMP 5.0). On the other hand, the

data movement operation itself might include more than just

copying and moving data around, for example, transposing

matrices for better efficiency or packing/filtering the data to

improve locality.

These abstractions, summarized in Table I, were imple-

mented in AML, a lightweight framework written in C99 using

pthreads for its asynchronous movement facilities.

IV. PERFORMANCE EXPLORATION OF DGEMM ON A

LARGE HETEROGENEOUS TOPOLOGY

We now present how our memory management framework

can be used to generalize the DGEMM optimization presented

earlier, on Intel’s Knights Landing architecture.

A. Experimental Setup

All the experiments presented in this section run on an Intel

Knights Landing processor model 7210, comprising 16 GiB of

high-bandwidth, on-package MCDRAM and 192 GiB of DDR.

This platform has 64 cores available, running at 1.3 GHz, and

hyperthreading is deactivated. Unless otherwise specified, the

node is configured at boot time to run in Flat/Quad mode,

meaning that the MCDRAM is exposed to the system as a

single NUMA node and that the distributed cache directory is

configured to improve latency on the cache misses.

The node is running CentOS 7.5, kernel version 3.10. The

frequency governor has been set to performance. The

benchmarks are compiled with icc 17.0.1; architecture-specific

optimizations (-xHost) are active. All experiments are run

using 60 cores for computation (with OpenMP) and 4 cores

for data movement. The inner kernel is generated ahead of

time by using the BOAST autotuning framework [4].

Figure 1. Example of a Ȧ before and after transposition. Elements of each

Â have the same color.

Figure 2. Example of a Ḃ before and after transposition. Elements of each

B̂ have the same color.

Figure 3. Example of a Ċ before and after transposition. Elements of each

Ĉ have the same color.

1 /∗
2 A dims : {NB, M, NB, K} ;
3 B dims : {NB, K, NB, N} ;
4 C dims : {NB, M, NB, N} ;
5

6 T i l e s :
7 A dims : {M, K} ;
8 A r e s h a p e d : {NBLOCKM, NBLOCKA, MR, NBLOCKK, KB} ;
9 A t r a n s p o s e d : {NBLOCKK, NBLOCKM, NBLOCKA, KB, MR} ;

10

11 B dims : {K, N} ;
12 B r e s h a p e d : {NBLOCKK, KB, NBLOCKN, NR} ;
13 B t r a n s p o s e d : {NBLOCKK, NBLOCKN, KB, NR} ;
14

15 C dims : {M, N} ;
16 C r e s h a p e d : {NBLOCKM, NBLOCKA, MR, NBLOCKN, NR} ;
17 C t r a n s p o s e d : {NBLOCKM, NBLOCKN, NBLOCKA, MR, NR} ;
18

19 T i l e s a r e p r e f e t c h e d from DDR t o MCDRAM and
20 r e s h a p e d and t r a n s p o s e d d u r i n g t r a n s f e r .
21 ∗ /
22 vo id t o p _ k e r n e l (c o n s t d oub l e ∗A, c o n s t d oub l e ∗B ,
23 do ub l e ∗C) {
24

25 p r e f e t c h (f i r s t T i l e O f _ A) ;
26 p r e f e t c h (f i r s t T i l e O f _ B) ;
27 p r e f e c t h (f i r s t T i l e O f _ C) ;
28 f o r (i n t i = 0 ; i < block_number ; i ++) {
29 f o r (i n t j = 0 ; j < block_number ; j ++) {
30 w a i t (t i l e o f C) ;
31 p r e f e t c h (n e x t T i l e O f _ C)
32 f o r (i n t k = 0 ; k < block_number ; k ++) {
33 w a i t (t i l e O f _ A) ;
34 p r e f e t c h (nex tT i l eOf_A) ;
35 w a i t (t i l e O f _ B) ;
36 p r e f e t c h (n e x t T i l e O f _ B) ;
37 o u t e r _ k e r n e l (NBLOCKM, NBLOCKN, NBLOCKK,
38 t i l e Of _A , t i l e O f _ B , t i l e O f _ C) ;
39 }
40 w a i t (f l u s h P r e v i o u s T i l e O f _ C) ;
41 f l u s h (t i l e O f _ C) ;
42 }
43 }
44 w a i t (f l u s h L a s t T i l e O f _ C) ;
45 }

Listing 2. Pseudocode for the DGEMM top kernel.

Inline Transformation Top Kernel: The DGEMM algo-

rithm presented in Section II is adapted to use our framework

to handle its tiling as well as the data movement and simul-

taneous transformations. Data movement is executed ahead

of time when possible, using a scheme similar to double

buffering. That is, for each matrix, the next block of the

outer kernel is prefetched. Result tiles (those of matrix C) are

copied back into the source data in DRAM, too. To perform

this data movement, dedicated threads each perform active

polling on a workqueue protected by a spinlock (one lock

per queue per thread). Each thread is in charge of one of

the 4 operations in this algorithm: prefetch and transform Ȧ,

Ḃ, Ċ, and flush previous Ċ. Figures 1, 2, and 3 showcase

examples of these transformations between the top and outer

kernel, for MR = 2, NR = 3, KB = 5, NBLOCKA = 7,

NBLOCKM = 2, NBLOCKN = 5, NBLOCKK = 4.

Listing 2 provides the pseudocode for this kernel, while

detailing the layouts and data movements.

0 2 4 6 8 10 12
0

500

1,000

1,500

C Matrix Size (in GiB)

P
er

fo
rm

an
ce

(G
F

L
O

P
/S

)

bind+transform

nobind+transform

bind+unopt-transform

projected performance

Figure 4. DGEMM performance depending on transform implementation.

Performance Exploration: For our performance explo-

ration we compare several versions of our kernel, depending

on two changes:

• Transform performance: whether the implementation uses

a generic and unoptimized algorithm to handle each trans-

formation or a custom code, optimized for the specific

block sizes involved here,

• Thread binding: whether the threads performing the

data transformation share cores with the regular worker

threads or use dedicated resources.

Figure 4 presents the results of these experiments, for

varying sizes of the result matrix. Experiments are repeated

10 times, and standard error is displayed. We included in

the figure the performance of one tile of the outer kernel,

as a reference for maximum reachable performance for this

strategy. Note that this performance is in line with the reported

data in the original study.

These results highlight the impact of the method of trans-

form and the placement of data management threads on overall

performance of this algorithm. This is precisely the kind

of experiments that are made easier by providing higher-

level abstractions about memory management in a complex

algorithm. We hope to explore further these design points for

this algorithm and others in the future.

V. RELATED WORK

Deep memory architectures have become widely available

only in the past couple of years, and studies focusing on them

are rare. Furthermore, since vendors recommend using them as

another level of hardware-managed cache, few works make the

case for explicit management of these memory types. Among

existing ones, two major trends can be identified: studies

arguing either for data placement or for data migration.

Data placement [3] addresses the issue of distributing data

among all available memory types only once, usually at allo-

cation time. Several efforts in this direction aim at simplifying

the APIs available for placement, similar to work on general

NUMA architectures: memkind [5], the Simplified Interface

for Complex Memory [6], and Hexe [7]. These libraries pro-

vide applications with intent-based allocation policies, letting

users specify bandwidth-bound data or latency-sensitive data,

for example. While placement is critical for the efficient use of

deep memory architectures, these mechanisms lack the means

to move data around to accommodate workloads that cannot

fit in the right layer, resulting in missing optimization oppor-

tunities. Nevertheless, our framework also provides placement

features as the basis for its data movement facilities.

Data migration addresses the issue of moving data dy-

namically across memory types during the execution of the

application. Our preliminary work [8] on this approach show-

cased that performance of a simple stencil benchmark could be

improved by migration, using a scheme similar to out-of-core

algorithms, when the compute density of the application kernel

is high enough to provide compute/migration overlapping. Fur-

ther work [9] studied performance models for such strategies,

including heuristics to migrate data as part of the execution of

a workflow with task dependencies. The prefetching strategy

used in this paper matches some of these heuristics. Another

study [10] discussed a runtime method to schedule tasks with

data dependencies on a deep memory platform. Unfortunately,

the scheduling algorithm is limited to scheduling a task only

after all its input data has been moved to faster memory.

VI. CONCLUSION

We presented in this paper how additional memory manage-

ment abstractions can be used to simplify and extend complex

optimization strategies for deep memory and heterogeneous

platforms. While we used Intel’s Knights Landing architecture

as a basis for this study, we expect that exascale topologies will

exhibit the same kind of complexity and will require the same

kind of optimization strategies. In particular, heterogeneous

platforms are ideal for such strategies since a separate compute

element can be used for transform operations.

Further tuning of the various abstractions can also be

performed, in particular autotuning of the transform operators.

As we move closer to exascale, we will also continue to

improve the abstractions offered by our framework for future

architectures. These improvements will include support for

heterogeneous platforms (CPU-GPU with unified memory), as

well as better abstractions to handle the distribution of data

layouts over multiple NUMA nodes or the use of helper cores

to perform data movement, which might be necessary for the

Fujitsu A64FX Post-K computer architecture.

The AML library, documentation, and links to the bench-

marks are available online at https://argo-aml.readthedocs.io/

en/latest/.

ACKNOWLEDGMENTS

Argonne National Laboratory’s work was supported by the

U.S. Department of Energy, Office of Science, Advanced

Scientific Computer Research, under Contract DE-AC02-

06CH11357. This research was supported by the Exascale

Computing Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the National

Nuclear Security Administration.

REFERENCES

[1] A. Sodani, “Knights Landing (KNL): 2nd generation Intel R© Xeon Phi
processor,” in 27th IEEE Hot Chips Symposium (HCS), 2015.

[2] R. Lim, Y. Lee, R. Kim, and J. Choi, “An implementation
of matrix–matrix multiplication on the Intel KNL processor with
AVX-512,” Cluster Computing, June 2018. [Online]. Available:
https://doi.org/10.1007/s10586-018-2810-y

[3] D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. Dubey, and others (Eds.),
“Programming abstractions for data locality,” Tech. Rep., 04 2014.

[4] B. Videau, K. Pouget, L. Genovese, T. Deutsch, D. Komatitsch,
F. Desprez, and J.-F. Méhaut, “BOAST: A metaprogramming
framework to produce portable and efficient computing kernels for HPC
applications,” International Journal of High Performance Computing

Applications, vol. 32, no. 1, pp. 28–44, Jan. 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01620778

[5] Intel Corporation, “Memkind: A user extensible heap manager,” https:
//memkind.github.io/, 2018.

[6] “Simplified interface to complex memory,” https://github.com/lanl/
SICM, 2017.

[7] L. Oden and P. Balaji, “Hexe: A toolkit for heterogeneous memory man-
agement,” in IEEE International Conference on Parallel and Distributed

Systems (ICPADS), 2017.
[8] S. Perarnau, J. A. Zounmevo, B. Gerofi, K. Iskra, and P. Beckman,

“Exploring data migration for future deep-memory many-core systems,”
in IEEE International Conference on Cluster Computing (CLUSTER),
2016.

[9] A. Benoit, S. Perarnau, L. Pottier, and Y. Robert, “A performance model
to execute workflows on high-bandwidth-memory architectures,” in Pro-

ceedings of the 47th International Conference on Parallel Processing,

(ICPP), 2018.
[10] K. Chandrasekar, X. Ni, and L. V. Kalé, “A memory heterogeneity-

aware runtime system for bandwidth-sensitive HPC applications,” in
IEEE Int. Parallel and Distributed Processing Symposium Workshops,

Orlando, FL, USA, 2017, pp. 1293–1300. [Online]. Available:
https://doi.org/10.1109/IPDPSW.2017.168

[11] A. Haidar, S. Tomov, K. Arturov, M. Guney, S. Story, and J. Don-
garra, “LU, QR, and Cholesky factorizations: Programming model,
performance analysis and optimization techniques for the Intel Knights
Landing Xeon Phi,” in IEEE High Performance Extreme Computing

Conference (HPEC), 2016.
[12] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “LIBXSMM:

Accelerating small matrix multiplications by runtime code generation,”
in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2016.
[13] Intel Math Kernel Library. Reference Manual, 2018. [Online]. Available:

https://software.intel.com/en-us/articles/mkl-reference-manual
[14] K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond, M. E.

Guney, S. Knepper, S. Story, and S. Rajamanickam, “Designing vector-
friendly compact BLAS and LAPACK kernels,” in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2017.
[15] L. Dagum and R. Menon, “OpenMP: An industry-standard API for

shared-memory programming,” IEEE Comput. Sci. Eng., 1998.
[16] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Beyond 16GB: Out-of-

core stencil computations,” in Proceedings of the Workshop on Memory

Centric Programming for HPC, 2017.
[17] L. Alvarez, M. Casas, J. Labarta, E. Ayguade, M. Valero, and

M. Moreto, “Runtime-guided management of stacked DRAM memories
in task parallel programs,” in Proceedings of the 2018 International

Conference on Supercomputing (ICS), Beijing, China, 2018. [Online].
Available: http://ics2018.ict.ac.cn/essay/ICS18-Paper130.pdf

[18] L. Alvarez, M. Moreto, M. Casas, E. Castillo, X. Martorell, J. Labarta,
E. Ayguade, and M. Valero, “Runtime-guided management of scratchpad
memories in multicore architectures,” in Proceedings of the International

Conference on Parallel Architecture and Compilation (PACT), 2015.
[19] C. Rosales, J. Cazes, K. Milfeld, A. Gómez-Iglesias, L. Koesterke,

L. Huang, and J. Vienne, “A comparative study of application perfor-
mance and scalability on the Intel Knights Landing processor,” in ISC

Workshops, 2016.

[20] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the roofline
performance model to the Intel Xeon Phi Knights Landing processor,”
in International Conference on High Performance Computing, 2016.

[21] C. Pohl, “Stream processing on high-bandwidth memory,” in Grundla-

gen von Datenbanken, 2018.
[22] N. Butcher, S. L. Olivier, J. Berry, S. D. Hammond, and P. M.

Kogge, “Optimizing for KNL usage modes when data doesn’t fit in
MCDRAM,” in International Conference on Parallel Processing, 2018.
[Online]. Available: http://par.nsf.gov/biblio/10064736

[23] (2018) OpenBLAS: An optimized BLAS library. [Online]. Available:
https://www.openblas.net/

[24] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched
BLAS on modern high-performance computing systems,” Procedia

Computer Science, vol. 108, pp. 495–504, 2017, International
Conference on Computational Science (ICCS). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050917307056

[25] R. Asai, “Clustering modes in Knights Landing processors: Developer’s
guide,” Colfax International, Tech. Rep., 05 2016.

[26] A. Vladimirov and R. Asai, “MCDRAM as high-bandwith memory
(HBM) in Knights Landing processors: Developer’s guide,” Colfax
International, Tech. Rep., 05 2016.

[27] A. J. Pena and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in IEEE Int. Conf. on Cluster Computing

(CLUSTER), 2014, pp. 123–131.
[28] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. Hoppe, and

J. Labarta, “Automating the application data placement in hybrid
memory systems,” in IEEE International Conference on Cluster

Computing, (CLUSTER), 2017, pp. 126–136. [Online]. Available:
https://doi.org/10.1109/CLUSTER.2017.50

[29] G. Voskuilen, A. F. Rodrigues, and S. D. Hammond, “Analyzing
allocation behavior for multi-level memory,” in Proceedings of the

Second International Symposium on Memory Systems, (MEMSYS),
2016, pp. 204–207. [Online]. Available: http://doi.acm.org/10.1145/
2989081.2989116

[30] NVIDIA, “CUDA: Unified memory programming,” http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
um-unified-memory-programming-hd, 2018.

[31] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An investi-
gation of unified memory access performance in CUDA,” in IEEE High

Performance Extreme Computing Conference (HPEC), 2014.
[32] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware

task scheduling on multi-accelerator based platforms,” in IEEE Int. Conf.

on Parallel and Distributed Systems, Dec 2010, pp. 291–298.

Machine Learning Guided Optimal Use of GPU Unified Memory

Hailu Xu
Florida International University

Miami, FL, USA

hxu017@fiu.edu

Murali Emani
Argonne National Laboratory

Lemont, IL, USA

memani@anl.gov

Pei-Hung Lin
Lawrence Livermore National

Laboratory

Livermore, CA, USA

lin32@llnl.gov

Liting Hu
Florida International University

Miami, FL, USA

lhu@cs.fiu.edu

Chunhua Liao
Lawrence Livermore National

Laboratory

Livermore, CA, USA

liao6@llnl.gov

ABSTRACT

NVIDIA’s unified memory (UM) creates a pool of managed mem-

ory on top of physically separated CPU and GPU memories. UM

automatically migrates page-level data on-demand so program-

mers can quickly write CUDA codes on heterogeneous machines

without tedious and error-prone manual memory management. To

improve performance, NVIDIA allows advanced programmers to

pass additional memory use hints to its UM driver. However, it is

extremely difficult for programmers to decide when and how to effi-

ciently use unifiedmemory, given the complex interactions between

applications and hardware. In this paper, we present a machine

learning-based approach to choosing between discrete memory and

unified memory, with additional consideration of different memory

hints. Our approach utilizes profiler-generated metrics of CUDA

programs to train a model offline, which is later used to guide opti-

mal use of UM for multiple applications at runtime. We evaluate our

approach on NVIDIA Volta GPU with a set of benchmarks. Results

show that the proposed model achieves 96% prediction accuracy in

correctly identifying the optimal memory advice choice.

CCS CONCEPTS

·Computer systems organization→Heterogeneous (hybrid)

systems; · Computing methodologies→ Machine learning.

KEYWORDS

Unified memory, GPU, Data allocation, Machine learning

ACM Reference Format:

Hailu Xu, Murali Emani, Pei-Hung Lin, Liting Hu, and Chunhua Liao. 2019.

Machine Learning Guided Optimal Use of GPU Unified Memory. InMCHPC

’19: Workshop on Memory Centric High Performance Computing, November

18, 2019, Denver, Colorado, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MCHPC ’19, November 18, 2019, Denver, Colorado, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Graphic Processing Units (GPUs) have been the fundamental hard-

ware components for supporting high performance computing,

artificial intelligence, and data analysis in datacenters and super-

computers. As of June 2019, 133 of Top 500 supercomputers are

GPU-accelerated, and 128 systems debuting on the TOP500 are ac-

celerated with NVIDIA GPUs [16]. Efficient memory management

across CPUs and GPUs has been a challenging problem, while it

is critical to performance and energy efficiency. Before CUDA 6.0,

data shared by CPUs and GPUs is allocated in discrete memories,

which require explicit memory copy calls to transfer data between

CPUs and GPUs. Since CUDA 6.0, NVIDIA has introduced unified

Memory (UM) with a single unified programmable memory place

within a heterogeneous CPU-GPU architecture consisting of sep-

arated physical memory spaces. UM relieves programmers from

manual management of data migration between CPUs and GPUs

such as inserting memory copy calls and deep copying pointers. It

tremendously improves productivity and also enables oversubscrib-

ing GPU memory.

NVIDIA continuously improves UM throughout different gener-

ations of GPUs. The latest UM implementation has accumulated a

rich set of features including GPU page fault, on-demand migration,

over-subscription of GPU memory, concurrent access and atom-

ics, access counters, and so on. Moreover, NVIDIA provides the

cudaMemAdvice1 API to advise the UM driver about the usage pat-

tern of memory objects (e.g. dynamically allocated arrays). Different

hints (such as ReadMostly, PreferredLocation, AccessedBy) can

be specified in this API by programmers to improve the performance

of UM. However, it is extremely challenging for programmers to

decide when and how to efficiently use UM for various kinds of

applications. For a given memory object, there is a wide range of

choices including managing it with the traditional discrete mem-

ory API, the unified memory API without advice, and the unified

memory API combined with various memory hints.

In this paper, we present a novel approach to choosing between

discrete memory and unified memory on GPUs, with additional con-

sideration of different memory usage hints. Our approach consists

of two phases: an offline learning phase and an online inference

phase. 1) The offline learning phase involves building a classifier via

1Nvidia CUDA Runtime API (May 2019) https://docs.nvidia.com/cuda/cuda-runtime-
api/index.html

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MCHPC ’19, November 18, 2019, Denver, Colorado, USA Xu and Emani, et al.

supervised learning. It first collects the runtime GPU kernel features

from selected benchmarks and labels the best advice based upon

the performance caused by various GPU memory usage choices.

After that, it constructs a classifier that can predict the best advice

for new applications. 2) The online inference relates to determin-

ing the proper advice at runtime for a running CUDA program.

By combining offline learning and online inference, our method

can effectively and accurately obtain optimal use of GPU memory

for different kinds of CUDA applications and presents fine-grain

control over managed memory allocations.

This paper makes the following contributions:

• We study the hybrid use of both discrete and unified memory

APIs on GPUs, with additional consideration for selecting

different memory advice choices.

• A machine learning-based approach is proposed to guide

optimal use of GPU unified memory.

• We design code transformation to enable runtime adaptation

of CUDA programs leveraging online inference decisions.

• We incorporate kernel features at runtime to provide fine-

grain control over GPU memory.

• Our experiments show that our approach is effective to pre-

dict the optimal memory advice choices for the selected

benchmarks.

The remainder of this paper is organized as follows: Section 2

presents the background of GPU memory and our motivation. Sec-

tion 3 describes the details of our design and methodology. Section 4

presents the experimental results of evaluation in GPU. We discuss

the related works in Section 5 and conclude this work in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Choices for Using GPU Memory

Programmers often encounter multiple choices to manage their

data on GPU memory. NVIDIA’s CUDA traditionally exposes GPU

device memory as a discrete memory space from CPU memory

space. Programmers are responsible for using a set of memory API

functions to explicitly manage the entire life cycle of data objects

stored in GPU memory, including allocation, de-allocation, data

copying, etc. Since CUDA 6.0, NVIDIA has introduced unified Mem-

ory (UM) with a new set of API functions. The idea of UM is to

present developers a single memory space unifying both CPU and

GPU memories. CUDA uses a unified memory driver to automat-

ically migrate data between CPU and GPU memories at runtime.

As a result, UM significantly improves the productivity of GPU

programming. Both traditional memory APIs and unified memory

APIs can be used together within a single CUDA program.

To enable better performance of UM, CUDA allows developers

to give the UM driver additional advice on managing a given GPU

memory range via an API function named cudaMemAdvise(const

void *, size_t, enum cudaMemoryAdvise, int). The first two

parameters of this function accept a pointer to a memory range

with a specified size. The memory range should be allocated via

cudaMallocManaged or declared via __managed__variables. The

third parameter sets the advice for the memory range. The last

parameter indicates the associated device’s id, which can indicate

either a CPU or GPU device. The details and differences of these

four kinds of advice are presented as follows:

• Default: This represents the default on-demand page mi-

gration to accessing processor, using the first-touch policy.

• cudaMemAdviseSetReadMostly: This advice is used for the

data which is mostly going to be read from and only oc-

casionally written to. The UM driver may create read-only

copies of the data in a processor’s memory when that proces-

sor accesses it. If this region encounters any write requests,

then only the write occurred page will be valid and other

copies will be invalid.

• cudaMemAdviseSetPreferredLocation: Once a target de-

vice is specified, this device memory can be set as the pre-

ferred location for the allocated data. The host memory can

also be specified as the preferred location. Setting the pre-

ferred location does not cause data to migrate to that location

immediately. The policy only guides what will happen when

a fault occurs on the specified memory region: if data is al-

ready in the preferred location, the faulting processor will try

to directly establish a mapping to the region without caus-

ing page migration. Otherwise, the data will be migrated to

the processor accessing it if the data is not in the preferred

location or if a direct mapping cannot be established.

• cudaMemAdviseSetAccessedBy: This advice implies that the

data will be accessed by a specified CPU or GPU device. It

has no impact on the data location and will not cause data

migration. It only causes the data to be always mapped in

the specified processor’s page tables, when applicable. The

mapping will be accordingly updated if the data is migrated

somehow. This advice is useful to indicate that avoiding

faults is important for some data, especially when the data

is accessed by a GPU within a system containing multiple

GPUs with peer-to-peer access enabled.

The effect of cudaMemAdvise can be reverted with the follow-

ing options: UnsetReadMostly, UnsetPreferredLocation, and

UnsetAccessedBy.

2.2 Impact of Different Usage of GPU Memory

Various applications have diverse data access patterns through-

out their executions. Different choices of memory APIs and their

parameter values often result in a wide variation in performance.

To explore the impact of various memory usage choices, we mod-

ify several benchmarks from Rodinia [3] to use different memory

allocations and advice choices and subsequently examine their exe-

cution times. We focus on large dynamically allocated data objects

since they usually have major impact on execution time.

Table 1 lists a subset of various code variants for the gaussian

benchmark in Rodinia. There are two matrices a, m and one array b

which are the major data objects in gaussian. We apply different

memory usage choices to these objects and get multiple combi-

nations. Code variant 1 is the baseline version using the default

discrete memory for the three data objects. Variant 2 to 7 use unified

memory for matrix a and different memory advise of AccessedBy,

ReadMostly, and PreferredLocation.We can further specify CPU

or GPU as the device for AccessedBy and PreferredLocation.

We evaluate the performance of all the code variants and present

results in Figure 2. The input data is a 1024 × 1024 matrix and

the measurement includes all the memory transferring between

Machine Learning Guided Optimal Use of GPU Unified Memory MCHPC ’19, November 18, 2019, Denver, Colorado, USA

unified memory

benchmark_i

benchmark_k

ReadMostly AccessedByPreferredLocation

Runtime

metrics

Training

dataset

Multiple Choices

Runtime

applications
Classifier

with various choices

...

...

...

Runtime

metrics

Classifier

Decision of choices

Offline

Processing

Online

Inference

UnifiedMemOnlyDiscreteMem

...

...

Training

Figure 1: The workflow of the proposed approach in guiding the GPU unified memory advice.

Variants Description

1 baseline using discrete memory for all objects

2 modified to use unified memory for all

3 set array a with the ReadMostly advice

4 set array a with the PreferredLocation on GPU

5 set array a with the AccessedBy for GPU

6 set array a with the PreferredLocation on CPU

7 set array a with the AccessedBy for CPU

Table 1: Code variants in the gaussian benchmark

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
U
p

 SpeedUp

Figure 2: Speedup of different code variants in gaussian

the CPU memory and the GPU device memory. It is shown that

the code achieves a speedup of 3.5× when matrix a is given the

PreferredLocation to GPU (variant 4). A 200× performance degra-

dation is observedwhen the ReadMostly (variant 3) advice is wrong-

fully given to matrix a. This experiment demonstrates the signifi-

cant performance impact of choosing the right memory usage of

GPU memory.

3 DESIGN

CUDA allows programmers to use either discrete memory or uni-

fied memory APIs, potentially combined with different kinds of

advice, to manage memory objects in one application or benchmark.

Applications and benchmarks can be deployed with various combi-

nations of these choices at different granularity, such as program-

level, kernel-level, or object-level. The coarse-grain memory usage

optimization is easy to implement but may not deliver the best

performance gain. On the other hand, fine-grain memory usage

optimization involves carefully deciding a choice for each object

of each kernel, even with the consideration of the kernel’s calling

context. This is challenging to implement but may result the best

performance improvements.

We limit the scope of this work to be finding optimal memory us-

age choices at the object level, i.e., different memory usage choices

are used for different data objects for a given kernel function un-

der all calling context. For example, if a program has two kernel

functions and both refer to two data objects during the execution,

we can assign the default unified memory choice for the first data

object for the first kernel function, we then assign the UM com-

bined with the ReadMostly advice for the other data object. We can

re-assign different choices for the data objects for the next kernel.

3.1 Approach

We are developing a machine learning framework to automati-

cally decide the optimal choice of GPU memory usage for CUDA

applications. The framework has a two-phase workflow: offline

learning and online inference. As shown in Figure 1, the offline

learning phase uses code variants using different GPU memory us-

age choices, to collect a set of runtime profiling metrics via Nsight

CUDA Profiler2. The best performing versions are identified and

labeled. We then use the collected data as a training data set to

construct a classifier model via supervised learning. We explore

different kinds of machine learning classifiers such as Random For-

est, Random Tree, LogitBoost and select the one that yields highest

accuracy and F1 measures. The online inference phase uses Nsight

to collect runtime metrics of running applications and passes the

input feature vector to the learned model to guide the runtime GPU

2Nvidia Compute Command Line Interface https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html

MCHPC ’19, November 18, 2019, Denver, Colorado, USA Xu and Emani, et al.

memory usage choices for various applications. We elaborate the

two phases in the following subsections.

3.2 Offline Learning

In this offline learning phase, we design training configurations

that help to capture diverse memory usage variants. Running these

experiments will yield the raw training data to train the classifiers.

Training Benchmarks. We manually prepare several variants

of selected benchmarks and execute them to find the best per-

forming variant, which is then labelled for supporting training

later. Rodinia benchmark [3] is selected to implement different

memory usage choices for selected arrays or data structures. Fig-

ure 3 presents an example using unified memory and different

cudaMemAdvise() settings for two arrays (a and b) in gaussian

benchmark. xplacer_malloc() is a wrapper function we introduce

to switch between discrete or unified memory version of CUDA

memory allocation.

...
//Modified to utilize unified memory in xplacer_malloc()
a = (float ∗) xplacer_malloc (Size ∗ Size ∗ sizeof (float) , Managed);
b = (float ∗) xplacer_malloc (Size ∗ sizeof (float) , Managed);
...
//Assign unified memory advice for specific data object
if advOptionA == 1
cudaMemAdvise(a, Size∗Size∗ sizeof (float) , cudaMemAdviseSetReadMostly, 0);
elif advOptionA == 2
cudaMemAdvise(a, Size∗Size∗ sizeof (float) ,

cudaMemAdviseSetPreferredLocation, 0) ;
...
#endif
if advOptionB == 1
cudaMemAdvise(b, Size∗sizeof (float) , cudaMemAdviseSetAccessedBy, 0);
elif advOptionB == 2
cudaMemAdvise(b, Size∗sizeof (float) , cudaMemAdviseSetPreferredLocation, 0) ;
#endif
...
ForwardSub(); //Run the kernel function

Figure 3: Code showing gaussian benchmark using unified mem-

ory with memory advice.

Feature Engineering. We utilize the Nsight Compute command

line profiler to fetch detailed runtime performance metrics of the

benchmarks. We implement the data collection on machines us-

ing Tesla V100 GPUs. Nsight Compute provides metrics organized

within different sections. Each section focuses on a specific part

of the kernel analysis. The default profiling phase contains 8 sec-

tions, including GPU Speed Of Light, Compute Workload Analysis,

Memory Workload Analysis, Scheduler Statistics, Warp State Sta-

tistics, Instruction Statistics, Launch Statistics and Occupancy. We

collect a total of 49 non-zero-valued metrics that correspond to

these sections. We then utilize feature correlation and information

gain techniques to remove the redundant features. The remaining

9 useful features are listed in Table 2.

Model Training. We evaluate multiple classical machine learning

classification algorithms with the collected data. These models in-

clude classifiers such as Random Forest, Random Tree and Decision

Tree. To guarantee the robustness of our model, we use 10-fold

cross validation to verify the model’s performance and also ensure

Runtime

applications

runtime metrics

l1tex_cycles.avg

sm_cycles.sum
gpu_time.avg

dram_bytes.avg

...
l1tex_cycles.avg

sm_cycles.sum
gpu_time.avg

dram_bytes.avg

...
process via model

euler3d.cu

std::ifstream file(...);

file >> nel;

nelr = BLOCK_SIZE_0*...;

//float* h_areas = new float[nelr];

 h_areas = (float*)xplacer_malloc(...);

cudaMemAdvise(h_areas, advice,...);

...

euler3d.cu

std::ifstream file(...);

file >> nel;

nelr = BLOCK_SIZE_0*...;

//float* h_areas = new float[nelr];

 h_areas = (float*)xplacer_malloc(...);

cudaMemAdvise(h_areas, advice,...);

...

use unified memory

add specific advicensight fetch

reduce runtime
overhead, lower
latency

modify benchmark

11

22

44

55

get proper choice 33

Decision tree model

get optimal choice

Figure 4:Workflow of the online inference.

No. Feature Name

1 Elapsed Cycles

2 Duration

3 SM Active Cycles

4 Memory Throughput

5 Max Bandwidth

6 Avg. Execute Instructions Per Scheduler

7 Grid Size

8 Number of Threads

9 Achieved Active Warps Per SM

Table 2: List of selected features in the model.

the model performs evaluation on unseen data. We rely on model’s

prediction accuracy as the metric of evaluation since the GPU mem-

ory choice determined by this model has direct correlation to the

program execution time.

3.3 Online Inference

The online inference consists of five major steps, as shown in Fig-

ure 4. First, we fetch the runtime metrics from the running applica-

tions with the Nsight profiler. Next, a feature vector is composed

after normalizing these metrics, which is then passed as input to

the offline trained model. The model will then output its predicted

memory advice for each of the kernel instance. Once the new pre-

dicted choice is given, as shown in the fourth step, we then modify

the original application code to implement the optimal choice of

memory usage. Modifications to the source code can be automated

in the future by a source-to-source tool if available or by a library

support to switch among thememory advises. Finally, the optimized

code is run with the corresponding memory advice.

4 EVALUATION

4.1 Experiment Settings

We evaluate our approachwithmultiple benchmarks running on the

Lassen supercomputer at Livermore Computing [8]. Each compute

node of Lassen has two IBM Power9 CPUs and four Tesla V100

GPUs.

Machine Learning Guided Optimal Use of GPU Unified Memory MCHPC ’19, November 18, 2019, Denver, Colorado, USA

We selected four benchmarks from Rodinia [3] for our evaluation.

They are Computational Fluid Dynamics Simulation (CFD), Breadth-

first Search (BFS), Gaussian Elimination (Gaussian), and HotSpot as

shown in Table 3. All the variants are generated by two options

of flags (cudaMemAttachGlobal or cudaMemAttachHost) given to

data allocation by cudaMallocManaged API, and six memory ad-

vise options (no advise, ReadMostly, PreferredLocation for GPU,

PreferredLocation for CPU, AccessedBy GPU, and AccessedBy

CPU) for each kernel in the benchmark. For example, we specify

memory advises to three arrays in CFD benchmark. The overall

number of variants become 432 (2×6×6×6). There are six arrays

used in one GPU kernel for the BFS benchmark with a total of

93312 (2 × 66) variants. We reduce the variant number down to

only 84 (2×6×6) by only specifying advise to one array in a variant.

Note that we use large number of variants to extract the different

runtime metrics. When using in the training and prediction, we

category these variants by program-level advice based on the most

common advice among them with minimal execution time. We use

the default input data provided by the Rodinia benchmark suite

and generate additional input data sets for HotSpot and Gaussian

following the instructions given by the Rodinia suite.

Kernels Arrays Variants Input data set

CFD 4 3 (2×6×6×6) 3

BFS 2 6 (2×6×6) 3

Gaussian 2 3 (2×6×6×6) 67

HotSpot 1 2 (2×6×6) 8

Table 3: Benchmarks for experiments

4.2 Preliminary Results

We collect total 2,753 instances for training data. After normaliza-

tion and reformatting, the data is made into one single dataset. We

split them into ten subsets, train the evaluated models with many

algorithms based on nine of ten, and the final subset is used for

examining the predictions of advice from the trained models.

We evaluate the collected datawith various classifiers and display

the F-measure scores in Figure 5 compared against ground truth

which are the memory advice that yield best performance. Note

that F-measure score illustrates the harmonic mean of the fraction

of correctly predicted advice in all predicted results and the fraction

of correctly identified advice in the original results.

The measured values are across all the evaluated benchmarks

with various input data set sizes. It can be observed that when im-

plementing the model with a Random Forest classifier, it achieves

the best performance with F-measure up to 96.3%. These results

establish that our approach can effectively predict optimal choices

for the benchmarks. The model is generic and portable across dif-

ferent applications and input data set sizes and thus demonstrates

the potential use in guiding the optimal memory choices.

Fig. 6 shows performance comparisons between the execution

time from the original benchmarks which is the baseline for this

evaluation and from the codes with the predicted memory advice.

All the selected benchmarks with the predicted memory advice

achieve equivalent or better performance compared to the original

benchmarks. The model can thus effectively assist to achieve better

performance for the selected benchmarks.

Random Forest

Random Tree

J48

Bagging

REPTree

90 92 94 96 98

F-Measure (%)

C
la
s
s
if
ie
r

Figure 5: Evaluation of the model prediction accuracies of different

classifiers.

5 RELATED WORK

Numerous studies have explored optimization strategies to place

data within the various types of memories and caches of GPUs,

without considering unified memory. For example, PORPLE [4, 5]

is a portable approach using a lightweight performance model to

guide run-time selection of optimal data placement policies. Huang

and Li [6] have analyzed correlations among different data place-

ments and used a sample data placement to predict performance

for other data placements. Jang et al. [7] have presented several

rules based on data access patterns to guide the memory selection

for a Tesla GPU. Yang et al. [18] proposed compiler-based approach

to generate kernel variants for exploiting memory characteristics.

More recently, Stoltzfus et al. [15] designed a machine learning

approach for guiding data placement using offline profiling and

online inference on Volta GPUs. Bari et al. [2] studied the impact

of data placement on newer generations of GPUs such as Volta.

Many applications had been implemented with the unified mem-

ory in the high performance computing areas to reduce the com-

plexities of memory management [12]. An investigation of early

implementation of unified memory [9] showed that applications

did not perform well in most cases due to high overhead caused

by CUDA 6. Sakharnykh [14] presented a comprehensive overview

of unified memory on three generations of GPUs (Kepler, Pascal

and Volta), with a few application studies using advanced UM fea-

tures. Awan et al. [1] exploited advanced unified memory features

in CUDA 9 and Volta GPUs for out-of-core DNN training. They

observed minor performance degradation in OC-Caffe with the

help of memory prefetching and advise operations.

Unified memory is also studied under the context of OpenACC

and OpenMP. OpenARC [10] is an OpeACC compiler with exten-

sions to support unified memory. They found that unified memory

is beneficial if only a small random portion of data is accessed.

Wolfe et al. [17] studied how the data model is supported in several

OpenACC implementations. They mentioned some implementa-

tions were able to use unified memory. Mishra et al [13] evaluated

unified memory for OpenMP GPU offloading. They reported that

the UM performance was competitive for benchmarks with little

data reuse while it incurred significant overhead for large amount

data reuse with memory over-subscription. Li et al. [11] proposed

a compiler-runtime collaborative approach to optimize GPU data

under unified memory within an OpenMP implementation. Static

and runtime analysis are used to collect data access properties to

MCHPC ’19, November 18, 2019, Denver, Colorado, USA Xu and Emani, et al.

1M 65536 4096 1M kernel 2
0

2

4

6

8

10

12

14

T
im

e
 (

s
)

BFS

 Baseline

 Model predicted

Reduced execution

latency

(a) Execution time of BFS.

0.2m k4 97k k1 97k k4 193k k4
0

20

40

60

80

100

120

140

160

180

200

T
im

e
 (

s
)

CFD

 Baseline

 Model predicted

Reduced execution

latency

(b) Execution time of CFD.

64 128 256 208 1024
0

1

2

3

4

5

T
im

e
 (

s
)

Gaussian

 Baseline

 Model predicted

Reduced execution

latency

(c) Execution time of gaussian.

1024 2048 4096 8192
0

40

80

120

160

200

T
im

e
 (

s
)

hotspot

 Baseline

 Model predicted

Reduced execution

latency

(d) Execution time of hotspot.

Figure 6: The comparison of execution times between baseline benchmarks and model predicted performances.

guide if data should be placed on CPU or GPU memory, and how

to transfer the data (explicitly through traditional memory copy

operations vs. implicitly through UM) if mapped to GPU.

6 CONCLUSION & FUTUREWORK

In this paper, we present a novel machine learning-based approach

which can guide the optimal use of unified memory of GPUs for var-

ious applications at runtime. It consists of two phases: offline learn-

ing and online inference. After collecting and filtering the offline

metrics from multiple benchmarks, we train a machine learning

model based on remaining useful metrics. We then use the trained

model to guide the online execution of applications, by predicting

the optimal memory choices for each kernel based on its runtime

metrics. The experimental results show that given a set of CUDA

benchmarks, the proposed approach is able to accurately determine

what kind of memory choices are optimal: either in discrete mem-

ory or unified memory space (and combined with various memory

advice hints). It alleviates the burden on application developers by

automating the complex decision making process which otherwise

would require extensive, time-consuming experiments.

In the future, we will extend this work to evaluate the advice

choices at a finer granularity considering calling context. Second,

using collaborative compiler and runtime support, we will employ

runtime code generation and/or adaptation techniques to automat-

ically generate codes using suggested optimal memory choices.

Third, we will evaluate the overhead for collecting training data

and investigate how to reduce the overhead. Last but not least, the

model will be applied to more hardware platforms.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344 and supported by LLNL-LDRD 18-

ERD-006. This research was funded in part by the Argonne Lead-

ership Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357. LLNL-

CONF-793704.

REFERENCES
[1] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi Lu, and

Dhabaleswar K Panda. 2018. OC-DNN: Exploiting Advanced Unified Memory
Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training. In 2018
IEEE 25th International Conference on High Performance Computing (HiPC). IEEE,
143ś152.

[2] M Bari, Larisa Stoltzfus, P Lin, Chunhua Liao, Murali Emani, and Barbara Chap-
man. 2018. Is data placement optimization still relevant on newer gpus? Technical
Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44ś54.

[4] Guoyang Chen, Xipeng Shen, Bo Wu, and Dong Li. 2017. Optimizing data
placement on GPU memory: A portable approach. IEEE Trans. Comput. 66, 3
(2017), 473ś487.

[5] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. 2014. PORPLE: An extensible
optimizer for portable data placement on GPU. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
88ś100.

[6] Yingchao Huang and Dong Li. 2017. Performance modeling for optimal data
placement on GPU with heterogeneous memory systems. In Cluster Computing
(CLUSTER), 2017 IEEE International Conference on. IEEE, 166ś177.

[7] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. 2010. Exploiting
memory access patterns to improve memory performance in data-parallel archi-
tectures. IEEE Transactions on Parallel & Distributed Systems 1 (2010), 105ś118.

[8] Lawrence Livermore National Laboratory. 2019. Lassen supercomputer. (2019).
https://computing.llnl.gov/computers/lassen

[9] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt.
2014. An investigation of unified memory access performance in cuda. In 2014
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1ś6.

[10] Seyong Lee and Jeffrey S Vetter. 2014. OpenARC: extensible OpenACC compiler
framework for directive-based accelerator programming study. In Proceedings
of the First Workshop on Accelerator Programming using Directives. IEEE Press,
1ś11.

[11] Lingda Li, Hal Finkel, Martin Kong, and Barbara Chapman. 2018. Manage
OpenMP GPU Data Environment Under Unified Address Space. In International
Workshop on OpenMP. Springer, 69ś81.

[12] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An evaluation of
unified memory technology on nvidia gpus. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 1092ś1098.

[13] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chapman. 2017.
Benchmarking and evaluating unified memory for OpenMP GPU offloading. In
Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in HPC.
ACM, 6.

[14] Nikolay Sakharnykh. 2018. Everything You Need to Know About Unified Mem-
ory. (2018). http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf

[15] Larisa Stoltzfus, Murali Emani, Pei-Hung Lin, and Chunhua Liao. 2018. Data
Placement Optimization in GPU Memory Hierarchy using Predictive Modeling.
In Proceedings of the Workshop on Memory Centric High Performance Computing.
ACM, 45ś49.

[16] Tiffany Trader. 2019. Top500 Purely Petaflops; US Maintains Performance Lead.
(June 2019). https://www.hpcwire.com/2019/06/17/us-maintains-performance-
lead-petaflops-top500-list/

[17] Michael Wolfe, Seyong Lee, Jungwon Kim, Xiaonan Tian, Rengan Xu, Sunita
Chandrasekaran, and Barbara Chapman. 2017. Implementing the OpenACC data
model. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 662ś672.

[18] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU Compiler
for Memory Optimization and Parallelism Management. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’10). ACM, New York, NY, USA, 86ś97. https://doi.org/10.1145/1806596.
1806606

https://computing.llnl.gov/computers/lassen
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://www.hpcwire.com/2019/06/17/us-maintains-performance-lead-petaflops-top500-list/
https://www.hpcwire.com/2019/06/17/us-maintains-performance-lead-petaflops-top500-list/
https://doi.org/10.1145/1806596.1806606
https://doi.org/10.1145/1806596.1806606

Appendix: Artifact Description/Artifact Evaluation MCHPC ’19, November 18, 2019, Denver, Colorado, USA

SUMMARY OF THE EXPERIMENTS REPORTED

ARTIFACT AVAILABILITY

Software Artifact Availability:

List of URLs and/or DOIs where artifacts are available:

• Evaluation artifact: https://gitlab.com/AndrewXu22/optimal_unified_memory.git

• Original Rodinia Benchmark: http://lava.cs.virginia.edu/Rodinia/download.htm

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Nvidia GPU Tesla V-100

Operating systems and versions: Debian GNU/Linux 16.04

Compilers and versions: NVCC

Applications and versions: Rodinia Benchmark 3.1

Libraries and versions: CUDA 10.1 with Nsight command line tool

Key algorithms: Random Forest, J48

Input datasets and versions: provided in evaluation artifact

Paper Modifications:

ARTIFACT EVALUATION

The workflow can be performed with the following commands:

git clone https://gitlab.com/AndrewXu22/optimal_unified_memory.git

cd optimal_unified_memory

./script/driver.sh

UMap : Enabling Application-driven Optimizations

for Page Management

Ivy B. Peng∗, Marty McFadden∗, Eric Green∗, Keita Iwabuchi∗

Kai Wu†,Dong Li†,Roger Pearce∗, Maya B. Gokhale∗

∗Lawrence Livermore National Laboratory, Livermore, CA, USA
†University of California, Merced, CA, USA

∗{peng8, mcfadden8, green77, iwabuchi1, pearce7, gokhale2}@llnl.gov, †{kwu42, dli35}@ucmerced.edu

Abstract—Leadership supercomputers feature a diversity of
storage, from node-local persistent memory and NVMe SSDs
to network-interconnected flash memory and HDD. Memory
mapping files on different tiers of storage provides a uniform in-
terface in applications. However, system-wide services like mmap
are optimized for generality and lack flexibility for enabling
application-specific optimizations. In this work, we present UMap
to enable user-space page management that can be easily adapted
to access patterns in applications and storage characteristics.
UMap uses the userfaultfd mechanism to handle page faults in
multi-threaded applications efficiently. By providing a data object
abstraction layer, UMap is extensible to support various backing
stores. The design of UMap supports dynamic load balancing
and I/O decoupling for scalable performance. UMap also uses
application hints to improve the selection of caching, prefetching,
and eviction policies. We evaluate UMap in five benchmarks and
real applications on two systems. Our results show that leveraging
application knowledge for page management could substantially
improve performance. On average, UMap achieved 1.25 to 2.5
times improvement using the adapted configurations compared
to the system service.

Index Terms—memory mapping, memmap, page fault, user-
space paging, userfaultfd, page management

I. INTRODUCTION

Recently, leadership supercomputers provide enormous stor-

age resources to cope with expanding data sets in applications.

The storage resources come in a hybrid format for balanced

cost and performance [9], [11], [12]. Fast and small storage,

which is implemented using advanced technologies like persis-

tent memory and NVMe SSDs, often co-locate with computing

units inside compute node. Storage with massive capacity, on

the other hand, uses cost-effective technologies like HDD and

is interconnected to compute nodes through the network. In

between, burst buffers use fast memory technologies and are

accessible through the network. Memory mapping provides a

uniform interface to access files on different types of storage as

if to dynamically allocated memory. For instance, out-of-core

data analytic workloads often need to process large datasets

that exceed the memory capacity of a compute node [17].

Using memory mapping to access these datasets shift the

burden of paging, prefetching, and caching data between

storage and memory to the operating systems.

Currently, operating systems provide the mmap system call

to map files or devices into memory. This system service per-

forms well in loading dynamic libraries and could also support

out-of-core execution. However, as a system-level service, it

has to be tuned for performance reliability and consistency

over a broad range of workloads. Therefore, it may reduce

opportunities in optimizing performance based on application

characteristics. Moreover, backing stores on different storage

exhibit distinctive performance characteristics. Consequently,

configurations tuned for one type of storage will need to be

adjusted when mapping on another type of storage. In this

work, we provide UMap to enable application-specific opti-

mizations for page management in memory mapping various

backing stores. UMap is highly configurable to adapt user-

space paging to suit application needs. It facilitates application

control on caching, prefetching, and eviction policies with

minimal porting efforts from the programmer. As a user-level

solution, UMap confines changes within an application without

impacting other applications sharing the platform, which is

unachievable in system-level approaches.

We prioritize four design choices for UMap based on

surveying realistic use cases. First, we choose to implement

UMap as a user-level library so that it can maintain compat-

ibility with the fast-moving Linux kernel without the need to

track and modify for frequent kernel updates. Also, we employ

the recent userfaultfd [7] mechanism, other than the signal

handling + callback function approach to reduce overhead and

performance variance in multi-threaded applications. Third, we

target an adaptive solution that sustains performance even at

high concurrency for data-intensive applications, which often

employ a large number of threads for hiding data access

latency. Our design pays particular consideration on load

imbalance among service threads to improve the utilization of

shared resources even when data accesses to pages are skewed.

UMap dynamically balances workloads among all service

threads to eliminate bottleneck on serving hot pages. Finally,

for flexible and portable tuning on different computing sys-

tems, UMap provides both API and environmental controls to

enable configurable page sizes, eviction strategy, application-

specific prefetching, and detailed diagnosis information to the

programmer.

We evaluate the effectiveness of UMap in five use cases,

including two data-intensive benchmarks, i.e., a synthetic sort

benchmark and a breadth-first search (BFS) kernel, and three

real applications, i.e., Lrzip [8], N-Store database [2], and

an asteroid detection application that processes massive data

sets from telescopes. We conduct out-of-core experiments on

two systems with node-local SSD and network-interconnected

HDD storage. Our results show that UMap can enable flexible

user-space page management in data-intensive applications.

On the AMD testbed with local NVMe SSD, applications

achieved 1.25 to 2.5 times improvement compared to the

standard system service. On the Intel testbed with network-

interconnected HDD, UMap brings the performance of the

asteroid detection application close to that uses local SSD for

500 GB data sets. In summary, our main contributions are as

follows:

• We propose an open-source library1, called UMap that

leverages lightweight userfaultfd mechanism to enable

application-driven page management.

• We describe the design of UMap for achieving scal-

able performance in multi-threaded data-intensive appli-

cations.

• We demonstrate five use cases of UMap and show that en-

abling configurable page size is essential for performance

tuning in data-intensive applications.

• UMap improves the performance of tested applications by

1.25 to 2.5 times compared to the standard mmap system

service.

II. BACKGROUND AND MOTIVATION

In this section, we introduce memory mapping, prospective

benefits from user-space page management, and the enabling

mechanism userfaultfd.

A. Memory Mapping

Memory mapping links images and files in persistent storage

to the virtual address space of a process. The operating system

employs demand paging to bring only accessed virtual pages

into physical memory because virtual memory can be much

larger than physical memory. An access to memory-mapped

regions triggers a page fault if no page table entry (PTE) is

present for the accessed page. When such a page fault is raised,

the operating system resolves it by copying in the physical data

page from storage to the in-memory page cache.

Common strategies for optimizing memory mapping in

the operating systems include page cache, read-ahead, and

madvise hints. The page cache is used to keep frequently

used pages in memory while less important pages may need

to be evicted from memory to make room for newly requested

pages. Least Recently Used (LRU) policy is commonly used

for selecting pages to be evicted. The operating system may

proactively flush dirty pages, i.e., modified pages in the page

cache, into storage when the ratio of dirty page exceeds a

threshold value [19]. Read-ahead preloads pages into physical

memory to avoid the overhead associated with page fault

handling, TLB misses and user-to-kernel mode transition.

Finally, the madvise interface takes hints to allow the operating

system to make informed decisions for managing pages.

1UMAP v2.0.0 https://github.com/LLNL/umap.

Store	

Object	

Store	

Object	

P
h
y
sica

l	p
a
g
e
s	

Application	

Filler	0	

SSD	

Backend	
Storage	 PM	

Network-attached	

HDD	

				Network-

attached	SSD	

...	

UMap	

Store	

Object	

Filler	1	 Filler	2	 Filler	3	

Internal	Buffer	

Page	faults	

Evictor0	 Evictor1	

Virtual	Address	Space	

Prefetching	

Policies	

Eviction	

Policies	

Fig. 1: The UMap architecture.

B. User-space Page Management

User-space page management uses application threads to

resolve page faults and manage virtual memory in the back-

ground as defined by the application. The userfaultfd is a

lightweight mechanism to enable user-space paging compared

to the traditional SIGSEGV signal and callback function [7].

Applications register address ranges to be manged in user-

space, and specify the type of events, e.g., page faults and

events in un-cooperative mode, to be tracked. Page faults in

the address ranges are delivered asynchronously so that the

faulting process is blocked instead of idling, allowing other

processes to be scheduled to proceed.

The fault-handling thread in the application can atomically

resolve page faults with the UFFDIO COPY ioctl, which

ensures the faulting process is (optionally) waken up only after

the requested page has been fully copied into physical mem-

ory [7]. The fault-handling threads may utilize application-

specific knowledge to optimize this procedure, providing the

flexibility that is unachievable in kernel mode. For instance,

the application could select arbitrary page sizes, read-ahead

window size, or provides specific pages for prefetching or

evicting. All these optimizations remain inside one application

and will not impact other applications sharing the same

system. User-space paging is not only limited to backing store

on file systems. In contrast to kernel mode, the fault-handling

thread has the liberty to fetch data from a variety of backing

stores, such a memory server, databases, and even another

process.

III. DESIGN

In this section, we describe the design of UMap . We first

provide an overview of the architecture and then focus on four

optimizations for achieving high performance in user-space.

A. Overview

UMap provides an interface for applications to register

multiple virtual address ranges, called UMap regions that

bypass the kernel service and instead, be managed in user-

space. Figure 1 presents the UMap architecture. Dark blue

regions in the virtual address space are UMap regions. Each

region has a backing store, where the data is physically

located. UMap provides an abstraction layer in the store object

(yellow circles) for accessing different types of storage. When

an application accesses a UMap region, if the accessed page is

not present in the physical memory, page faults are triggered.

These page faults queue up in a FIFO buffer and multiple

UMap fillers cooperatively resolve these faults. If the requested

pages are not fetched in yet, UMap fillers will invoke the

access functions defined in the store object to read data from

the underlying storage. If the buffer is fully occupied, some

pages need to be evicted following a user-defined strategy. In

the background, a group of UMap evictors keep monitoring

the ratio of dirty pages in the buffer. Once the ratio of dirty

pages reaches a (configurable) high watermark, UMap evictors

will coordinately write data to the storage.

B. I/O Decoupling

Our design decouples the I/O operation from the fault-

handing threads to achieve high concurrency in long latency

tasks. I/O operations that move data between storage and

memory have a much longer latency than memory accesses.

For instance, latency to the state-of-art persistent memory

(PM) is about 100 - 500 ns [13], latency to NVMe-based SSD

is in the range of ≈ 20 µs [3] while accesses to HDD would

require several milliseconds. In contrast, memory accesses

typically takes 20-100 ns. To improve the I/O performance,

UMap employ a configurable number of threads for moving

data between storage and memory to exploit the bandwidth

supported by the hardware.

The dedicated two groups of I/O threads is referred to as

fillers and evictors, as illustrated in the orange and blue boxes

in Figure 1. Fillers split the workload of copying pages to

memory while evictors concurrently write data to storage. A

separate group of manager threads, typically with low concur-

rency, keeps polling for notification of tracked events from the

operating system. By decoupling the tasks into three groups

of workers, UMap has the flexibility to adapt the concurrency

in each group to reflect their different workload. In contrast,

a coupled design results in a long blocking operation that has

limited flexibility to optimize.

C. Dynamic Load Balancing

UMap employs a dynamic load balancing strategy to im-

prove resource utilization. We find that memory-mapped re-

gions could have hot and cold segments. Hot segments require

a higher level of concurrency for frequent data movement and

more physical memory for buffering data than cold segments.

For instance, social networks are considered as a type of

scale-free network whose degree distribution follows a power

law. Memory segment that stores high-degree vertices would

naturally result in more accesses than the regions that store

low-degree vertices. We design UMap to avoid load imbalance

even in such skewed data access patterns by dynamically

distributing workloads from all memory regions among UMap

fillers.

UMap employs a dynamic scheduling strategy similar to

“work stealing” approach in task-based programming mod-

els [15]. UMap uses a single UMap buffer object to manage

the metadata of in-memory pages for all regions. When

UMap receives the notification of a fault event from the

operating system, it appends the workload for resolving this

fault into a dynamically growing queue. A group of workers

split the pending workload to load pages from the backing

store collectively. Consequently, when hot memory segments

generate more workloads than others, they will be assigned

with more working threads. Orthogonal to the data fetching

task is the data flushing task that writes dirty pages back to

the persistent stores. When the number of dirty pages reaches

a high watermark, the workload is appended to a separate

queue and then split by a different group of workers. Figure 1

illustrates the shared (internal) buffer and the work distribution

among workers. The dynamic load balancing design prepare

UMap to cope with applications with diverse access patterns.

D. Extensible Back Store

UMap provides a data object abstraction layer to support

different types of backing stores. Currently, applications run-

ning on leadership supercomputers have multiple choices of

storage, including local SSD, network-interconnected SSD,

and HDD. In the future, architectures that provide disaggre-

gated memory and storage resources are likely to emerge.

Based on this observation, our design ensures that UMap is

extensible for current and future architectures.

UMap facilitates applications to associate their own backing

store for each memory region. The application has specific

control over which storage layer to access to resolve a page

fault. In this way, an application is presented with a uniform

interface as the virtual memory address space while UMap in

the backend handles data movement to/from various types of

storage.

E. User-controlled Page Flushing

We design UMap to enable user-space control on page flush-

ing to a persistent store. There are two motivations. First, the

system service may write dirty pages to storage whenever the

operating system deems appropriate. Unpredictable behavior

may occur if a memory range requires strong consistency such

as atomicity among multiple pages. Second, frequent page

flushing is known to cause increased performance variation

and degradation. For instance, RHEL trigger page flushing

when more than 10% pages are dirty [19]. With user control,

the application could avoid aggressive page flushing by setting

a high threshold or even postponed page flushing to a later

stage. UMap monitors the ratio of dirty pages to compare with

a user-defined high watermark to trigger page flushing as well

as a low watermark that suspends page flushing.

F. Application-Specific Optimization

UMap maintains a set of parameters for programmers with

application knowledge to configure page management. One

of the most performance-critical parameters is the internal

page size of a memory region, denoted as UMap page. UMap

supports an arbitrary page size for each memory region while

the system service only supports fixed page sizes. UMap

page defines the finest granularity in data movement between

memory and backing store. For the same memory region,

choosing a large UMap page could reduce the overhead of

metadata, but may also move more than accessed data into

memory. By tuning the page size, an application could identify

an optimal configuration that balances the overhead and data

usage. Also, an application can control the page buffer size,

which can alleviate OOM situations in unconstrained mmap.

UMap also supports a flexible prefetching policy that can

fetch pages even in irregular patterns. The operating systems

usually recognize page accesses as either sequential or ran-

dom, to increase or decrease the readahead window size,

respectively. Real-world applications, however, exhibit com-

plex access patterns, and the general prefetching mechanism

becomes insufficient. In contrast, UMap could prefetch a set of

arbitrary pages into memory, as informed by the application.

Moreover, an application can control the start of prefetching to

avoid premature data migration that interferences with pages in

use. This flexibility, together with knowledge from application

algorithm or offline profiling, eases application performance

tuning.

IV. IMPLEMENTATION

UMap is implemented in C + + and uses the userfaultfd

system call [1]. UMap enables application controls on page

management through both API and environmental variables.

The fault-handling thread resolves the page fault by calling

the application-supplied function (if provided), or performing

direct I/O to the backing store by invoking the defined access

functions. UMap uses the UFFDIO_COPY ioctl [7] to ensure

atomic copy to the allocated memory page before waking up

the blocked process.

A. API

UMap provides similar interfaces as mmap to ease porting

existing applications. An application can register/unregister

multiple memory regions to be managed by UMap through

the umap and uunmap interface. One additional flexibility

provided by UMap is the multi-file backed region. Given a

set of files, each with individual offsets and size, UMap maps

them into a contiguous memory region. While applications

can rely on UMap runtime for managing pages, UMap also

provides a plugin architecture that allows application to reg-

ister callback functions. A set of configuration interfaces with

naming convention umapcfg_set_xx, allow the application

to control paging explicitly: (1) the maximum size of physical

memory used for buffering pages; (2) the level of concurrency

for processing I/O operations in each group of workers; (3) the

threshold value for starting or suspending writing dirty pages

to back stores. Listing 1 illustrates a simple application that

uses paging and prefetching services in UMap .

Listing 1: UMap API

1

2 int fd = open(fname, O_RDWR);

3 void* base_addr = umap(NULL, totalbytes,

PROT_READ|PROT_WRITE, UMAP_PRIVATE, fd, 0);

4

5 //Select two non-contiguous pages to prefetch

6 std::vector<umap_prefetch_item> pfi;

7 umap_prefetch_item p0 = { .page_base_addr = &base[5 *
psize] };

8 pfi.push_back(p0);

9 umap_prefetch_item p1 = { .page_base_addr = &base[15 *
psize] };

10 pfi.push_back(p1);

11 umap_prefetch(num_prefetch_pages, &pfi[0]);

12

13 computation();

14

15 //release resources

16 uunmap(base_addr, totalbytes);

B. Environmental Controls

UMap uses a set of environment variables to control: the

number of fillers and evictors; the buffer size; the buffer

draining policy; and the read-ahead window size. We highlight

the key environment variables that UMap tracks to dictate its

runtime behavior:

• UMAP PAGESIZE sets the internal page size for memory

regions

• UMAP PAGE FILLERS sets the number of workers to

perform read operations from the backing store. Default: the

number of hardware threads.

• UMAP PAGE EVICTORS sets the number of evictors that

will perform evictions of pages. Eviction includes writing

to the backing store if the page is dirty and informing the

operating system that the page is no longer needed. Default:

the number of hardware threads.

• UMAP EVICT HIGH WATER THRESHOLD sets the

threshold in UMap buffer to trigger the evicting procedure.

Default: 90%

• UMAP EVICT LOW WATER THRESHOLD sets the

threshold in UMap buffer to suspend evicting procedure.

Default: 70%

• UMAP BUFSIZE sets the size of physical memory to be

used for buffering UMap pages. Default: (80% of available

memory)

• UMAP READ AHEAD sets the number of pages to read-

ahead when resolving a demand paging. Default: 0

• UMAP MAX FAULT EVENTS: sets the maximum num-

ber of page fault events that will be read from the kernel in a

single call. Default: the number of hardware threads.

C. Limitations

The current implementation uses the write protection sup-

port from the kernel to track dirty pages in the physical

memory. For pages in write-protected memory ranges, a writes

will trigger a fault that sends a UFFD message to handling

threads. Currently, the write protection support in userfaultfd

is only available in the experimental Linux kernel 2.

2Linux Patch https://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git.

TABLE I: The AMD Testbed Specifications

Platform Penguin R© Altus R© XE2112 (Base Board: MZ91-FS0-ZB)

Processor AMD EPYC 7401

CPU 24 cores (48 hardware threads) × 2 sockets

Speed 1.2 GHz

Caches 64KB 8-way L1d and 32KB 4-way L1i, 512KB 8-way private L2, 8MB
8-way shared L3 per three cores

Memory 16 GB DDR4 RDIMM × 8 channels (2400 MT/s) × 2 sockets

Storage ≈ 3 TB NVMe (type: HGST SN200)

TABLE II: The Intel Testbed Specifications

Platform S2600WTTR (Base Board: S2600WTTR)

Processor Intel Xeon E5-2670 v3 (Haswell)

CPU 12 cores (24 hardware threads) × 2 sockets

Speed 2.3 GHz (Turbo 3.1 GHz)

Caches 32KB 8-way L1d and 32KB 8-way L1i, 256KB 8-way private L2, 30MB
20-way shared L3

Memory 2 16 GB DDR4 RDIMM × 4 channels (1866 MT/s) × 2 sockets

Storage ≈ 1.5 TB NVMe SSD(type: HGST SN200)

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for the

evaluation. We summarize the configuration parameters of two

testbeds in Table I and II. The AMD testbed includes three

identical machines (Altus, Bertha, Pmemio) that feature two

AMD EPYC 7401 (24 cores /48 hardware threads) processors.

The testbed has a total of 256 GB DDR4 DRAM and 16

memory channels that operate at 2400 MT/s. Each machine

has a total of 4.65 TiB disk capacity, including 1.8 GB SATA

Micron 5200 Series SATA SSD. The platform runs Fedora 29

with Linux kernel 5.1.0-rc4-uffd-wp-207866-gcc66ef4-dirty

(experimental version) . We compiled all applications using

GCC 8.3.1 compiler with support for OpenMP. We use the

local SSD on the AMD testbed to evaluate the impact of

UMap page sizes in all applications. The second testbed, the

Intel testbed is on a cluster called flash. Its storage includes a

remote HDD through Lustre parallel distributed file system. It

also features 1.5 TB local SSD. We test the asteroid detection

application on this testbed to compare the performance of the

backing store on Lustre with the local SSD. The platform runs

the Red Hat Enterprise Linux 7.6 kernel. We compiled all

applications using GCC 8.1.0 compiler.

VI. EVALUATION

In this section, we evaluate the performance of UMap in

data-intensive benchmarks and applications. In particular, we

study the performance benefit of enabling flexible page sizes

at application level.

A. Out-of-core Sort

Our first evaluation uses an in-house sorting benchmark,

called umapsort. Umapsort is a multi-threaded program that

performs quicksort on values stored in a file. Thus, umap-

sort is a read-write workload. For the evaluation, we use

a single 500GiB data set of a sequence of ascending 64-

bit words. We configured the benchmark to memory map

data sets either using the mmap system call or UMap API.

Then, the program sorts the values in the memory region into

descending order. The application was configured to run with

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

0E+00	

5E+03	

1E+04	

2E+04	

2E+04	

3E+04	

3E+04	

4E+04	

4E+04	

5E+04	

5E+04	

4K	 64K	 128K	 256K	 512K	 1M	 2M	 4M	 8M	 16M	 32M	

S
p
e
e
d
u
p
	

T
im

e
	(
se
co
n
d
)	

Page	Size	

mmap	

UMap	

Reference	

Speedup	

Fig. 2: The performance of UMap for sorting 500 GiB data

on NVMe-SSD on the AMD testbed, as normalized to that of

mmap. UMap starts outperforming mmap when the page size

is larger than 64KB. At the page size of 8 MB, UMap achievs

2.5 times improvement compared to mmap.

96 OpenMP threads on the AMD testbed with 256GiB of

physical memory. The data set is stored on the local NVMe-

SSD device configured with its default boot-time values. We

report the experimental results in Figure 2.

We used different numbers of fillers and evictors to identify

the optimal concurrency for this benchmark. In most tested

cases, using 48 fillers and 24 evictors brings the best perfor-

mance. We then fixed the number of fillers and evictors to

test the impact of different page sizes. For the mmap tests, we

use its default setting and the standard 4KiB page size. For

UMap tests, we change the page size to identify the optimal

configuration. At the smallest page size, UMap shows much

higher overhead than mmap. We find that increasing page sizes

in UMap steadily improves the performance. At 64KiB page,

UMap starts outperforming mmap. By adjusting UMap page

size to 8MiB, the UMap version achieves 2.5 times speedup

compared to the mmap version. One reason for the improved

performance at larger page sizes is that the reduction in page

faults, which reduces the time spent in servicing page faults

and also aggregate smaller data transfers into bulky transfers to

exploit bandwidth. As the change is localized to the application

process, there is no need to modify any OS page size or file

system prefetch settings.

B. Graph Application

We implemented a conventional level-synchronous BFS

algorithm. Our BFS program takes a graph with compressed

sparse row (CSR) data format and stores only the CSR graph in

the storage device. We used a separated program to generate

a CSR graph to make a read-only benchmark and dropped

page cache before running the benchmark to achieve consistent

results. As for dataset, we used an R-MAT graph generator

with the edge falling probabilities used in the Graph500.

Figure 3 shows Umap’s BFS performance normalizing to

mmap’s best performance case where readahed is off. We

varied Umap page size from 4 KB to 4 MB and used the

default values for its other environmental variables. Umap

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

0E+00	

1E+03	

2E+03	

3E+03	

4E+03	

5E+03	

6E+03	

7E+03	

4K	 16K	 64K	 128K	256K	512K	 1M	 2M	 4M	 8M	 16M	32M	64M	

S
p
e
e
d
u
p
	

T
im

e
	(
se
co
n
d
)	

Page	Size	

mmap	

UMap	

Reference	

Speedup	

Fig. 3: The relative performance of UMap as compared to that

of mmap in BFS on an R-MAT scale 31 CSR graph (529 GB)

data on NVMe on the AMD testbed.

showed its best performance and overperformed mmap by

1.8X with 512 KB page size whereas mmap slowed down

as increased the page size. We clearly confirmed the benefit

of Umap’s variable page size feature in terms of not only

providing user level control but also better performance.

C. File Compression

Long Range ZIP (lrzip) is a program that implements a

full-file compression algorithm [8]. Compression algorithms

detect redundancies in input files to reduce size. Lrzip uses a

modified RZIP algorithm to achieve an effectively unlimited

compression window size. The original mmap version of lrzip

uses a large buffer, e.g., one-third of system memory, to mmap

a window that ’slides’ through the input file. When matches

are found, lrzip may use a secondary 64k mmap region to page

in any matching regions outside the main window. The UMap

version removes these sliding buffers and replaces them with

a single UMap region spanning the entire input file. UMap

runtime automatically manages the amount of file data paged

in memory during execution.

Our experiments run lrzip in pre-processing mode to com-

pare the performance of mmap with UMap in RZIP algorithm.

We constrain the available memory to the program to ensure

out-of-core execution, i.e., 16 GB memory and a 64 GB

input data. The UMap version sets the environmental variable

to limit UMap buffer for caching pages in memory. The

mmap version requires a command-line option to override

the system memory on the testbed. In Figure 4 , lrzip shows

low sensitivity to the change in page size. This insensitivity

is likely due to the mostly sequential access pattern in lrzip,

which only has occasional data reuse of earlier portions of

the input file, i.e., when duplicated hash values are found.

Once the page size exceeds 1MB, the UMap version stabilizes

performance at about 1.25 times that of the mmap system call.

D. Asteroid Detection Application

In this case study, we use UMap for an on-going study that

searches for transient objects, such as asteroids, in intermittent

time-series telescope data. We uses UMap to create a 3D cube

0.0	

0.5	

1.0	

1.5	

2.0	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4K	 16K	 64K	 256K	 1M	 2M	 4M	 8M	

S
p
e
e
d
u
p
	

T
im

e
	(
se
co
n
d
)	

Page	Size	

mmap	

UMap	

Reference	

Speedup	

Fig. 4: The relative performance of UMap as compared to that

of mmap version for LRZIP 64 GB random data on NVMe

on the AMD testbed.

of virtual address space, where each page is directly mapped to

pixel data in a series of image files. UMap has the extensibility

to integrate an application-specific FITS handler for resolving

page fault to a particular file, which would require extensive

porting efforts to achieve in mmap.

The application creates millions or even billions of vectors

and then virtually ‘traces’ them through the image cube

to calculate the median pixel value along each vector. The

starting point of each vector has a uniform random distribution

in the data and their slope follows a given linear function.

The backing store contains thousands of FITS format image

files. Page faults are resolved to the FITS files containing the

requested data, where the pixel data is subsequently read and

decoded before copied into the faulting page. Note that a page

fault may require access data in multiple files.

The evaluation uses a synthetic data set derived from 537

random images taken from an astronomical survey performed

on 12/232018 by the Dark Energy camera in Chile. These files

were resized via bicubic resampling to four times their original

dimension in each axis in order to emulate the characteristics

of real-world datasets. Each file is approximately 977MB with

dimensions of 16,000 by 16,000 pixels after this operation. The

entire dataset is approximately 512GB. For the Lustre tests,

transparent Lustre compression and de-duplication reduces this

size to 223GB.

The experiments process a single pass of 32 million vectors

with a UMap buffer size of 64GB. We demonstrate two

types of backing stores in this application. The first uses the

local SSD on the AMD testbed. The second uses a backing

store mapped to remote disks through a Lustre parallel file

system on the Intel testbed. Figure 5 and 6 present the results.

Our results show that the application has low sensitivity to

page sizes because data reuse among the vectors. A slight

performance degradation at large page sizes because larger

pages bring more unused data. The execution time initially

decreases to the optimal minimum at 1MiB page and then,

slightly increases as larger amounts of unused data begins to

contend for buffer space.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

64KB	 256KB	 1M	 4M	 16M	 64M	

T
im

e
	(
se
co
n
d
)	

Page	Size	

Asteroid	Detection	Application	

Fig. 5: Execution time of the asteroid application on local SSD

at various UMap page sizes at 256GB input.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

4KB	 16KB	 64KB	 256KB	 1M	 4M	 16M	 64M	

T
im

e
	(
se
co
n
d
)	

Page	Size	

SSD	

Lustre	

Fig. 6: Compare performance of the asteroid application on

local SSD and Lustre using 512GB input.

E. Database Workload

This use case demonstrates that UMap can be easily plugged

into existing database applications to improve user-space con-

trol over memory mapping. We ported N-Store [2], an efficient

NVM database, to use UMap API by changing approximately

ten lines of code. N-Store uses persistent memory like SSD as

the memory pool for data. Our experiments use a 384 GB

persistent memory pool on the local NVMe-SSD on the

AMD testbed. N-Store supports multiple executors to execute

transactions to the database concurrently. In our evaluation,

we sweep 4-32 executors to understand the scalability of

UMap on variable concurrency. Our workload uses the popular

YCSB [4] benchmark with eight million transactions and five

million keys. The measurement is repeated ten times, and we

report throughput from N-Store as the metric for performance.

We tested different numbers of fillers and evictors to select

the concurrency to be 48 fillers and 24 evictors for this

benchmark. Then, with a fixed number of fillers and evictors,

we test the impact of different page sizes. Figure 7 reports the

throughput of UMap version at different page sizes and the

original mmap version at the default 4KiB page. We find that

increasing page sizes in UMap does show a trend of increased

performance as other applications. The highest throughput is

achieved at 32KiB page size, which is about 34% improvement

of the mmap version. This page size is smaller than the optimal

0.0	

0.5	

1.0	

1.5	

0.0E+00	

2.0E+05	

4.0E+05	

6.0E+05	

8.0E+05	

1.0E+06	

1.2E+06	

4K	 16K	 32K	 64K	 128K	 256K	 512K	

Im
p
ro
v
e
m
e
n
t	
(x
)	

P
e
rf
o
rm

a
n
ce
	(
o
p
s/
s)
	

Page	Size	

mmap	

UMap	

Speedup	

Fig. 7: Compare database throughput using mmap and UMap

. UMap achieves up to 34% improvement at 32KB page.

0	

0.3	

0.6	

0.9	

1.2	

1.5	

1.8	

0.0E+00	

5.0E+05	

1.0E+06	

1.5E+06	

2.0E+06	

2.5E+06	

3.0E+06	

3.5E+06	

4.0E+06	

4	executors	 8	executors	 16	executors	 32	executors	

S
p
e
e
d
u
p
	(
x
)	

T
h
ro
u
g
h
p
u
t	
(o
p
s/
s)
	

Application	Concurrency	

mmap	

umap	

Speedup	

Fig. 8: A scaling test in N-Store using increased number of ex-

ecutors in the database shows that UMap sustains performance

scaling at increased application concurrency.

page sizes in other applications because the access pattern in

the benchmark has low locality and mostly random.

Figure 8 report the throughput of the database at an in-

creased application concurrency, i.e., the number of executors

increases. The scaling test results demonstrate the advantage

of UMap in addressing application requirements that change

dynamically. When the number of executors increases from

four to 32, the gap between the UMap version and the mmap

version increases (in the gray bars). In particular, the speedup

by UMap increases from 1.3x to 1.6x steadily (the red line).

This result highlights the importance of a scalable design in

UMap for handling various application workloads.

VII. DISCUSSION

There are several future directions for UMap to support

emerging architectures.

Multi-tiered Storage has tiered access latency and bandwidth.

Currently, UMap is extensible for new layers by defining

new data objects. In the future work, we will automate

data migration between data objects and adapt to application

characteristics to improve storage utilization.

Disaggregated Memory architecture has large-capacity mem-

ory servers connected to compute node through high-

performance network to provide memory on demand. UMap

can be used to port applications on such architecture by

providing a backing store that defines access functions likely

using RDMA for moving to/from memory server.

Byte-addressable NVM requires strong consistency for sys-

tem software like file systems and DAX-aware mmap lacks

such support [20]. The UMap buffer could provide applications

with explicit control on when to persist changes cached in

volatile memory.

VIII. RELATED WORKS

Previous works have identified limitations in system ser-

vices for data-intensive applications that perform out-of-core

execution for large data sets [5], [18]. [16] analyzes the

overhead in the path through Linux virtual memory subsystem

for handling memory-mapped I/O. They conclude that kernel-

based paging will prevent applications to exploit fast storage.

Our approach aims to provide flexibility to adapt memory

mapping to application characteristics and back store features.

DI-MMAP [17] provides a loadable kernel module that

combines with a runtime to optimize page eviction and TLB

performance. This approach requires updates to remain com-

patible with the fast-moving kernel. CO-PAGER [10] also

provides a user-space paging service by combining a kernel

module with a user-space component. CO-PAGER bypasses

complex I/O subsystem in the kernel to reduce the overhead of

accessing NVM. Our approach stays in user-space completely,

and require no modification in the kernel or updates due to

kernel updates. Moreover, our design can support a variety of

back stores. For instance, remote memory paging that fetches

data from a memory server or compute node [6], [14] could be

easily integrated into UMap by providing a new store object.

IX. CONCLUSIONS

In this work, we provide a user-space page management

library, called UMap , to flexibly adapt memory mapping to

application characteristics and storage features. UMap em-

ploys the lightweight userfaultfd mechanism to enable appli-

cations to control critical parameters that impact the perfor-

mance of memory mapping large data sets while confining

the customizations within the application without impacting

other applications on the same system. We evaluate UMap in

five applications using large data sets on both local SSD and

remote HDD. By adapting the page size in each application,

UMap achieved 1.25 to 2.5 times improvement compared to

the system service mmap. In summary, UMap can be easily

plugged into data-intensive applications to enable application-

specific optimization.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-

PROC-788145). This research was also supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science

and the National Nuclear Security Administration. This document was prepared as an

account of work sponsored by an agency of the United States government. Neither the

United States government nor Lawrence Livermore National Security, LLC, nor any

of their employees makes any warranty, expressed or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

government or Lawrence Livermore National Security, LLC. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States

government or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.

REFERENCES

[1] Andrea Arcangeli. Userland page faults and beyond. https://schd.ws/
hosted files/lcccna2016/c4/userfaultfd.pdf, 2019.

[2] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory database systems.
In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 707–722. ACM, 2015.
[3] Danny Cobb and Amber Huffman. NVMe overview. In Intel Developer

Forum. Intel, 2012.
[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154. ACM, 2010.

[5] Michael Cox and David Ellsworth. Application-controlled demand
paging for out-of-core visualization. In Proceedings. Visualization’97

(Cat. No. 97CB36155), pages 235–244. IEEE, 1997.
[6] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis,

Rishiyur Nikhil, and Robert Stets. Cashmere-vlm: Remote memory
paging for software distributed shared memory. In Proceedings 13th

International Parallel Processing Symposium and 10th Symposium on

Parallel and Distributed Processing. IPPS/SPDP 1999, pages 153–159.
IEEE, 1999.

[7] Linux kernel. Userfaultfd. https://www.kernel.org/doc/Documentation/-
vm/userfaultfd.txt, 2019.

[8] Con Kolivas. Lrzip – long range zip. https://github.com/ckolivas/lrzip,
2019.

[9] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. Hermes: a
heterogeneous-aware multi-tiered distributed I/O buffering system. In
Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing, pages 219–230. ACM, 2018.
[10] Feng Li, Daniel G Waddington, and Fengguang Song. Userland co-

pager: boosting data-intensive applications with non-volatile memory,
userspace paging. In Proceedings of the 3rd International Conference

on High Performance Compilation, Computing and Communications,
pages 78–83. ACM, 2019.

[11] Sai Narasimhamurthy, Nikita Danilov, Sining Wu, Ganesan Umanesan,
Stefano Markidis, Sergio Rivas-Gomez, Ivy Bo Peng, Erwin Laure, Dirk
Pleiter, and Shaun De Witt. Sage: percipient storage for exascale data
centric computing. Parallel Computing, 83:22–33, 2019.

[12] I. B. Peng and J. S. Vetter. Siena: Exploring the design space of
heterogeneous memory systems. In SC18: International Conference for

High Performance Computing, Networking, Storage and Analysis, pages
427–440, Nov 2018.

[13] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation
of the Intel Optane byte-addressable NVM. In Proceedings of the

International Symposium on Memory Systems. ACM, 2019.
[14] Sergio Rivas-Gomez, Roberto Gioiosa, Ivy Bo Peng, Gokcen Kestor, Sai

Narasimhamurthy, Erwin Laure, and Stefano Markidis. MPI windows
on storage for HPC applications. Parallel Computing, 77:38–56, 2018.

[15] Arch Robison, Michael Voss, and Alexey Kukanov. Optimization
via reflection on work stealing in tbb. In 2008 IEEE International

Symposium on Parallel and Distributed Processing, pages 1–8. IEEE,
2008.

[16] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom.
Efficient memory-mapped I/O on fast storage device. ACM Transactions

on Storage (TOS), 12(4):19, 2016.
[17] Brian Van Essen, Henry Hsieh, Sasha Ames, Roger Pearce, and Maya

Gokhale. DI-MMAP–a scalable memory-map runtime for out-of-core
data-intensive applications. Cluster Computing, 2013.

[18] Brian Van Essen, Roger Pearce, Sasha Ames, and Maya Gokhale.
On the role of nvram in data-intensive architectures: an evaluation.
In 2012 IEEE 26th International Parallel and Distributed Processing

Symposium, pages 703–714. IEEE, 2012.
[19] Rik van Riel and Peter W. Morreale. Sysctl in kernel version 2.6.29.

https://www.kernel.org/doc/Documentation/sysctl/vm.txt, 2008.
[20] Jian Xu and Steven Swanson. NOVA: A log-structured file system for

hybrid volatile/non-volatile main memories. In 14th USENIX Conference

on File and Storage Technologies (FAST 16), pages 323–338, 2016.

Extending OpenMP map Clause to Bridge Storage

and Device Memory

Kewei Yan
University of North Carolina at Charlotte

Charlotte, North Carolina, USA

kyan2@uncc.edu

Xinyao Yi
University of North Carolina at Charlotte

Charlotte, North Carolina, USA

xyi2@uncc.edu

Anjia Wang
University of North Carolina at Charlotte

Charlotte, North Carolina, USA

awang15@uncc.edu

Yonghong Yan
University of North Carolina at Charlotte

Charlotte, North Carolina, USA

yyan7@uncc.edu

Abstract—Heterogeneous architectures for high performance
computing, particularly those systems that have GPU devices
attached to the host CPU system, offer accelerated performance
for a variety of workloads. To use those systems, applications are
commonly developed to offload most computation and data onto
an accelerator while utilizing host processors for helper tasks
such as I/O and data movement. The approach requires users to
program I/O operations for reading and writing data from and to
storage, and to and from host memory. Then users are required
to program operations for moving data between host memory
and device memory. In this paper, we present our extension to
the OpenMP map clause for programming directly reading and
writing data between storage and device memory. The extension
includes mechanism for handling metadata such that metadata
can be manipulated independently from data itself. This work
demonstrates a prototype runtime, and the support for binary
and image data format, including jpeg and png, with OpenCV.
Experiments on matrix and image processing kernels show that
the designed extension can significantly reduce programming
efforts for manipulating data and metadata among storage, host
memory, and device memory.

Index Terms—OpenMP, map clause, accelerator, data move-
ment, storage and memory

I. INTRODUCTION

The past decade has seen dramatically increased complexity

of computer systems for high performance computing. We

have experienced the increase of parallelism from 10s to 100s

and 1000s cores. Memory and storage systems have been

changed significantly, including the adoption of 3D-stacked

memory [1], and the use of high-density persistent memory

that has both storage and memory properties. The widely-

used heterogeneous architectures, particularly those that use

GPU accelerators for HPC applications, introduce a discrete

and separate memory space between host memory and device

memory, adding another dimension of memory complexity

for node-level parallel programming. On top of decomposing

computation and mapping parallelism onto hardware [2], [3],

users now often spend a large amount of efforts to develop

and tune code for data movements between different memory

spaces, and to optimize local and shared data access with

regard to the memory hierarchy and storage system.

Parallel programming models for HPC such as OpenMP and

OpenACC provide high-level APIs for programming acceler-

ators by annotating sequential or CPU-parallelized code with

pragmas. These pragmas, such as the OpenMP’s target di-

rective and map clause, and OpenACC’s similar directives in-

cluding acc, copyin and copyout can be used to indicate

compiler how to generate code for the runtime operations for

offloading data and computation between host and accelerators

(or devices). Compared with using low-level APIs such as

NVIDIA CUDA and OpenCL, such APIs significantly improve

the productivity of programming accelerators by reducing

large amount of hand-tuning efforts for platform-dependent

optimization. A common practice to program application on

accelerators is to let the application offload most computation

and data onto an accelerator while utilizing host processors for

helper tasks such as I/O and data movement. The approach

requires users to program I/O operations for reading and

writing data from and to storage, and to and from host memory.

Then users are required to program operations for moving data

between host memory and device memory. While GPU unified

memory (with host) and the upcoming GPUDirect Storage [4]

technique offers driver-based solutions to enable GPU’s direct

access to host memory and storage, correctly using those

APIs still requires understanding of the storage and memory

system in heterogeneous architectures, and substantial amount

of programming efforts.

In this paper, we explore high-level APIs for bridging data

movement between storage and device memory in accelerator-

based heterogeneous systems with goals to reducing pro-

gramming efforts of handling I/O between storage and host

memory, and for moving data between host and device. The

technical contribution includes: 1) we develop extension to the

OpenMP map clause for reading and writing data from and

to an I/O URI, to and from a device memory. This extension

enables direct storage and network access for a program from

device without the need to write code for I/O operations; 2) we

develop mechanism for handling metadata such that metadata

can be manipulated independently from data itself; 3) we

have demonstrated the implementation of the runtime support,

and experimented POSIX stream data and image data format

with OpenCV using matrix and image processing kernels. Our

prototype and experiments show that the designed extension

can significantly reduce programming efforts for manipulating

data and metadata among storage, host memory and device

memory.

In the rest of the paper, Section II provides description about

the background and motivation of this work. In Section III,

we present our extension to the OpenMP map clause to

address the need mentioned in the paper. In Section IV,

we discuss how the runtime supports those extension in the

implementation and evaluation results generated from matrix

and image processing kernels. Related work is discussed in

Section V and the paper concludes in Section VI.

II. BACKGROUND AND MOTIVATION

High level programming models such as OpenMP and

OpenACC provide pragma APIs for users to annotate code and

data region to be offloaded to accelerators for computation. In

this section, we describe how to use those APIs focusing on

the data mapping and data movement clause, and thus motivate

our work.

A. OpenMP map clause

The OpenMP’s map clause is used with the OpenMP

device related directives (e.g. target, target data)

for indicating how data should be copied between host mem-

ory and device memory[5]. The syntax of the map clause is

as follows and Figure 1 demonstrates its usage.

map([[map-type-modifier[,] [map-type-modifier[,]...] map-

type :] locator-list).

1 extern void init(float*, float*, int);

2 void vec_mult(float p[N], float *v1, float *v2,

int N) {

3 init(v1, v2, N);

4 #pragma omp target map(to: N, v1[0:N], v2[:N])

map(from: p)

5 #pragma omp parallel for

6 for (int i=0; i<N; i++)

7 p[i] = v1[i] * v2[i];

8 }

Fig. 1: Example of using map clause for specifying mapping of

scalar variable (N), array (P), and array sections (v1[0:N] and

v2[:N]). The target directive is used to indicate offloading

of the associated code region.

An item of locator-list in the syntax can be any l-value

expression, which declares the data to be mapped. The map-

type-modifier and the map-type specify the effect of the map

clause. The map-type could be to, from, tofrom, alloc,

release and delete. map-types to and from indicate

one-way transfer, to device or to host. tofrom combines to

and from modifiers together. Modifier alloc indicates the

memory need to be allocated for the data. Modifiers release

and delete indicate the allocated memory need to be re-

leased or deleted, respectively. For the similar functionality as

the OpenMP’s map clause, OpenACC has clauses of copyin,

copyout, copy, create, delete, and present.

The map-type-modifiers could be always, close and

mapper(mapper-identifier). The always option means that

regardless of whether the items in the locator-list are deleted

or added, the data is always mapped according to the map-

type. For example, if the map-type is to or tofrom, and

always is used, the value of the original list item will be

copied to the device environment, regardless of whether the

item was mapped before or not. The close map-type-modifier

is a hint to the runtime to allocate memory close to the target

device. The mapper map-type-modifier indicates the data will

be mapped following a predefined pattern. And the mapper-

identifier indicates the mapper to be used in the current map

clause.

OpenMP allows mapping user-defined data type, e.g. a

struct variable. In general, if a list item in a map clause is

a variable of struct type, then it is treated as if each struct

element in the variable is a list item in the clause. If the list

item is an element of a struct, then all other elements in the

struct would form a struct sibling list for mapping. Figure 2

gives an example. In this example, S.a, S.b and S.p in the list

of the map clause have corresponding variables and storage on

the device. But S.buffera, S.bufferb and S.x cannot be accessed

from device since they are not specified in any map clause.

1 struct foo {

2 char buffera[1000000], bufferb[1000000];

3 float x, a, b, *p;

4 };

5
6 int main() {

7 struct foo S;

8 S.a = 2.0; S.b = 4.0;

9 S.p = (float *)malloc(sizeof(float)*100);

10 for(int i=0; i<100; i++) S.p[i] = i;

11 #pragma omp target map(alloc:S.p) map(S.p

[0:100]) map(to:S.a, S.b)

12 for(int j=0; j<100; j++)

13 S.p[j] = S.p[j]*S.a + S.b;

14 return 0;

15 }

Fig. 2: Example of using map clause for struct mapping

OpenMP also allows for users to declare a mapper using

the declare mapper directive, and use the mapper in the

map clause to do default data mapping associated with certain

data types or customized mapping between host memory and

device memory. The syntax is shown below:

declare mapper([mapper-identifier:] type var) [clause[

[,] clause] ...]

The optional mapper-identifier field specify the mapper

name that can be used later within map clause via modi-

fier mapper(mapper-identifier). The type field indicate user-

defined data type associated with this mapper. clause here

are mainly the map clauses that are for specifying the map-

ping rules. Figure 3 shows an example of using declare

mapper directive. The directive specifies a mapper identified

by my mapper that should be applied to the myvec t type.

Line 9 shows how we can use the mapper in map clause, with

the mapping rules of the mapper applied to the s variable of

myvec t type.

1 typedef struct myvec {

2 size_t len;

3 double *data;

4 } myvec_t;

5 #pragma omp declare mapper(my_mapper: myvec_t v

) map(v, v.data[0:v.len])

6 ...

7 myvect_t s;

8 ...

9 #pragma omp target map(mapper(my_mapper), to: s)

Fig. 3: Example of declare mapper

B. Motivation

In the current OpenMP specification, the map clause can

be used for only mapping and transferring data between

memories, mainly between host memory and device memory.

For applications that process large amount of data, a typical

workflow of using accelerator has been 1) reading data from

storage or network to host memory, 2) copying data to device

memory, 3) processing data, 4) copying results back to the

host memory, and 5) writing data to the storage. Thus with

the OpenMP target directive and map clause, users have to

program I/O operations for reading and writing data between

storage and host memory. To reduce the programming effort,

our extension relaxes the restriction of map clause to enable

direct access to data at any location.

III. EXTENSION TO OPENMP MAP CLAUSE

Our goal for extending OpenMP map clause is to improve

the productivity of parallel programming with data processing.

We propose to unify major data processing operations with

much simpler interface, including loading data from storage,

laying out data in memory, moving data between host memory

and device memory and handling metadata. In this section,

we present our extension and illustrate the extension with

examples.

A. Design

The current syntax of the map clause in the specification is

“ map([[map-type-modifier[,] [map-type-modifier[,]...] map-

type:] locator-list)”. Our extension is to append an optional

field for a list item of the locator-list to include the source or

destination location of the data. The syntax can be described

as follows:

list-item [= {[data-format-driver:] data-location[, place-

modifier][, metadata([place-modifier,] meta-identifier)]}].

The extension allows for specifying a data-location in the

storage, network, or a network live stream. It could refer to

a local file, network URL, or a mounted storage device. A

data-location includes a URL, and an optional range field.

The range field is used to specify a range of data-location

where data are to be read from or written to. Thus data can

be partially loaded by specifying a linear range of the location

at the data-url. It works like array section. For instance, data-

url[lower-bound:length] indicates to read or write data at the

location starting from index lower-bound for length elements

continuously. The data range can be applied to different data

formats. The unit of data depends on the corresponding data

format. For POSIX stream data, it’s assumed that each element

is a char, which takes one byte. In other cases, the data type

of elements is determined by the specific data-format-driver.

data-format-driver indicates the driver that should be used

to read and write data from data source or destination location.

Currently, we experimented POSIX stream data access and

image access through OpenCV library. data-format-driver can

be one of the following in the current implementation: posix,

jpeg, png, or user-defined-data-driver. If it’s not specified,

the data are handled as POSIX stream data by default. This

field is extendable for users who want to define their driver

for application-specific data format. We expect to define API

conventions for users to create a driver so that it can be

integrated with our extension and the runtime implementation.

The metadata field and its parameters are used to specify

where metadata should be read to or written from. The

provider of a data-format-driver defines how metadata should

be read or written when creating such a driver. For example,

POSIX stream data format does not require metadata. For

image data format, we use OpenCV library to handle image

metadata.

The place-modifier, which can be host or hostonly,

indicating whether data or metadata should be read into or

written from host as well as the device, or from host only. This

field is optional. If it is not used, it indicates data or metadata

will only be read to or written from device of the associated

target directive. The place-modifier for data and metadata

has slightly different semantics depending on whether the map-

type-modifier of the map clause is to or from. For to map

type, if the place-modifier is not provided, data or metadata

will be read to the device memory only. The host place-

modifier indicates to read data or metadata onto host and

device data environment. hostonly indicates to read data or

metadata to the host only but not device. For the from map

type, if the place-modifier is not provided, data or metadata on

the device will be written to the provided data-location. The

host and hostonly place-modifier have the same semantics

indicating that the data or metadata source for writing are

located in host environment.

To specify a source or destination location field of a mapped

list-item, four parameters can be provided. Only one parameter

data-location is required and the other three are optional. The

extension maintains backward compatibility of the map clause

since if the source or destination field is not present for a list-

item, it has the same syntax as of the standard map clause.

B. Examples

In this subsection, we show three examples that use our ex-

tension. They are matrix multiplication, and image processing

with or without handling metadata. Each of them has been

implemented with annotated pragmas to demonstrate how the

proposed OpenMP extension works.

1) POSIX stream data: In this case, matrix multiplication

is shown as an example for illustration. Figure 4 shows that

matrices A and B, which are read from files vectorA.data

and vectorB.data, produce matrix C. Then matrix C is

saved to file vectorC.data. In this situation, users do not

need to write any code for data copy from storage to the

memory of either host or device. Moreover, when the result is

going to be saved in a certain file, users only need to specify

the file destination, as shown in the figure for matrix C.

1 void mm(float *A, const float *B, float *C, int

numElements) {

2 #pragma omp target map(to:A[0:numElements]={"

data/vectorA.data"}, B[0:numElements]={"data

/vectorB.data"}) map(from:C[0:numElements

]={"data/vectorC.data"})

3 int i,j,k;

4 #pragma omp for private(i,j,k)

5 // for loops

6 ...

7 }

Fig. 4: Example of using the extended map clause for matrix

multiplication

2) image data: Smoothing is very common in image pro-

cessing. It applies a filtering kernel to each pixel of the image

and update the values properly. Figure 5 shows that the first

map clause is used to transfer the image data from the input

file image_in.jpg to device directly and its metadata is

stored in meta_in variable for later use. Users do not need

to write extra code for I/O operations since they are covered

by the extended map clause. Similarly, the second map clause

is used to write the updated image data imgout on GPU to

the output file image_out.jpg.

In this case, only image data need to be mapped to acceler-

ator for computing. The metadata, such as image size, will not

be modified. They are copied from input file to output file via

an intermediate variable meta_in. The place-modifier host

in both map clauses indicates that the metadata are stored only

on host temporarily.

In the following example, Figure 6 shows an application

involving data movement as well as metadata handling. It’s

used for image resizing and the metadata are modified. In

this case, users have to provide modified metadata in the

map clause to generate correct output file. Because the new

metadata have to be ready ahead of the output, to resize an

image requires two pragmas. Line 5 shows that metadata of

the image are loaded into meta_in variable on host only.

Line 10 shows the code that generates the new metadata

stored in meta_out variable. They both are stored in the

host environment since we only need CPU to process the

1 uchar* imgin, imgout;

2 void* meta_in;

3 #pragma omp target \

4 map (to: imgin = {jpeg : "image_in.jpg",

metadata(host: meta_in)}) \

5 map (from: imgout = {jpeg : "image_out.jpg",

metadata(host: meta_in)})

6 for (i=1; i<row-1; i++)

7 for (j=1; j<col-1; j++)

8 imgout[i*col+j] = filter(imgin, i, j);

Fig. 5: Example of using the extended map clause for smooth-

ing image

metadata. Finally, the new image data computed by device and

metadata stored in meta_out variable are combined together

to produce the output file image_out.jpg.

1 uchar* imgin, imgout;

2 void* meta_in, meta_out;

3 int row = 800, col = 600;

4 #pragma omp target \

5 map (to: imgin={jpeg: "image_in.jpg", metadata

(host_only: meta_in)})\

6 map (alloc: imgout[800*600])

7 for (i=1; i<row-1; i++)

8 for (j=1; j<col-1; j++)

9 imgout[i*col+j] = zoom(imgin, i, j);

10 meta_out = transform(meta_in, row, col);

11 #pragma omp target data \

12 map (from: imgout = {png: "image_out.png",

metadata(host: meta_out)})

Fig. 6: Example of using the extended map clause for resizing

image

IV. PROTOTYPE IMPLEMENTATION FOR THE RUNTIME

A. Implementation

In this section we demonstrate how the extended map clause

can be implemented in the runtime for NVIDIA GPU with

CUDA using host memory as bounce buffer. As indicated in

our related work, some of existing solutions use host memory

as bounce buffer in the library level or driver level, thus our

prototype is representative of those work. The implementation

of using host-bypass solutions such as NVIDIA GPUDirect

storage is our future work when the support for GPUDirect

or other similar techniques are available. At the end of

this section, we further discuss the potential benefits of the

extension using matrix and smoothing kernels.

There are two ways to use CPU memory as bounce buffer.

For the first one, host memory is used as bulk bounce buffer

for device global memory. Data are read into host bounce

buffer from storage according to the type of data-format-

driver. Then, cudaMalloc() is called to allocate a bulk

memory for data which is to be offload to GPU. Next step,

cudaMemcpy() is called for copying data from host bounce

buffer to device memory. After finishing computing work, the

result is copied back by calling cudaMemcpy() as well. In

this approach, computation data are read or written in bulk

directly between storage, host memory and device memory. It

is hard to achieve pipelined data movement and overlapping

data movement and computation in this approach since the

amount of data to be moved is determined by the application.

The amount of data is also limited by the size of device

memory. However, for application that has high reuse data

access pattern, this approach enables near data access for all

the data since they are copied to the device memory at once.

The second way of using host memory as bounce buffer is

through CUDA Unified Memory approach. Unified memory

can be allocated using cudaMallocManaged() function.

Data in CUDA Unified Memory is shared between host and

GPU via paging mechanism, thus we call it page bounce

buffer. No explicit cudaMemcpy() calls are needed. With

GPU paging mechanism, when a GPU accesses data that is in

unified memory, but not in GPU, GPU initiates page fault

signal to the driver on the CPU. The driver has a paging

thread that sends the page from host to GPU. With unified

memory and paging mechanism, data are copied to GPU on

demand, which may increase data access latency compared

with bulk data movement. But it allows for overlapping paging

and computation.

In the next two subsections, implementations for both

POSIX stream data and image data are shown for the two

approaches of using host memory as bounce buffer.

1) POSIX stream data: Pseudo codes shown in Figure 7

and Figure 8 are the implementations of matrix multiplication

example using the extended map clause, which is shown in

Figure 4. Figure 7 is for using host memory as bulk bounce

buffer for GPU global memory. In this case, fread() is used

to copy the bulk data from storage to host memory. The size

of array is given by N*K, determined by the application. The

data type of the array element is float. cudaMalloc()

and cudaMemcpy() are used for memory allocation and data

movement between host memory and device memory. Figure 8

is for using host memory as page bounce buffer via GPU Uni-

fied Memory. In this version, only cudaMallocManaged()

is needed to allocate unified memory, and on-demand paging

between host memory and device memory are handled by the

driver.

2) image data: For the program in Figure 5, one can

manually implement in the similar way as we present in

Figure 9, which demonstrates a typical runtime implemen-

tation to support our extension using host memory as bulk

bounce buffer for global memory. Figure 10) shows the

implementation using GPU Unified Memory. In this way the

CUDA runtime will manage the data transfer between host and

device automatically using paging mechanism. However, these

two implementations requires users to have sufficient CUDA

programming experiences besides OpenMP knowledge.

As for handling metadata when processing images, if meta-

data are specified, OpenCV functions will be called to load

both image data and metadata from storage to the destination

given by users. The destination could be host or device.

1 fd = fopen("data/vectorA.data", "rb");

2 fread(tA, sizeof(float), N*K, fd);

3 fclose(fd);

4 ...

5 cudaMalloc(&A, sizeof(float)*N*K);

6 cudaMemcpy(A, tA, sizeof(float)*N*K,

cudaMemcpyHostToDevice);

7 ...

8 cudaMalloc(&C, sizeof(float)*N*M);

9 ...

10 float *h_C = (float *)malloc(sizeof(float)*N*M);

11 ...

12 // MM kernel

13 ...

14 cudaMemcpy(h_C, C, sizeof(float)*N*M,

cudaMemcpyDeviceToHost);

15 ...

16 FILE *f3;

17 f3 = fopen("data/vectorC.data", "wb");

18 fwrite(h_C, sizeof(float), N*M, f3);

19 fclose(f3);

Fig. 7: Implementation of extended map clause using GPU

global memory for matrix multiplication.

1 fd = fopen(argv[1], "rb");

2 printf("The size of array1 is: %ld\n", N*M);

3 cudaMallocManaged(&A, sizeof(float)*N*M);

4 fread(A, sizeof(float), N*M, fd);

5 fclose(fd);

6 ...

7 cudaMallocManaged(&C, sizeof(float)*N*M);

8 ...

9 // MM kernel

10 ...

11 FILE *f3;

12 f3 = fopen("data/vectorC.data", "wb");

13 fwrite(C, sizeof(float), N*M, f3);

14 fclose(f3);

Fig. 8: Implementation of extended map clause using GPU

unified memory for matrix multiplication.

B. Benefits

The extension of map clause reduces the programming

effort significantly. With the map extension, users do not need

to implement I/O operations and data movements on their own

with lengthy code (compare Figure 5 and Figure 9 or 10).

The other benefit is that the extension enables more oppor-

tunities of optimization. We choose two use cases to measure

detailed execution time cost, which are image smoothing and

matrix multiplication. They are implemented with GPU global

memory and unified memory, respectively.

The break-down execution time of image smoothing are

shown in Tab. I and II. The time for writing output data to

storage dominates the total time in both global memory and

unified memory cases in this example. One of the potential

optimizations is to overlap the I/O operation with kernel

execution via mmap() function or image processing pipeline.

mmap() maps the storage to memory and only transfers the

data where they are actually required via CPU paging.

The other typical application is matrix multiplication, which

1 uchar* imgin_d, imgout_d, imgout_h;

2 uchar* gpu_filter(uchar*);

3 Mat image = cv::imread("image_in.jpg");

4 size_t img_size = input.ncols * input.nrows;

5 cudaMalloc(imgin_d, img_size);

6 cudaMalloc(imgout_d, img_size);

7 malloc(imgout, img_size);

8 // copy data HtoD

9 cudaMemcpy(imgin_d, image.data, img_size,

cudaMemcpyHostToDevice);

10 // run GPU kernel

11 imgout_d = gpu_filter(imgin_d);

12 // copy data DtoH

13 cudamemcpy(imgout_h, imgout_d, img_size,

cudaMemcpyDeviceToHost);

14 // write result to a new file

15 image.data = imgout_h;

16 cv::imwrite("image_out.jpg", image);

Fig. 9: Implementation of extended map clause using OpenCV

and global memory. Metadata is loaded to the host only and it

is used to write to the output image in this example. For other

algorithms, such as enlarging images, metadata may need to

be changed to match the output image.

1 uchar* imgin, imgout;

2 uchar* gpu_filter(uchar*);

3 Mat image = cv::imread("image_in.jpg");

4 size_t img_size = input.ncols * input.nrows;

5 cudaMallocManaged(imgin, img_size);

6 cudaMallocManaged(imgout, img_size);

7 memcpy(imgin, image.data, img_size);

8 // run GPU kernel

9 imgout = gpu_filter(imgin);

10 // write result to a new file

11 image.data = imgout;

12 cv::imwrite("image_out.jpg", image);

Fig. 10: Implementation of extended map clause using

OpenCV and unified memory. Metadata is loaded to the host

only and it is used to write to the output image.

is more compute-intensive than image smoothing. According

to Tab. III and IV, GPU kernel consumed the most of total

time. Therefore, the data transfer and I/O operations can be

divided into multiple smaller pieces and overlapped in the

GPU kernel computation.

Our implementation can leverage emerging techniques such

as GPUDirect Storage from NVIDIA, which is to be released

in the near future. This library skips the system memory

thus no bounce buffer is involved. We may apply it to our

implementation, for direct access to any storage or NVMe

from GPU. Not only the storage, the network could also be

considered as a main source for data. We have noticed that

GPUDirect RDMA from mellanox, or now part of NVIDIA,

is already there. We believe that extending map clause for

multiple source could be possible.

V. RELATED WORK

Previous work has shown efforts of enhancing connecting

GPU to a third party peer device directly, including GPU,

Image Size Input Output HtoD DtoH Kernel

512x512 3 274 0.066 0.061 0.204
512x1024 6 629 0.142 0.123 0.526
1024x1024 10 1285 0.338 0.706 0.853
1024x2048 20 2622 0.694 2.197 2.186
2048x2048 35 4833 1.471 5.289 3.545

TABLE I: Breakdown of execution time for image smoothing

using global memory (ms)

Image Size Input Output HtoD DtoH Page Fault Kernel

512x512 3 316 0.250 0.174 2.294 2.499
512x1024 6 660 0.303 0.239 3.096 3.176
1024x1024 10 1288 0.381 0.305 2.718 3.491
1024x2048 19 2637 0.813 0.600 5.314 7.241
2048x2048 37 4823 1.381 1.085 8.693 11.785

TABLE II: Breakdown of execution time for image smoothing

using unified memory (ms)

storage device and network. GPUDirect RDMA [6] enables

GPU-GPU direct connections via PCIe. Some changes are

applied to the device drivers to make it work. Traditionally,

CPU MMU is used as memory I/O address for mapping

resources to user space or kernel address space. However, after

changing drivers, NVIDIA drivers enable data mapping or

paging from a third party device to GPU. Thus in this situation,

system memory is bypassed and communication overheads are

eliminated. Based on this feature, some hardware products

are created, such as Fusion-io ioMemory flash storage [7].

GPUDirect RDMA could also be extended for Ethernet and

Internet communications with Chelsio iWARP RDMA tech-

nology [8]. A hardware TCP/IP stack is applied to run in the

adapter, completely bypassing the host software stack, thus

eliminating any inefficiencies due to software processing.

According to NVIDIA, the upcoming GPUDirect Storage

[4] solution requires no more bounce buffer on system memory

and PCIe switch handles data communication between NVMe

and GPU. Similar to GPUDirect Storage, DRAGON [9] pro-

vide a host-based framework to enable user transparent and

direct NVMe access by enhancing NVIDIA driver. For NVM-

specific operations, DRAGON’s solution extends the driver

for CUDA unified memory to page data between GPU and

NVM. Data in file can be read or write by common load/store

instructions like what mmap() does. Thus pages will be

allocated and data will be paged to GPU.

Besides, GPUfs [10] is created to expose the file system

API to GPU programs. It enables I/O read and write from the

CPU context and further allows the OS optimize data access

and locality across independently-developed GPU modules.

Mustafas [11] presents GPUDrive to remedy performance

degradation of GPU-accelerated data processing caused by

file-driven data movement. It is handled by designing the flash

array and optimizing the system software stacks associated to

GPU computing.

Techniques and programming interfaces for managing het-

erogeneous memory, such as device memory, host memory,

Size Input Output HtoD DtoH Kernel

512x512 2 1 0.087 0.081 8.778
512x1024 5 1 0.235 0.169 17.469
1024x1024 7 3 0.473 1.195 69.515
1024x2048 16 5 1.467 3.179 141.750
2048x2048 25 13 2.012 7.243 566.620

TABLE III: Breakdown of execution time for matrix multipli-

cation using global memory (ms)

Size Input Output HtoD DtoH Page Fault Kernel

512x512 2 2 0.191 0.087 1.615 10.317
512x1024 4 2 0.482 0.177 3.064 20.465
1024x1024 8 3 0.770 0.349 4.612 73.686
1024x2048 14 6 1.817 0.511 9.168 151.79
2048x2048 25 15 3.248 1.363 17.259 581

TABLE IV: Breakdown of execution time for matrix multipli-

cation using unified memory (ms)

high bandwidth memory, and persistent memory have been

popular topics recently. Efforts such as pmem.io [12], which

focuses on programming persistency on the emerging non-

volatile memory, and memkind and hbmalloc library [13]

that are designed to manage high-bandwidth memory for

applications, are popular. OpenMP 5.0 standard has its own

memory management support [14], which is also platform-

agnostic. malloc() like interfaces such as omp_alloc()

and allocate directive are introduced for users to manage

memory on different memory spaces, including host memory,

device memory, and others. Umpire [15] introduces unified,

application-focused API to handle different kind of platforms

as well as different demand of memory allocation. Once the

system is detected, the corresponding memory resources will

be created thus user do not need to care about the programming

platform too much and effort for memory allocation would be

saved.

Those techniques and efforts demonstrate the needs and

feasibility of direct access from accelerator to storage or

network devices, and for managing heterogeneous memories

in the existing computer systems. The work in this paper

aims to address the programmability challenge of using those

diversified storage and memory by leveraging and extending

high-level OpenMP APIs for users to simplify programming

I/O and memories. Our implementation also enables additional

optimization opportunities at both compiler level and runtime

level, such as pipelining I/O with data movement between

memories and computation, and data layout optimization on

both storage and memory according to data format and data

processing algorithms.

VI. CONCLUSION

In this paper, we present the extension of the OpenMP map

clause for programming direct data read and write between

storage and device memory. The mechanisms for handling

metadata are also included in the extension so that metadata

can be manipulated independently. The extension significantly

reduces programming efforts for manipulating data and meta-

data among storage, host memory, and device memory. As

recent memory and storage technologies indicate converging of

storage and memory in the form of storage-class memory (such

as NVMe and NVDIMM) or memory-capable storage (such

as byte-addressable SSD), our work explores programming

interface and system support for enabling those techniques

with high programmability to the end-users. For the future

work, the extension and implementation will be refined and

enhanced. We will explore GPUDirect Storage library for the

implementation and performance evaluation, when it becomes

available.

REFERENCES

[1] G. H. Loh, “3d-stacked memory architectures for multi-core processors,”
in Proceedings of the 35th Annual International Symposium on

Computer Architecture, ser. ISCA ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 453–464. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2008.15

[2] L. Carrington, A. Snavely, and N. Wolter, “A performance prediction
framework for scientific applications,” Future Gener. Comput. Syst.,
vol. 22, no. 3, pp. 336–346, Feb. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2004.11.019

[3] Performance Optimization of Numerically Intensive Codes. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2001.

[4] “Gpudirect storage: A direct path between storage and gpu memory,”
https://devblogs.nvidia.com/gpudirect-storage/.

[5] “Openmp application programming interface, version 5.0 novem-
ber 2018,” https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf.

[6] “Developing a linux kernel module using gpudirect rdma,”
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html.

[7] “Fusion-io products,” https://www.westerndigital.com/products/storage-
systems#all-flash-hybrid-storage.

[8] “The gpudirect solution overview,” https://www.chelsio.com/the-
gpudirect-solution-overview/.

[9] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka,
“Dragon: breaking gpu memory capacity limits with direct nvm access,”
in Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis. IEEE Press, 2018,
p. 32.

[10] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “Gpufs: integrating
a file system with gpus,” in ACM SIGPLAN Notices, vol. 48, no. 4.
ACM, 2013, pp. 485–498.

[11] M. Shihab, K. Taht, and M. Jung, “Gpudrive: Reconsidering storage ac-
cesses for gpu acceleration,” in Workshop on Architectures and Systems

for Big Data, 2014.
[12] “pmem.io: Persistent Memory Programming,” https://pmem.io.
[13] C. Cantalupo, V. Venkatesan, and J. R. Hammond, “User extensible

heap manager for heterogeneous memory platforms and mixed memory
policies,” 2015.

[14] “Memory management support for openmp 5.0,”
https://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf.

[15] “An application-focused api for memory management on numa & gpu
architectures,” https://github.com/LLNL/Umpire.

MCHPC'19: Workshop on Memory Centric High Performance Computing

 87

Panel: Software and Hardware Support for Programming
Heterogeneous Memory

Moderator: Maya B Gokhale (Lawrence Livermore National Laboratory)

Panelist: Mike Lang (LANL), Jeffrey Vetter (ORNL), Vivek Sarkar (Georgia Tech), David

Beckinsale (LLNL), Paolo Faraboschi (HPE)

Usability and programmability of complex and heterogeneous memory systems remain

significant challenges facing the HPC and data analytics communities. Existing memory

systems that include DRAM, SRAM, discrete memory, software unified memory, and

distributed memory are difficult to exploit while maintaining portable performance.

Approaches include programming language constructs and runtime libraries, OS

enhancements, and even hardware mechanisms to enable the competing goals of

programmability and portability.

We would like the panel to address challenges and solutions that address the problems of

maintaining portability in applications that must navigate the complex memory hierarchy

without sacrificing performance and capability.

	Introduction
	Background
	Migration
	Fabric-Attached Memory
	Checkpoint/Restore in Userspace (CRIU)

	Motivation and System Design Overview
	Fabric-Attached Memory-Aware Post-Copy Live Migration
	Motivation and Design

	Implementation
	Evaluation
	Workloads and Experimental Setup
	Evaluation Results

	Conclusion
	References
	Introduction
	Unified Memory
	CUDA Unified Memory
	Data Movement Advises
	Prefetching
	Oversubscription of Device Memory

	Methodology
	Application and Benchmarks
	UM
	UM Advise
	UM Prefetch
	UM Both

	Test Environment

	Results
	In-Memory Execution
	Oversubscription Execution

	Related Work
	Conclusion
	References
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Choices for Using GPU Memory
	2.2 Impact of Different Usage of GPU Memory

	3 Design
	3.1 Approach
	3.2 Offline Learning
	3.3 Online Inference

	4 Evaluation
	4.1 Experiment Settings
	4.2 Preliminary Results

	5 Related Work
	6 Conclusion & Future work
	Acknowledgments
	References

