Evaluation of Intel Memory Drive Technology Performance for Scientific Applications

Vladimir Mironov, Andrey Kudryavtsev, Yuri Alexeev, Alexander Moskovsky, Igor Kulikov, and Igor Chernykh
Introducing Intel® memory drive technology

• Use Intel® Optane™ SSD DC P4800X transparently as memory

• Grow beyond system DRAM capacity, or replace high-capacity DIMMs for lower-cost alternative, with similar performance

• Leverage storage-class memory today!
 • No change to software stack: unmodified Linux* OS, applications, and programming
 • No change to hardware: runs bare-metal, loaded before OS from BIOS or UEFI

• Aggregated single volatile memory pool

*Other names and brands may be claimed as the property of others
Paging in OS

Application

CPU

MMU

Phys. addr.

PN
 offset

TLB

Operating system

Phys. addr.

Page directory

On-demand
(Separately Managed)

RAM

Page

Disk

Disk

Page
How Intel® Memory Drive Technology works
When to use and when not to use Intel® Memory Drive Technology

✓ Your application is designed to use very large amount of memory
 • Benefits from the large memory pool
 • Virtually no performance decrease on benchmarks with high arithmetic intensity

✓ Your application does not handle memory-locality/NUMA well
 • Benefits from the intelligent control of NUMA memory access

✗ Your application is bound by the memory bandwidth
 • The memory-bandwidth of Xeon is >50GB/s; Optane is 2GB/s per SSD
 • Up to ~50% efficiency is expected, not more
What is important for Intel® Memory Drive Technology?

• Predictable accesses
 – If there is a pattern to the memory access, be it simple such as “sequential”, mid-complex like “fetch 1K every 72K”, or entirely complex like “if going to an ID field in a record in a table, fetch the whole record”

• High arithmetic intensity (FLOPs/byte ratio)
 – For every fetch from memory (in average) many compute cycles done

• High concurrency
 – Using at least 50% of the cores in a server platform concurrently, preferably more and even over-subscribed
Hardware description

• Dual-socket Intel® Xeon® E5-2699 v4 (2x22 cores, 2.2 GHz)
 – First configuration (MDT):
 • 256 GB ECC DDR4
 • 4x320 GB Intel® Optane™ SSD (≈10 GB/s aggregated bandwidth)
 – Second configuration (lot of DRAM):
 • 1536 GB ECC DDR4

• (new) dual-socket Intel Xeon Gold 6154 (2x18 cores, 3.0 GHz)
 – First configuration:
 • 192 GB ECC DDR4
 • 8x Intel® Optane™ SSD
 – Second configuration
 • 1536 GB ECC DDR4
 – Only few benchmarks have been run yet
Polynomial benchmark

• Sequential-memory access benchmark
 – Compute polynomial values over a large array of input data

• Types of memory access patterns:
 – Read only (RO)
 – Read and write to another array (RW)

• Adjustable degree of polynomials

• Polynomials are computed using Horner method:
 \[P(x) = \ldots \left(\left(\left(a_nx + a_{n-1}\right)x + a_{n-2}\right)\ldots\right)x + a_0 \]

\[N_{FLOP} = (2 \cdot \text{degree}) \cdot N_{\text{data}} \]

\[\frac{\text{FLOPs}}{\text{byte}} = \frac{2 \cdot \text{degree}}{\text{sizeof(\text{real}_t)}} \]
Polynomial benchmark (Read Only)

Efficiency: Intel® Memory Drive technology vs RAM

BDW, 44 threads, 4 Optane

SKX, 36 threads, 8 Optane

% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency

SKX results are preliminary – not all test cases have been sampled yet
Polynomial benchmark (Read Only)

Efficiency: Intel® Memory Drive technology vs RAM

BDW, 44 threads, 4 Optane
SKX, 36 threads, 8 Optane

≈ 2x improvement

% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency

SKX results are preliminary – not all test cases have been sampled yet
Polynomial benchmark (Read&Write)

Efficiency: Intel® Memory Drive technology vs RAM

BDW, 44 threads, 4 Optane

SKX, 36 threads, 8 Optane

% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency

SKX results are preliminary – not all test cases have been sampled yet
Polynomial benchmark summary

– If data size is larger than DRAM:
 • Arithmetic intensity (AI) requirements to get efficiency >80% depends on the workload, number of drives and CPU:
 – RO: 128-256 FLOPs/byte
 – RW: 256-512 FLOPs/byte
 • AI should be measured on DRAM-LLC level
– If data fits in DRAM:
 • No performance degradation
 • MDT can be faster for NUMA non-aware applications
– Arithmetic intensity requirements decrease linearly with the number of Intel Optane drives
LU decomposition

– Factorization of matrix A into product of lower triangular (L) and upper triangular (U) matrices

– A commonly used kernel in many scientific codes:
 • Solving systems of linear equations
 • Matrix inversion
 • Computing determinants

– A kernel in LINPACK benchmark
LU decomposition

• Performance results
 – DRAM maximum performance: 850 GFLOPs/s
 – Intel® Memory Drive Technology maximum performance: 1,250 GFLOPs/s
 – A huge performance degradation beyond $\approx 150\%$ RAM utilization

• Can we improve the results?
LU decomposition

– Memory access pattern is by column blocks
– Nearby elements are scattered throughout different memory pages
 • 4KB page = 512 double precision numbers
 • A huge data traffic for large matrices (2 \cdot 10^5 and above)
– There are tiled LU algorithms (e.g. PLASMA)
LU decomposition

– Memory access pattern is by column blocks
– Nearby elements are scattered throughout different memory pages
 • 4KB page = 512 double precision numbers
 • A huge data traffic for large matrices ($2 \cdot 10^5$ and above)
– There are tiled LU algorithms (e.g. PLASMA)
– We used a simple implementation from *hetero-streams* code base
– Little performance degradation beyond 100% RAM usage

![Performance Chart](image_url)

$N = 280000$, 230% RAM
Lessons learned from benchmarks with Intel® Memory Drive Technology

– Data moving between Intel® Optane™ SSDs and RAM is very expensive (10 GB/s max):
 • Reuse data as much as possible
 – Arithmetic intensity on DRAM↔MDT level should be ≥ 200-500 FLOPs/byte depending on the number of Optane
 • Redesign data structures in your program for locality
 • Work with large data chunks
 • Think about DRAM as a large L4 cache for MDT
– Same optimization principles as on NUMA architectures
– Data-oriented programming is a must
 • It benefits another modern hardware as well
Scientific applications

• Computational chemistry:
 – LAMMPS* (molecular dynamics)
 – GAMESS (two-electron integral kernel)

• Astrophysics:
 – AstroPhi* (hyperbolic partial differential equation solver)

• Sparse linear algebra problems:
 – Intel® Math Kernel Library PARDISO

• Quantum computing simulator:
 – Intel-QS, formerly known as qHipster
Scientific applications

• Results:
 – Efficiency is slightly higher than 100% within DRAM
 – Efficiency beyond DRAM varies from 50% up to >100%
 – LAMMPS, AstroPhi and Intel-QS are memory bound apps, efficiency tends to 50% when memory growth
Conclusions

– Efficiency of optimized applications is close to 100% with Intel® Memory Drive Technology

– Efficiency of non-optimized applications can vary from 20% to more than 100%. Typical efficiency of bandwidth-bound applications is up to 50%.

– Optimal performance is expected on next generation of Intel® Optane™ SSDs
Future work

– Scaling of IMDT performance vs number of Optane SSDs
– Comparing Intel Optane-powered fat-memory node with distributed memory on scientific applications
– Testing Intel® Optane™ DC Persistent memory
Acknowledgements

• We thank:
 – ScaleMP team for technical support
 – RSC Group and Siberian Supercomputer Center ICMMG SB RAS for providing access to certain hardware
 – Gennady Fedorov (Intel) for help with Intel PARDISO benchmark
 – Justin Hogaboam (Intel) for Intel QS code
 – all of you for your attention!