On the Applicability of PEBS based Online Memory Access Tracking for Heterogeneous Memory Management at Scale

Aleix Roca Nonell, Balazs Gerofi[‡], Leonardo Bautista-Gomez, Dominique Martinet[†], Vicenç Beltran Querol, Yutaka Ishikawa[‡]

Barcelona Supercomputing Center, Spain [†]CEA, France [‡]RIKEN Center for Computational Science, Japan

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Agenda

- Motivation
- Background
 - Lightweight Multi-Kernel OS
 - Processor/precise Event-Based Sampling (PEBS)
- Design
- Results
- Future Work
- Conclusions

- Heterogeneous memories are here: HBM, MCDRAM, PCM, ReRAM, 3DXPoint, etc.
- Heterogeneous memory management alternatives:
 - Application level
 - Runtime level
 - Operating system level
- Operating system and/or runtime level
 - Application-transparent memory management eliminates complexity
 - Increased productivity/performance
- Need for low-cost real-time memory access tracking
- Is Processor Event based Sampling (PEBS) feasible when running on large-scale?
 - What are the trade-offs?

- Implement a custom PEBS driver in an LWK with the ability of fine-tuning its parameters
 - LWK provides a clean baseline to asses PEBS' overhead
 - Also due to Linux driver's limitations and instability
- Evaluate PEBS overhead on a number of real HPC applications running at large-scale
- Demonstrate captured memory access patterns as a function of different PEBS parameters

Analysis of PEBS overhead

• We are not using the data to manage heterogeneous memory systems (yet)

Background: Lightweight Multi-Kernel OS

- IHK/McKernel:
 - Runs Linux and a lightweight kernel (i.e., McKernel) side-by-side on compute nodes
 - Interface for Heterogeneous Kernels (IHK) provides dynamic re-configurability of host resources
 - Management of LWK instances
 - McKernel is an LWK tailored for extreme-scale supercomputing (part of Post-K project)
 - Goal is to provide LWK scalability and full Linux/POSIX compatibility
- Merits for OS level memory management:
 - Simple LWK codebase allows rapid experimentation with specialized kernel features
 - Transparent usage of idle CPU cores for background data movement
 - Full control over HW resources
 - Ability to specialize drivers (e.g., PEBS)

Background: Processor Event-Based Sampling (PEBS)

Extension to performance counters PEBS reset: controls the sampling frequency PEBS buffer size: indirectly controls IRQ frequency

PEBS records

PEBS Linux shortcomings

- Our focus is on PEBS interrupt rate
- Applications running at scale may suffer from noise introduced by asynchronous events such as IRQs
- PEBS' interference is affected by the following parameters:
 - Reset counter value: Event sample rate controls frequency on which PEBS records are written into the PEBS buffer
 - Buffer size: In-Memory buffer size (where PEBS records are stored) controls IRQ rate

McKernel provides a simple rapidprototyping OS environment with low OS noise when compared to Linux PEBS provides a configurable lowoverhead mechanism to track memory accesses at runtime

McKernel + PEBS: groundwork for usertransparent heterogeneous memory management

Design: McKernel + PEBS Architecture

Evaluation: Oakforest-PACS

- 8k Intel Xeon Phi (Knights Landing) compute nodes
 - Intel OmniPath v1 interconnect
 - Peak performance: ~25 PF
- Intel Xeon Phi CPU 7250 model:
 - 68 CPU cores @ 1.40GHz
 - 4 HW thread / core
 - 272 logical OS CPUs altogether
 - 64 CPU cores used for McKernel, 4 for Linux
 - 16 GB MCDRAM high-bandwidth memory
 - Hot-pluggable in BIOS
 - 96 GB DRAM
 - Quadrant flat mode

Results: PEBS overhead at scale @ Oakforest-PACS (OFP)

(a) GeoFEM (The University of Tokyo)

(b) HPCG (CORAL)

Results: PEBS overhead at scale @ Oakforest-PACS (OFP)

(e) MiniFE (CORAL)

(f) AMG2013 (CORAL)

Results: Recorded access patterns for different PEBS reset values

Lulesh access pattern with different PEBS reset values (8kB PEBS buffer)

Results: Elapsed time between PEBS interrupts for MiniFE

Results: Access histogram per page for MiniFE

Results: Access histogram per page for MiniFE

- Integration with un-core memory access traffic counters
- Study the possibility of a dedicated hardware thread to collect PEBS data instead of IRQs
- Analyse difference between McKernel and Linux PEBS driver
- Use profiled PEBS data for heterogeneous memory management

 Machine learning for access prediction, memory placement

- Overheads range between 1% and 10.2% and that can be reduced to 4% by adjusting the recording parameters while still clearly capturing access patterns
- McKernel driver achieves more fine-grained sample rates than the Linux driver
- PEBS efficiency matches requirements for heterogeneous memory management

Thank you for your attention! Questions?