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§ GPUs can greatly improve 
performance of HPC applications, 
but can be difficult to optimize for 
due to their complex memory 
hierarchy 

§ Memory hierarchies can change 
drastically from generation to 
generation

§ Codes optimized for one platform 
may not retain optimal 
performance when ported to other 
platforms 

Complex Memory Hierarchy on GPUs
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Performance can vary widely depending on data 
placement as well as platform 

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0

1

2

3

4

Memory Type [ Platform ]
Sp

ee
du

p

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

Memory Type [ Platform ]

Sp
ee

du
p

Matrix-Matrix Multiplication

Sparse Matrix-Vector 
Multiplication 



LLNL-PRES-761162
4

§ Different memory variants (global/ constant/ texture/ shared) 
can have significant impact on program performance

§ But identifying the best performing variant is non-obvious and 
complex decision to make

§ Given a default global variant, can the best performing memory 
variant be automatically determined?

Challenges
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§ Use machine learning to develop a predictive model to 
determine the best data placement for a given application on a 
particular platform 

§ Use the model to predict best placement 

§ Involves three stages: 
— offline training
— feature and model selection
— online inference

Proposed Solution
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Offline training
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In order to build the model: 

§ 4 different generations of NVIDIA GPUs were used: 
— Kepler 
— Pascal 
— Maxwell
— Volta 

§ 8 programs X 3 input data sizes X 3 thread block sizes X 4 
variants

Methodology

MD, SPMV, CFD, MM, ConvolutionSeparable, ParticleFilter etc.
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§ Metric and event data from nvprof from global variant along 
with hardware data were collected

§ Best performing variant (class label) for each version run was 
appended

§ Benchmarks were run 10 times on each platform, with 5 initial 
iterations to warm up the GPU 

Offline Training
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§ Number of features narrowed down to 16 from 241 using 
correlation-based feature selection algorithm (CFS). 

§ A partial list:

Feature Selection

Feature Name Meaning
achieved_occupancy ratio of average active warps to 

maximum number of warps

l2_read_transactions, 
l2_write_transactions

Memory read/write transactions at L2 
cache

gld_throughput global memory load throughput
warp_execution_efficiency ratio of average active threads to the 

maximum number of threads 
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§ Used 10-fold cross validation during evaluation 

§ Overall, decision tree classifiers showed great promise (>95% 
accuracy in prediction) 

Model Selection

Classifier Prediction Accuracy (%)
RandomForest 95.7
LogitBoost 95.5
IterativeClassifierOptimizer 95.5
SimpleLogistic 95.4
JRip 95.0



LLNL-PRES-761162
13

§ The classifier JRIP was selected from the group of top five 
performing classifier models 

§ JRIP is a propositional rule learner, which results in a decision 
tree 

§ The model then reads in input from CUPTI calls - the API for 
nvprof - which can access hardware counters in real-time and 
outputs its class

Runtime Prediction



LLNL-PRES-761162
14

Preliminary Results

• Results from this initial exploration show that there is great potential for 
predictive modeling for data placement on GPUs 

• Overall 95% accuracy achievable, but this is higher for global and texture 
memory best performers 
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§ The JRIP model was tested out on a new benchmark - an 
acoustic application 

§ The model was successfully able to correctly predict the best 
performing version on two platforms 

Runtime Validation 
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§ Currently, all versions need to be pre-compiled for run-time 
prediction, ideally it would be better to have model built into a 
compiler 

§ CUPTI calls are slow and require as many iterations as metrics 
and events to collect 

§ This would acceptable for benchmarks with many iterations, but 
for other kinds a workaround would need to be made 

Limitations
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§ Machine learning has shown great potential for data placement 
prediction on a range of applications 

§ More work needs to be done to acquire hardware counters 
from applications in a timely manner 

§ Approach could be reused for other optimizations such as data 
layouts.

Conclusion





LLNL-PRES-761162
19


