
LLNL-PRES-761162 This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

Data Placement Optimization in GPU Memory
Hierarchy Using Predictive Modeling

Larisa Stoltzfus*, Murali Emani, Pei-Hung Lin, Chunhua Liao
*University of Edinburgh (UK), Lawrence Livermore National Laboratory

MCHPC'18: Workshop on Memory Centric High Performance Computing

LLNL-PRES-761162
2

§ GPUs can greatly improve
performance of HPC applications,
but can be difficult to optimize for
due to their complex memory
hierarchy

§ Memory hierarchies can change
drastically from generation to
generation

§ Codes optimized for one platform
may not retain optimal
performance when ported to other
platforms

Complex Memory Hierarchy on GPUs

LLNL-PRES-761162
3

Performance can vary widely depending on data
placement as well as platform

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0

1

2

3

4

Memory Type [Platform]
Sp

ee
du

p

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

Memory Type [Platform]

Sp
ee

du
p

Matrix-Matrix Multiplication

Sparse Matrix-Vector
Multiplication

LLNL-PRES-761162
4

§ Different memory variants (global/ constant/ texture/ shared)
can have significant impact on program performance

§ But identifying the best performing variant is non-obvious and
complex decision to make

§ Given a default global variant, can the best performing memory
variant be automatically determined?

Challenges

LLNL-PRES-761162
5

§ Use machine learning to develop a predictive model to
determine the best data placement for a given application on a
particular platform

§ Use the model to predict best placement

§ Involves three stages:
— offline training
— feature and model selection
— online inference

Proposed Solution

LLNL-PRES-761162
6

Offline training

Representative
kernels

Feature Extraction
and labelling

Training data

Training Data collection Use nvprof,
HW info

Classifier

global shared constant texture

program
variants

Online inference

Feature
extraction using

CUPTI

Classifier

best variant

Approach

Offline Training - Data collection
of nvprof metrics and events

LLNL-PRES-761162
7

Offline training

Representative
kernels

Feature Extraction
and labelling

Training data

Training Data collection Use nvprof,
HW info

Classifier

global shared constant texture

program
variants

Online inference

Feature
extraction using

CUPTI

Classifier

best variant

Approach

Model Building - Determine
best version, features and model

LLNL-PRES-761162
8

Offline training

Representative
kernels

Feature Extraction
and labelling

Training data

Training Data collection Use nvprof,
HW info

Classifier

global shared constant texture

program
variants

Online inference

Feature
extraction using

CUPTI

Classifier

best variant

Approach

Online Inference: Use
model to determine best
placement in run-time

LLNL-PRES-761162
9

In order to build the model:

§ 4 different generations of NVIDIA GPUs were used:
— Kepler
— Pascal
— Maxwell
— Volta

§ 8 programs X 3 input data sizes X 3 thread block sizes X 4
variants

Methodology

MD, SPMV, CFD, MM, ConvolutionSeparable, ParticleFilter etc.

LLNL-PRES-761162
10

§ Metric and event data from nvprof from global variant along
with hardware data were collected

§ Best performing variant (class label) for each version run was
appended

§ Benchmarks were run 10 times on each platform, with 5 initial
iterations to warm up the GPU

Offline Training

LLNL-PRES-761162
11

§ Number of features narrowed down to 16 from 241 using
correlation-based feature selection algorithm (CFS).

§ A partial list:

Feature Selection

Feature Name Meaning
achieved_occupancy ratio of average active warps to

maximum number of warps

l2_read_transactions,
l2_write_transactions

Memory read/write transactions at L2
cache

gld_throughput global memory load throughput
warp_execution_efficiency ratio of average active threads to the

maximum number of threads

LLNL-PRES-761162
12

§ Used 10-fold cross validation during evaluation

§ Overall, decision tree classifiers showed great promise (>95%
accuracy in prediction)

Model Selection

Classifier Prediction Accuracy (%)
RandomForest 95.7
LogitBoost 95.5
IterativeClassifierOptimizer 95.5
SimpleLogistic 95.4
JRip 95.0

LLNL-PRES-761162
13

§ The classifier JRIP was selected from the group of top five
performing classifier models

§ JRIP is a propositional rule learner, which results in a decision
tree

§ The model then reads in input from CUPTI calls - the API for
nvprof - which can access hardware counters in real-time and
outputs its class

Runtime Prediction

LLNL-PRES-761162
14

Preliminary Results

• Results from this initial exploration show that there is great potential for
predictive modeling for data placement on GPUs

• Overall 95% accuracy achievable, but this is higher for global and texture
memory best performers

0

25

50

75

100

con
sta

nt
glo

bal

share
d

tex
ture

Memory Type

%
 P

re
di

ct
ed

 texture constant shared global

LLNL-PRES-761162
15

§ The JRIP model was tested out on a new benchmark - an
acoustic application

§ The model was successfully able to correctly predict the best
performing version on two platforms

Runtime Validation

LLNL-PRES-761162
16

§ Currently, all versions need to be pre-compiled for run-time
prediction, ideally it would be better to have model built into a
compiler

§ CUPTI calls are slow and require as many iterations as metrics
and events to collect

§ This would acceptable for benchmarks with many iterations, but
for other kinds a workaround would need to be made

Limitations

LLNL-PRES-761162
17

§ Machine learning has shown great potential for data placement
prediction on a range of applications

§ More work needs to be done to acquire hardware counters
from applications in a timely manner

§ Approach could be reused for other optimizations such as data
layouts.

Conclusion

LLNL-PRES-761162
19

