Data Placement Optimization in GPU Memory Hierarchy Using Predictive Modeling

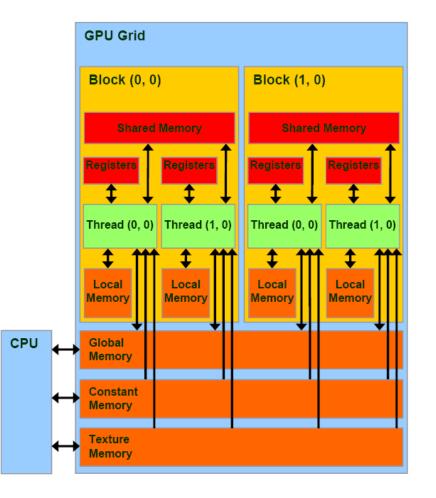
Larisa Stoltzfus^{*}, <u>Murali Emani</u>, Pei-Hung Lin, Chunhua Liao ^{*}University of Edinburgh (UK), Lawrence Livermore National Laboratory

MCHPC'18: Workshop on Memory Centric High Performance Computing

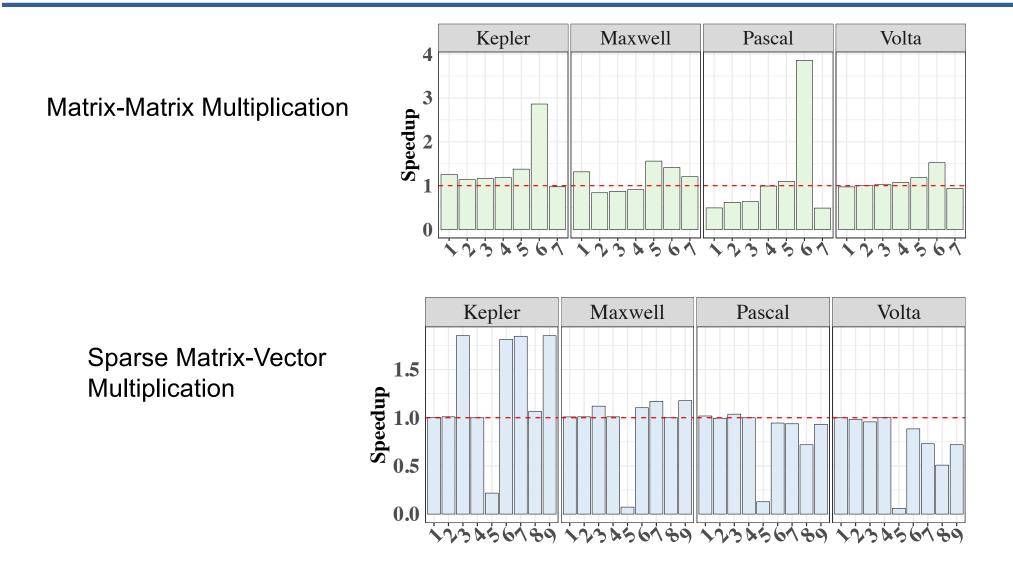
LLNL-PRES-761162 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Complex Memory Hierarchy on GPUs

- GPUs can greatly improve performance of HPC applications, but can be difficult to optimize for due to their complex memory hierarchy
- Memory hierarchies can change drastically from generation to generation
- Codes optimized for one platform may not retain optimal performance when ported to other platforms



Performance can vary widely depending on data placement as well as platform



Challenges

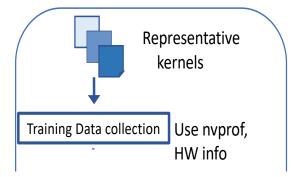
- Different memory variants (global/ constant/ texture/ shared) can have significant impact on program performance
- But identifying the best performing variant is non-obvious and complex decision to make
- Given a default global variant, can the best performing memory variant be automatically determined?

Proposed Solution

- Use machine learning to develop a predictive model to determine the best data placement for a given application on a particular platform
- Use the model to predict best placement
- Involves three stages:
 - offline training
 - feature and model selection
 - online inference

Approach

Offline training



Offline Training - Data collection of nvprof metrics and events

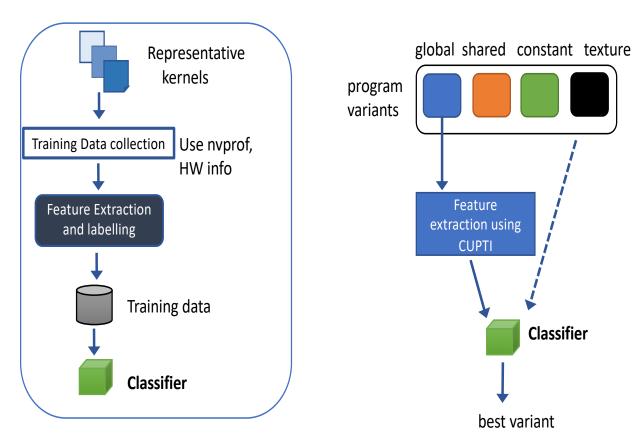
Approach

Offline training Representative kernels Training Data collection Use nvprof, HW info Feature Extraction and labelling Training data Classifier

Model Building - Determine best version, features and model

Approach

Offline training



Online inference

Online Inference: Use model to determine best placement in run-time

Methodology

In order to build the model:

- 4 different generations of NVIDIA GPUs were used:
 - Kepler
 - Pascal
 - Maxwell
 - Volta
- 8 programs X 3 input data sizes X 3 thread block sizes X 4 variants

MD, SPMV, CFD, MM, ConvolutionSeparable, ParticleFilter etc.

Offline Training

- Metric and event data from nvprof from global variant along with hardware data were collected
- Best performing variant (class label) for each version run was appended
- Benchmarks were run 10 times on each platform, with 5 initial iterations to warm up the GPU

Feature Selection

- Number of features narrowed down to 16 from 241 using correlation-based feature selection algorithm (CFS).
- A partial list:

Feature Name	Meaning
achieved_occupancy	ratio of average active warps to maximum number of warps
I2_read_transactions, I2_write_transactions	Memory read/write transactions at L2 cache
gld_throughput	global memory load throughput
warp_execution_efficiency	ratio of average active threads to the maximum number of threads

Model Selection

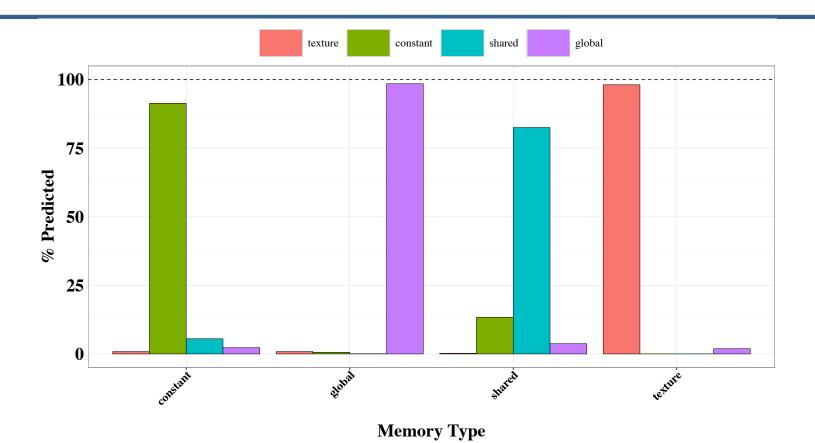
- Used 10-fold cross validation during evaluation
- Overall, decision tree classifiers showed great promise (>95% accuracy in prediction)

Classifier	Prediction Accuracy (%)
RandomForest	95.7
LogitBoost	95.5
IterativeClassifierOptimizer	95.5
SimpleLogistic	95.4
JRip	95.0

Runtime Prediction

- The classifier JRIP was selected from the group of top five performing classifier models
- JRIP is a propositional rule learner, which results in a decision tree
- The model then reads in input from CUPTI calls the API for nvprof - which can access hardware counters in real-time and outputs its class

Preliminary Results



- Results from this initial exploration show that there is great potential for predictive modeling for data placement on GPUs
- Overall 95% accuracy achievable, but this is higher for global and texture memory best performers

Runtime Validation

- The JRIP model was tested out on a new benchmark an acoustic application
- The model was successfully able to correctly predict the best performing version on two platforms

Limitations

- Currently, all versions need to be pre-compiled for run-time prediction, ideally it would be better to have model built into a compiler
- CUPTI calls are slow and require as many iterations as metrics and events to collect
- This would acceptable for benchmarks with many iterations, but for other kinds a workaround would need to be made

Conclusion

- Machine learning has shown great potential for data placement prediction on a range of applications
- More work needs to be done to acquire hardware counters from applications in a timely manner
- Approach could be reused for other optimizations such as data layouts.

Version	Description
1	rows array in shared
2	rows array in constant
3	vector array in texture1D, rows in shared
4	matrix values in texture1D
5	vector array in constant, rows in texture1D
6	vector array in texture
7	matrix values and columns in texture1D, rows in constant
8	matrix values, columns and vector in texture1D
9	matrix values, columns, rows and vector in texture1D

Table 2: Memory configuration details of SPMV benchmark

