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Complex Memory Hierarchy on GPUs

= GPUs can greatly improve
performance of HPC applications, oek 0,01 ek (1.0
but can be difficult to optimize for

due to their complex memory ﬂ ﬂ
hierarchy ’ ’ ’ ’
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= Codes optimized for one platform
may not retain optimal
performance when ported to other
platforms
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Performance can vary widely depending on data
placement as well as platform
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Challenges

= Different memory variants (global/ constant/ texture/ shared)
can have significant impact on program performance

= But identifying the best performing variant is non-obvious and
complex decision to make

= Given a default global variant, can the best performing memory
variant be automatically determined?
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Proposed Solution

= Use machine learning to develop a predictive model to
determine the best data placement for a given application on a
particular platform

= Use the model to predict best placement

= Involves three stages:
— offline training
— feature and model selection
— online inference
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Approach

Offline training
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Methodology

In order to build the model:

= 4 different generations of NVIDIA GPUs were used:
— Kepler
— Pascal
— Maxwell
— Volta

= 8 programs X 3 input data sizes X 3 thread block sizes X 4
variants

MD, SPMV, CFD, MM, ConvolutionSeparable, ParticleFilter etc.
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Offline Training

= Metric and event data from nvprof from global variant along
with hardware data were collected

= Best performing variant (class label) for each version run was
appended

= Benchmarks were run 10 times on each platform, with 5 initial
iterations to warm up the GPU
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Feature Selection

= Number of features narrowed down to 16 from 241 using
correlation-based feature selection algorithm (CFS).

= A partial list:
 FeatureName __ |Meaning
achieved_occupancy ratio of average active warps to
maximum number of warps
|2_read_transactions, Memory read/write transactions at L2
|2_write_transactions cache
gld_throughput global memory load throughput

warp_execution_efficiency ratio of average active threads to the
maximum number of threads

@ Lawrence Livermore National Laboratory N AVS&% 11

LLNL-PRES-761162



Model Selection

= Used 10-fold cross validation during evaluation

= Overall, decision tree classifiers showed great promise (>95%
accuracy in prediction)

Prediction Accuracy (%)

RandomForest 95.7
LogitBoost 95.5
lterativeClassifierOptimizer 95.5
SimpleLogistic 95.4
JRip 95.0
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Runtime Prediction

= The classifier JRIP was selected from the group of top five
performing classifier models

= JRIP is a propositional rule learner, which results in a decision
tree

= The model then reads in input from CUPTI calls - the API for
nvprof - which can access hardware counters in real-time and
outputs its class
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Preliminary Results
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* Results from this initial exploration show that there is great potential for

predictive modeling for data placement on GPUs
e Overall 95% accuracy achievable, but this is higher for global and texture

memory best performers
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Runtime Validation

= The JRIP model was tested out on a new benchmark - an
acoustic application

= The model was successfully able to correctly predict the best
performing version on two platforms
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Limitations

= Currently, all versions need to be pre-compiled for run-time
prediction, ideally it would be better to have model built into a
compiler

= CUPTI calls are slow and require as many iterations as metrics
and events to collect

= This would acceptable for benchmarks with many iterations, but
for other kinds a workaround would need to be made
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Conclusion

= Machine learning has shown great potential for data placement
prediction on a range of applications

= More work needs to be done to acquire hardware counters
from applications in a timely manner

= Approach could be reused for other optimizations such as data
layouts.
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