

Proceedings of

MCHPC’18: Workshop on

Memory Centric High Performance
Computing

Held in conjunction with

SC18: The International Conference for
High Performance Computing,
Networking, Storage and Analysis

Dallas, Texas, November 11-16, 2018

 ii

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2018 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page,

copying is permitted provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

+1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-6113-2

 iii

MCHPC’18: Workshop on

Memory Centric High Performance Computing

Table of Contents

Message from the Workshop Organizers .. v

Keynote Talks

Converging Storage and Memory .. 1

Frank T. Hady, Intel

All Tomorrow’s Memory Systems .. 2

Bruce Jacob, University of Maryland at College Park

Panel

Research Challenges in Memory-Centric Computing 3

Moderator: Maya B Gokhale, Lawrence Livermore National Laboratory

Research Papers

1. Amin Farmahini-Farahani, Sudhanva Gurumurthi, Gabriel Loh, and Mike
Ignatowski, Challenges of High-Capacity DRAM Stacks and Potential
Directions... 4

2. Vladimir Mironov, Andrey Kudryavtsev, Yuri Alexeev, Alexander Moskovsky,
Igor Kulikov, and Igor Chernykh, Evaluation of Intel Memory Drive
Technology Performance for Scientific Applications14

3. John Leidel, Xi Wang, Yong Chen, David Donofrio, Farzad Fatollahi-Fard, and
Kurt Keville, xBGAS: Toward a RISC-V ISA Extension for Global, Scalable
Shared Memory ……………………………………….………………………….. 22

4. Jie Ren, Kai Wu, and Dong Li, Understanding Application Recomputability
without Crash Consistency in Non-Volatile Memory …………………….... 27

 iv

5. Prasanth Chatarasi, and Vivek Sarkar, A Preliminary Study of Compiler
Transformations for Graph Applications on the Emu System 37

6. Larisa Stoltzfus, Murali Emani, Pei-Hung Lin, and Chunhua Liao, Data
Placement Optimization in GPU Memory Hierarchy using Predictive
Modeling …………………………………………………………………….……... 45

7. Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Dominique
Martinet, Vicenç Beltran Querol, and Yutaka Ishikawa, On the Applicability of
PEBS based Online Memory Access Tracking for Heterogeneous Memory
Management at Scale ………………………………………………..………….. 50

8. Vamsee Reddy Kommareddy, Clayton Hughes, Simon David Hammond, and
Amro Awad, Exploring Allocation Policies in Disaggregated Non-Volatile
Memories ………………………………………………………………………...... 58

9. Sean Williams, Latchesar Ionkov, Michael Lang, and Jason Lee,
Heterogeneous Memory and Arena-Based Heap Allocation …………..… 67

 v

Message from the Workshop Organizers

Welcome to the 2018 Workshop on Memory Centric High Performance Computing!

The growing disparity between CPU speed and memory speed, known as the memory
wall problem, has been one of the most critical and long-standing challenges in the
computing industry. The situation is further complicated by the recent expansion of the
memory hierarchy, which is becoming deeper and more diversified with the adoption of
new memory technologies and architectures, including 3D-stacked memory, non-volatile
random-access memory (NVRAM), memristor, hybrid software and hardware caches,
etc. The MCHPC workshop aims to bring together computer and computational science
researchers from industry, government labs, and academia, concerned with the
challenges of efficiently using existing and emerging memory systems for high
performance computing.

We would like to thank all authors who submitted papers to this workshop. Special thanks
go to the program committee members for providing us with high-quality reviews under
tight deadlines. For each submitted paper, we were able to collect at least three reviews.
Based on the reviews, six regular papers and three short papers were selected from
twelve total submissions.

We are very thankful to our Keynote speakers, Frank T. Hady from Intel and Bruce Jacob
from the University of Maryland at College Park. We appreciate our panel team, including
moderator Maya B. Gokhale from Lawrence Livermore National Laboratory, and panelists
Mike Ignatowski from AMD, Jonathan C. Beard from Arm, Frank Hady from Intel, Bruce
Jacob from University of Maryland at College Park, and Michael A. Heroux from Sandia
National Laboratories. Our special thanks to ACM for publishing the proceedings of the
workshop. We would also like to acknowledge the financial support of Sandia National
Laboratories for publication of the workshop proceedings. It has been a pleasure to work
with SC’18 Workshop Chair Guillaume Aupy and the Linklings support team on the
logistics of the workshop. Last but not the least, our sincere thanks are due to the
attendees, without whom this workshop would not be a success. We hope you enjoy the
program!

Yonghong Yan, Ron Brightwell, Xian-He Sun, and Maya B. Gokhale
MCHPC’18 Workshop Organizers

MCHPC’18: Workshop on Memory Centric High Performance Computing
November 11, 2018, Dallas, TX, USA

 1

Morning Keynote:

Converging Storage and Memory

Frank T. Hady, Intel

Abstract:

Order of magnitude advances in non-volatile memory density and performance are upon us

bringing significant systems level architecture opportunities. The NAND Memory transition to

3D and the introduction of QLC have recently increased NAND SSD storage density at a

very rapid pace. Products featuring one terabit per die are available from Intel® Corporation

allowing dense storage, for example one PByte in 1U. This large improvement in density

brings great value to systems, but also increases the performance/capacity/cost gap

between DRAM and storage within the long evolving memory and storage hierarchy. Intel®

3D XPoint™ Memory, with much higher performance than NAND and greater density than

DRAM has entered the platform to address this gap - first as SSDs. These Intel® Optane™

SSDs are in use within client and data center platforms as both fast storage volumes and as

paged extensions to system memory delivering significant application performance

improvements. With low latency and fine-grained addressability, this new memory can be

accessed as Persistent Memory (PM), avoiding the 4kByte block size and multiple

microsecond storage stack that accompany system storage. This Intel® Optane Data

Center Persistent Memory is made possible through a series of hardware and software

advances. The resulting high capacity, high performance, persistent memory creates

opportunities for rethinking algorithms to deliver much higher performance applications. This

presentation will explain these new memory technologies, explore their impact on the

computing system at the architecture and solution level, and suggest areas of platform

exploration relevant to the HPC community.

Speaker: Frank T. Hady, Intel

Frank T. Hady is an Intel Fellow and the Chief Systems Architect in Intel’s Non-Volatile

Memory Solutions Group (NSG). Frank leads architectural definition of products based on

both Intel® 3D XPoint™ memory and NAND memory, and guides research into future

advances for these products. Frank led the definition of the first Intel Optane products.

Frank maintains a platform focus, partnering with others at Intel to define the deep

integration of Intel® Optane™ technology into the computing system’s hardware and

software. Previously he was Intel’s lead platform I/O architect, delivered research

foundational to Intel’s QuickAssist Technology, and delivered significant networking

performance advances. Frank has authored or co-authored more than 30 published papers

on topics related to networking, storage, and I/O innovation. He holds more than 30 U.S.

patents. Frank received his bachelor’s and master’s degrees in electrical engineering from

the University of Virginia, and his Ph.D. in electrical engineering from the University of

Maryland.

MCHPC’18: Workshop on Memory Centric High Performance Computing
November 11, 2018, Dallas, TX, USA

 2

Afternoon Keynote:

All Tomorrow’s Memory Systems

Bruce Jacob, University of Maryland at College Park

Abstract:

Memory and communication are the primary reasons that our time-to-solution is no better

than it currently is … the memory system is slow; the communication overhead is high; and

yet a significant amount of research is still focused on increasing processor performance,

rather than decreasing (the cost of) data movement. I will discuss recent & near-term

memory-system technologies including high-bandwidth DRAMs and nonvolatile main

memories, as well as the impact of tomorrow’s memory technologies on tomorrow’s

applications and operating systems.

Speaker: Bruce Jacob, University of Maryland at College Park

Bruce Jacob is a Keystone Professor of Electrical and Computer Engineering and former

Director of Computer Engineering at the University of Maryland in College Park. He received

the AB degree in mathematics from Harvard University in 1988 and the MS and PhD

degrees in CSE from the University of Michigan in Ann Arbor in 1995 and 1997, respectively.

He holds several patents in the design of circuits for electric guitars and started a company

around them. He also worked for two successful startup companies in the Boston area:

Boston Technology and Priority Call Management. At Priority Call Management, he was the

initial system architect and chief engineer. He is a recipient of a US National Science

Foundation CAREER award for his work on DRAM, and he is the lead author of an absurdly

large book on the topic of memory systems. His research interests include system

architectures, memory systems, operating systems, and electric guitars.

MCHPC’18: Workshop on Memory Centric High Performance Computing
November 11, 2018, Dallas, TX, USA

 3

Panel:

Research Challenges in Memory-Centric Computing

Moderator: Maya B. Gokhale, Lawrence Livermore National Laboratory

Panelist:

1. Mike Ignatowski, Sr. Fellow, Advanced Memory and Reconfigurable
Computing - AMD Research

2. Jonathan C. Beard, Staff Research Engineer - Arm HPC | Future
Memory/Compute Systems

3. Frank T. Hady, Intel
4. Bruce Jacob, University of Maryland at College Park
5. Michael A. Heroux, Sandia National Laboratories

Challenges of High-Capacity DRAM Stacks

and Potential Directions

Amin Farmahini-Farahani, Sudhanva Gurumurthi, Gabriel Loh, Michael Ignatowski
AMD Research, Advanced Micro Devices, Inc. {afarmahi, sudhanva.gurumurthi, gabriel.loh, mike.ignatowski}@amd.com

ABSTRACT

With rapid growth in data volumes and an increase in num-

ber of CPU/GPU cores per chip, the capacity and bandwidth

of main memory can be scaled up to accommodate perfor-

mance requirements of data-intensive applications. Recent

3D-stacked in-package memory devices such as high-band-

width memory (HBM) and similar technologies can provide

high amounts of memory bandwidth at low access energy.

However, 3D-stacked in-package memory have limited

memory capacity. In this paper, we study and present chal-

lenges of scaling the capacity of 3D-stacked memory devices

by stacking more DRAM dies within a device and building

taller memory stacks. We also present potential directions

and mitigations to building tall HBM stacks of DRAM dies.

Although taller stacks are a potentially interesting approach

to increase HBM capacity, we show that more research is

needed to enable high-capacity memory stacks while simul-

taneously scaling up their memory bandwidth. Specifically,

alternative bonding and stacking technologies can be inves-

tigated as a potentially major enabler of tall HBM stacks.

CCS CONCEPTS

• Hardware~Dynamic memory

KEYWORDS

3D Stacking, Capacity, DRAM, HBM, Memory

ACM Reference format:
Amin Farmahini-Farahani, Sudhanva Gurumurthi, Gabriel Loh, and Mi-
chael Ignatowski. 2018. Challenges of High-Capacity DRAM Stacks and
Potential Directions. In Proceedings of ACM Workshop on Memory Centric
High Performance Computing (MCHPC'18). ACM, New York, NY, USA, 10
pages. https://doi.org/10.1145/3286475.3286484

1. Introduction

Current CPUs/GPUs are composed of several cores and the

current trend in increasing the number of throughput cores

per chip is likely to continue for the foreseeable future. As

data sizes grow exponentially, future GPUs and high-perfor-

mance CPUs require high-bandwidth, energy-efficient ac-

cess to a large memory capacity to efficiently process data-

intensive applications such as scientific computing, in-

memory data analytics, and artificial intelligence. Tradition-

ally, CPUs/GPUs have relied on off-package commodity

DDR and GDDR DRAM. Recently, stacked memory has

been integrated into the CPU/GPU package to improve per-

formance, bandwidth, and energy efficiency.

In-package stacked memory provides higher bandwidth and

lower power consumption than off-package commodity

memory for several reasons including physical proximity to

the processor, wider and shorter connections to the proces-

sor, and localized accesses to a single location in a single die.

However, the current generation of in-package stacked

memory can suffer from low capacity. Figure 1 compares the

bandwidth and capacity of commercial stacked memories

such as High-Bandwidth Memory (HBM) [1] and Hybrid

Memory Cube (HMC) [2] with those of high-end commodity

DDR DIMMs. For instance, a single HBM2 stack currently

in volume production can provide a memory bandwidth of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

MCHPC'18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6113-2/18/11…$15.00
https://doi.org/10.1145/3286475.3286484

HBM1

HBM2

HBM2

HBM2e

HMC1

HMC2

DDR3 LRDIMM-1333

DDR4 LRDIMM-2666

DDR4 3DS LRDIMM-
3200

DDR4 3DS
LRDIMM-2933

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256
P

e
a
k

 B
a

n
d

w
id

th
 (

G
B

/s
)

Capacity (GB)

DRAM Modules

Stacked Memories

Figure 1. Bandwidth and capacity of DRAM stacks and com-
modity DDR DIMMs.

mailto:Permissions@acm.org
https://doi.org/10.1145/3286475.3286484

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

around 256GB/s which is almost an order of magnitude

higher than the bandwidth of a high-end, state-of-the-art

DDR4 DIMM. Nevertheless, memory stacks have a limited

capacity. For example, a single HBM2 stack can currently

provide a capacity of up to 8GB (gigabyte), containing eight

DRAM dies each having a density of 8Gb (gigabit). Unlike

current stacked memory devices, existing DDR DIMMs of-

fer much higher memory capacity by populating DRAM dies

in parallel on 64 or 72 bits wide DIMM (each DRAM die

itself could be 3D-stacked [3]).

Higher capacity memory stacks are highly desirable as they

can accommodate larger or entire application data sets in the

in-package memory close to processor, accelerating applica-

tion execution and decreasing the energy from data move-

ment/migration between in-package memory and off-pack-

age memory or storage [4]. GPUs and accelerators use in-

package stacked memory for graphics, high-performance

computing, and artificial intelligence applications. These ap-

plications drive the need for high-capacity in-package

memory as they require both high memory bandwidth and

high memory capacity.

There are four approaches to improve the capacity of in-

package memory. The first approach is to use higher density

DRAM dies within the memory stack by integrating more

DRAM cells in a single die. Higher density DRAM dies may

be achieved through use of future process technologies with

smaller DRAM cells. Scaling DRAM cells is projected to

continue, but at a slowing pace as Moore’s Law fades, ex-

posing reliability challenges and limitations in the manufac-

turing process. Moreover, DRAM die area can be increased

to achieve higher die capacity, possibly at the expense of re-

duced die yield and added cost. Larger DRAM die area will

also constrain the number of HBMs that fit in the processor

package. Another way to improve the density of DRAM dies

is to move logic circuits (e.g., decoders) from DRAM dies to

the base die of the stack and design DRAM dies that are

mainly made of DRAM cells. As a result, a higher fraction

of the die area is devoted to DRAM cells. These DRAM dies

would potentially benefit from improved density and yield

over the conventional DRAM dies that integrate logic cir-

cuits and DRAM cells into a single die. The main drawback

to this design is the need for a much larger number of vertical

connections to transfer signals from the base die to the

DRAM dies.

The second approach to improve the capacity of in-package

memory is to use high-capacity non-volatile memory

(NVM) dies. Emerging NVM technologies typically provide

1 By tall stacks in this paper, we mean memory stacks with more than 8

stacked DRAM dies without any notion of their physical vertical height.

better cell density than DRAM technology. However, NVM

technologies usually face issues including lower bandwidth,

larger write energy, narrow operating temperature margin,

and limited write endurance. To provide a trade-off between

memory capacity and bandwidth, NVM and DRAM dies can

be integrated in a single stack to form a hybrid DRAM-NVM

stack. As a result, this approach complicates the stack design

even further and requires design from the ground up and

careful thinking due to manufacturing and data management

issues.

The third approach to improve in-package memory capacity

is to populate a larger number of in-package memory stacks

around the processor. Although this approach can improve

both in-package memory capacity and bandwidth, it has cost

implications. Additional memory stacks require larger inter-

poser and package substrate which increase packaging cost.

Note that the size of the interposer can be limited to the max-

imum reticle size. More severely, more interposer intercon-

nects are needed between the processor and memory which

further increases packaging cost and increases processor die

manufacturing cost due to higher off-chip I/O counts [5].

The fourth approach is to increase the number of DRAM dies

in a stack, realizing a tall stack1. While other approaches to

improve capacity are feasible, in this paper, we this consider

this approach as it is a natural evolution of the in-package

stacked memory and is orthogonal to the previous three ap-

proaches. Integrating more DRAM dies within a stack, how-

ever, faces several challenges. In this paper, we outline ma-

jor challenges to enable tall memory stacks and directions to

address the challenges. Nonetheless, we believe more re-

search and engineering are needed to bring taller memory

stacks to the market. By presenting immediate and major

challenges of high-capacity in-package memory, we hope to

motivate the need for more research in several areas. We also

point out some potential directions to initiate this research.

2. HBM Overview

This section provides a primer on HBM, discussing the over-

all design and architecture based on published JEDEC stand-

ards [1] and commercially available parts [6].

HBM is a memory standard for stacks of DRAM dies. The

first and second specifications of the HBM standard were

ratified by JEDEC in 2013 and 2015, respectively. HBM, as

the name implies, primarily provides high amount of

memory bandwidth by exploiting a large number of I/O pins

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

and therefore targets systems with high bandwidth require-

ments. Besides higher bandwidth, HBM also provides rea-

sonable capacity per unit area and better energy efficiency

compared to the conventional DDR DRAM external to the

processor package. The access latency of HBM is compara-

ble to that of the conventional DDR DRAM technology.

In the current HBM standard, HBM2, there are up to 8 inde-

pendently-controlled memory channels. Channels in HBM2

and DDR DIMMs use a double data rate I/O interface, mean-

ing that each pin transfers two bits of data per clock cycle.

However, in contrast to latest DDR standards, each HBM

channel uses a 128-bit wide I/O interface with each pin op-

erating at a data rate of ~2Gbps (slightly more or less de-

pending on the implementation variation). Assuming a data

rate of ~2Gbps per pin, the total bandwidth of a single

HBM2 channel can thus be 32GB/s and be 256GB/s for the

stack. Each channel has also 8-16 banks, providing a large

opportunity for memory-level parallelism. The capacity of

each DRAM die is currently up to 8Gb and each stack can

have up to eight DRAM dies, providing a total capacity of

up to 8GB per stack. HBM2 sports several new features that

are not present in conventional DDR standards. Among

those is the single-bank refresh feature which refreshes only

a single bank per channel at a time as opposed to refreshing

all banks during refresh cycles. This allows access to other

banks in a channel even if a bank is currently undergoing

refresh. Another interesting feature is the pseudo channel

mode which divides a channel into two individual sub-chan-

nels with separated banks. This feature provides higher

bandwidth efficiency for non-streaming, irregular memory

references with low spatial locality by allowing more activa-

tions in a time window.

An HBM stack is composed of a multitude of DRAM dies

and a single logic die (base die). The logic die is designed to

test the stack and provides the communication interface,

commonly referred to as the “PHY”, to the outside world. In
the current HBM technology, the dies in a stack are con-

nected by through-silicon vias (TSVs) and microbumps as

shown in Figure 2. The TSVs and microbumps not only

transfer data signals between dies, but also connect the dies

to power and ground pins. TSVs pass through DRAM dies,

providing electrical connection between the DRAM dies and

logic die. In the current HBM technology, the aggregate in-

ternal bandwidth of data TSVs is the same as the external

bandwidth of I/O pins. TSVs are usually copper with a di-

ameter of 5-10μm. Microbumps join adjacent dies together

and usually have a diameter of ~25μm and a pitch size of
~55μm in HBM2. The microbumps internal to the stack have

the same mechanical features as bumps used in connecting

the stack to a package substrate but are much smaller. Nev-

ertheless, microbumps occupy a considerable amount of die

area since many microbumps are required for data signals,

power supply, testability, and mechanical stability. For in-

stance, in the current HBM standard, all microbumps are lo-

cated in the center of the stack and occupy an area of close

to 20mm2 in each DRAM die [1].

Figure 2 shows how DRAM and logic dies are conceptually

stacked in the current HBM technology. All DRAM dies are

usually thinned to a thickness of ~50μm (apart from the top
DRAM die) [7], their functionality and performance are

tested, then the good DRAM dies are stacked. Underfill ma-

terial is filled in the space between adjacent dies for mechan-

ical stability and has a thickness of ~30μm [7]. Underfill is

made up of dielectric material that does not have good ther-

mal conductivity, causing heat extraction issues in HBM.

This issue becomes even more pronounced in HBMs with a

higher number of stacked dies. Another related point is the

physical height of the stack that may cause some packaging

issues. The height increases even further in HBMs with a

higher number of stacked dies if the same stacking technol-

ogy is used for manufacturing future HBMs.

Figure 2 shows an HBM stack that is mounted on an inter-

poser. The processor (not shown) is also mounted on the in-

terposer and placed adjacent to the HBM stack in a single

package. The interposer provides low-energy, high-band-

width connectivity between the stack and processor through

wide, short-distance connections.

3. Challenges of Tall Memory Stacks and Po-
tential Directions

Stacking more DRAM dies within a memory stack (e.g., 16

stacked DRAM dies) faces key challenges. We provide a

PHY

Interposer

Package Substrate

Logic Die

Die Underfill

DRAM Die

Die Underfill

DRAM Die

Die Underfill

DRAM Die

Die Underfill

DRAM Die

TSV

Microbump

Package

ball

Microbump

C4 bump

Figure 2. Stacked DRAM dies, TSVs, microbumps, and under-
fill in an HBM stack. The HBM stack is mounted on an inter-
poser (figure not drawn to scale).

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

technical overview of these challenges and some potential

directions to tackle them.

3.1 TSV Speed

One of the main challenges to increasing DRAM layers

within a memory stack is the speed limitation of TSVs. As

the number of layers increases the maximum rate in which

data can be transferred through the combined stack of TSVs

degrades due to limited driver strength and capacitance

which increases with the number of layers. In other words,

the data transfer delay through TSVs increases with the stack

height, constraining data communication bandwidth through

TSVs.

The TSV delay is a function of the TSV resistance R and

capacitance C (RC delay). TSVs incur non-trivial RC delay

in existing stacked memories. The delay characteristics of a

TSV are different from those of a metal wire because the

cross-sectional area and geometrical shape of a TSV are

larger than those of a wire, even those of top metal wires.

The TSV resistance is a function of its material resistance

(e.g., copper versus tungsten), its diameter (cross-sectional

area), and its length. Figure 3 shows an abstract diagram of

a TSV. The TSV resistance is directly proportional to its

length, but inversely proportional to its cross-sectional area.

TSVs usually have small resistance compared to short wires

due to their large cross-sectional areas.

The TSV capacitance is a function of multiple parameters

including TSV diameter and length, the thickness of oxide

insulator liner surrounding the TSV, and the bonding tech-

nique used (Section 4). The TSV capacitance is directly pro-

portional to its diameter and length, but inversely propor-

tional to the oxide thickness. TSVs usually impose large ca-

pacitance due to their large size. Reducing TSV diameter and

length can significantly reduce the TSV capacitance and de-

lay, but both are influenced largely by the bonding and thin-

ning process. Increasing the oxide thickness can reduce the

RC delay as well but it can impose even more area overhead

and can degrade TSV density.

Potential directions: With an increase in the number of

DRAM layers, the TSV RC delay is aggravated. There are a

few potential directions/workarounds for mitigating the high

TSV RC delay in tall memory stacks. A potential direction

is wider vertical buses within the stack to transfer more bits

in parallel but at a reduced frequency of data transfer over

TSVs. For example, a 256-bit wide data bus at 2GHz pro-

vides the same theoretical bandwidth as a 128-bit wide data

bus at 4GHz. Wider TSV data buses, however, increase TSV

area overhead. Reducing TSV diameters and pitch, if viable

in the current/future stacking technology, could keep the

area overhead of wider buses low. An alternative direction is

to use large TSV drivers and repeaters in the path that can

help reach the target TSV speed, but that imposes energy,

area, and cost overheads. Finally, a research direction is to

insert data buffers to buffer TSV data in intermediate layer

locations and resend the data [8]. This basically breaks a long

TSV data bus into shorter, but faster TSV data buses which

can also help reduce the TSV delay and improve the TSV

data rate. However, buffers take area and can impose non-

trivial buffering delay and energy overheads.

A fundamental direction to minimizing the TSV delay is to

use a different bonding and stacking technology that would

potentially enable much shorter and thinner TSVs (Section

4). This type of stacking technology could greatly reduce the

coupling capacitance of a TSV, thereby reducing delay. A

new stacking technology that works well with DRAM re-

quires substantial research and development.

Summary: Degradation in the TSV speed is a major chal-

lenge in tall memory stacks. The TSV speed in current HBM

technologies is already at it limits, just enough to match the

external bandwidth while minimizing TSV area overhead.

As the number of DRAM layers increases, both TSV re-

sistance and capacitance increase, further limiting the TSV

speed. For example, going from an 8-high stack to a 16-high

stack significantly increases the TSV RC delay for the top

die. This means that bandwidth of stacked memories could

be negatively affected by the number of DRAM layers (i.e.,

capacity). We expect that upcoming HBM technologies can

support higher internal bandwidth using wider data TSV

buses while mitigating their area overhead through marginal

improvement in TSV pitch size. We, however, do not expect

significant improvement in per-TSV data rates with the cur-

rent stacking technology, especially for taller stacks. Future

stacking technologies could potentially improve TSV speed

D
e

p
le

ti
o

n

Silicon
TSV

(copper)

DRAM Die
TSV Pad

TSV Pad

Silicon

SiO2 SiO2

D
e

p
le

ti
o

n

Figure 3. Abstract diagram of a TSV (not to scale).

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

by fundamental change in the TSV physical structure, but

high-volume manufacturing feasibility is yet to be seen.

3.2 TSV Count

Having higher DRAM die count not only improves the ca-

pacity, but also presents the opportunity of having a higher

number of channels (and thus higher bandwidth within a

stack) and/or a higher number of banks per channel (better

bank-level parallelism). Channels have independent address,

command, and data signals. As a result, adding more chan-

nels requires incorporating more TSVs in the stack if chan-

nel width remains intact. However, adding more TSVs im-

poses higher area overhead.

There are two types of structures for mapping TSVs to

DRAM dies: point-to-point TSV structure and shared TSV

structure [9, 10, 11].

In the point-to-point TSV structure (Figure 4 left), each TSV

provides a connection between a single DRAM die and the

base die. In other words, each TSV is dedicated to a single

DRAM die2. Some configurations of HBM uses this struc-

ture. Since in this structure each DRAM die uses its own set

of TSVs, the bandwidth of a stack improves with an increase

in DRAM die count provided the TSV width and frequency

remain intact. In other words, capacity improvement through

taller stacks goes hand in hand with bandwidth improve-

ment. The downside is that as the number of DRAM dies

within a stack increases, more TSVs are required to accom-

modate higher DRAM die count and higher bandwidth.

Thus, this structure imposes more TSV area overhead with

the increase in DRAM die count. One way to mitigate this

TSV area overhead is to narrow the TSV bus in the point-to-

point TSV structure (e.g., having a 64-bit wide TSV inter-

face instead of a 128-bit interface), which negatively impacts

the bandwidth delivered by each DRAM die.

2 Note that a DRAM die can be composed of more than one channel.

Therefore, each channel has its own dedicated set of TSVs.

In the shared TSV structure (Figure 4 right), each TSV pro-

vides a connection between multiple DRAM dies and the

base die. For instance, in Figure 4 (right), two DRAM dies

in a 4-high stack share a set of TSVs. At any given time, only

one of the connecting DRAM dies can transfer data through

the TSV interface. The main challenge with this shared TSV

structure is data conflict over the TSV interface. No dies that

share the same TSV interface can transfer data simultane-

ously. To avoid the problem of data conflict over the TSV

interface, the memory controller must be mindful of bank

and channel distribution over DRAM dies to be able to care-

fully orchestrate data transfers over the TSV interface with-

out causing data conflict. Also, the switching/interleaving

delay is inserted when the data transfer is switched from one

die to another, causing an idle cycle in the TSV data connec-

tion and thus reducing bandwidth efficiency [12].

The shared TSV structure may provide less bandwidth than

the point-to-point TSV structure as the TSV interface is

shared among DRAM dies. However, judicious physical di-

vision of each channel among multiple dies and assigning

each die a subset of the channel’s banks would result in sim-
ilar theoretical bandwidth as the point-to-point structure with

the same number of TSVs. In other words, if the TSV inter-

face is shared among banks belonging to the same channel,

no bandwidth loss is caused provided no switching delay is

incurred. The reason is that at any given time only a single

bank within a channel transfers data over the TSV interface

and no banks within a channel are permitted to transfer data

simultaneously. For example, both structures in Figure 4

provide the same theoretical bandwidth assuming both struc-

tures have identical TSV widths and frequencies.

The shared TSV structure can be used to reduce TSV count

at the expense of bandwidth reduction. This shared TSV

structure can form logical ranks within a stack in which mul-

tiple ranks share the same TSV interface but only a single

rank can transfer data at a time. 3DS DRAM [3] is an ex-

treme example of this structure where each DRAM die is a

logical rank and all DRAM dies share a single TSV data in-

terface. Thus, the shared TSV structure presents the oppor-

tunity of improving capacity without the overhead of addi-

tional TSVs and independently of the stack internal band-

width.

Summary: The TSV-to-DRAM die mapping structures and

internal organization of the stack provide different design

trade-offs in terms of capacity, bandwidth, and TSV area and

cost overheads. As the number of DRAM layers within a

Base Die

A-1

B-0

A-0

B-1

C-1

D-0

C-0

D-1

Base Die

C

B

A

D

Figure 4. Example mapping of TSVs to DRAM dies in a 4-
high stack: point-to-point TSV structure (left) and shared
TSV structure (right). The notation of X-# represents channel
X and bank group #.

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

stack increase, more TSVs may be needed to scale up band-

width. With the increase in DRAM layers, the point-to-point

TSV structure provides a means to improve both capacity

and bandwidth at the expense of more TSVs, while the

shared TSV structure can provide a means to improve capac-

ity and manage the TSV overhead at the expense of a worse

bandwidth-to-capacity ratio. For tall memory stacks, TSV

mapping structures can be investigated.

3.3 Stack Height

The physical z-height of a stack has a direct impact on pack-

aging cost and cooling effectiveness. In addition, package

thickness can be a major constraint in the mechanical design.

In the latest generation of HBM technology, HBM2, the

height of an 8-high stack is 700-800µm [1, 13]. Increasing

the number of DRAM layers (and thus requiring underfill

between DRAM layers) in a stack would further increase the

height. The height of the interposer in 2.5D interposer sys-

tems or the height of the processor in 3D processor-memory

systems further increases the total package height. The

height of memory stacks could be a limiting factor in high-

end GPUs and server-class systems as well as in mobile and

embedder systems. In hand-held systems, the number of

stacked dies may be shorter but the thermal and cooling con-

straints may be more severe. The height of future stacked

memories could potentially pose packaging and thermal con-

ductivity issue.

Potential directions and summary: In the current HBM

stacking technology, we project that the height could be lim-

iting for 16-high stacks due to limitations of DRAM die thin-

ning and die underfill thickness. Alternative bonding and

stacking techniques for DRAM could be adopted to reduce

the stack height. Those techniques can present opportunities

to thin DRAM dies, forgo microbumps and underfill be-

tween adjacent stacked dies, and use better thermally con-

ductive practices (See Section 4).

3.4 Stack Thermal Conductivity

The temperature distribution within a stack depends on fac-

tors including heat sources in the stack, heat source near by

the stack, package, thermal interface material, coolant

flowrate, temperature, etc. But a major factor is the thermal

conductivity within the stack itself. Thermal conductivity of

a stack is a major challenge for cooling memory stacks and

becomes more important as the number of DRAM layers and

thus thermal density increases. With the increase in DRAM

layers, the temperature difference between the bottom (hot-

test) die and top (coolest) die increases, requiring thermal

conductivity improvements in the stack to enable transfer the

heat from bottom to top without exceeding die temperature

limits. Stacking DRAM atop a processor not only increases

the temperature difference among the processor and DRAM

dies but can also cause hotspots in the bottom and near-bot-

tom dies. Even in 2.5D packages where a memory stack is

beside the processor, hot spots can occur in the locations ad-

jacent to the processor die.

The maximum die temperature specification of most DRAM

devices has to be 85℃ to maintain the specified refresh rate.

At higher DRAM die temperatures, higher refresh rates are

required to maintain data integrity (which negatively affect

available bandwidth). In addition, operating DRAM cells at

temperatures beyond their specified operating temperature

range leads to higher mean time between failure (MTBF)

rates [14].

Potential directions: DRAM must ensure that data integrity

is maintained under all allowed working conditions. To

maintain data integrity in the presence of temperature dispar-

ity both within a die and across dies in a stack, adaptive re-

fresh techniques [13] can be used to enable different refresh

rates for different locations in the stack based on their tem-

perature. This technique also presents an opportunity to save

energy by lowering the refresh rate of cooler locations in-

stead of refreshing the entire stack based on the worst-case

situation.

The effectiveness of cooling a stack is directly related to

thermal conductivity of the stack which depends on multiple

factors including bonding technique, underfill material, die

thickness, and TSV distribution. To improve cooling, re-

searchers have proposed techniques such as dummy mi-

crobumps and thermal TSVs [15, 16], microfluidic channels

[17], thermal-aware placement [18], and thermal-aware data

compression [19].

Summary: Thermal conductivity can affect reliability and

performance of memory stacks, especially those with more

than 8 DRAM layers. As a result, improving thermal con-

ductivity of future tall memory stacks is crucial. With exist-

ing bonding techniques, more dummy microbumps are inte-

grated within the stack to marginally improve thermal con-

ductivity. Alternative bonding and stacking techniques can

be investigated as they can substantially improve thermal

conductivity of tall memory stacks (Section 4).

3.5 Reliability

Memories can experience faults and cause reliability chal-

lenges especially as DRAM technology is becoming less sta-

ble due to extreme cell scaling. Reliability techniques are re-

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

quired to ensure fault tolerance within acceptable perfor-

mance limits as well as high yield within acceptable area

overhead. In traditional DDR DIMMs, data bits come from

multiple DRAM dies. On the other hand, in HBM all data

bits of a transaction are retrieved from a single row of a sin-

gle bank of a single DRAM die. Data retrieval form a single

location in HBM improves the energy efficiency of HBM

devices over traditional DDR DIMMs. However, HBM’s
single-location access has a negative impact on reliability of

HBM devices as faulty data bits cannot be re-constructed

from other dies. Hence, some traditional reliability tech-

niques such as ECC and chipkill, which uses a group of in-

dependent memory dies to protect against any single die fail-

ure and multi-bit errors in a die, cannot be applied directly

to HBM. In addition, stacked memories introduce new ele-

ments such as TSVs that could be a new source of failure.

Stacked memories are usually placed in close physical prox-

imity to processors which could lead to thermal and mechan-

ical stresses. These factors are a challenge to stacked

memory attaining the reliability of traditional DRAM

DIMMs [20].

In general, there are three types of faults in stacked memo-

ries: DRAM cell faults, peripheral logic faults, and TSV

faults. While cell faults can usually cause single-bit errors,

the peripheral logic and TSV faults are single points of fail-

ures that can cause multi-bit errors. For example, a single

data TSV fault can cause up to four error bits when a 512-bit

cache line is transferred over 128 TSVs. Address TSV faults

and peripheral logic faults can cause bank, row, and column

failures.

Replacing faulty stacked memory co-packaged with a pro-

cessor is more costly than replacing a faulty DIMM because

the entire processor-memory package must be replaced (i.e.,

the field replaceable unit is the processor module which

costs far more than a DIMM). In addition, as the number of

DRAM layers increases, the fault rate of a stack can degrade

as more elements and cells are integrated in the stack. Higher

fault rate of memory stacks may cause more frequent re-

placement of processor-memory package without memory

fault-tolerant schemes.

Potential directions: In future stacked memories, more ro-

bust offline and/or online test and repair schemes could be

used to detect and repair a variety of faults before causing

failure and enhancing yield. Stronger error detection and

correction schemes could also be used to detect and poten-

tially correct multi-bit errors if additional ECC bits and pins

can be added to future stacked memories. Finally, redundant

storage in the base die of a memory stack could enable new

fault-tolerant schemes.

Summary: Stacked memories face several reliability chal-

lenges especially in future DRAM stacks due to the inherent

reliability issues of highly-scaled DRAM cells and an in-

crease in the DRAM die count. Therefore, reliability tech-

niques are required to mitigate reliability degradation for tall

stacks. The area/bandwidth/energy overheads of reliability

techniques can be carefully examined.

3.6 Cost and Volume

Cost and volume production of stacked memories are closely

related. High volumes reduce cost, and lower costs help re-

alize higher volumes by enabling stack memory to be

adopted by larger markets. If stacked memories are adopted

in consumer markets, the capital investment needed for

stacked memory production and use are amortized over high

volume, which can decrease cost.

Currently, stacked memory costs more than conventional

memory due to lower volumes, TSV area overhead, and

higher manufacturing cost (e.g., die stacking and thinning).

Potential directions: Manufacturing volumes have a first-

order impact on cost, and high cost has restricted stacked

memories to high-end graphics and high-performance com-

puting markets. To increase volume and lower production

cost, techniques such as reducing the number I/O pins for

stacked memory devices and enabling use of organic sub-

strates rather than interposers can be evaluated.

3.7 Power Delivery

Power delivery to in-package stacked memories, especially

when 3D stacked on top of a processor, could be a design

challenge [21]. Failing to deliver stable power to memory

stacks may jeopardize functionality or performance targets.

In addition, in-package memory stacks with high power con-

sumption not only require more sophisticated power delivery

mechanisms, but they also leave less power for the processor

since they take a higher portion out of a fixed processor-

memory power budget.

For sufficient and stable power delivery throughout the

stack, a large number of pins and TSVs are used for power

and ground in the current generation of HBM stacks. The

number of pins and TSVs have a direct impact on packaging

cost and DRAM die area.

In addition to delivering power to memory stacks, power

should properly be distributed within the stack. Stacked

memories, like other integrated circuits, must deal with IR-

drop in which voltage drops over long, resistive conducting

wiring traces which cause different locations in a die and

stack to receive different voltages. For example, HBM2 core

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

has a typical Vdd of 1.2V and the minimum allowed Vdd of

1.14V. Thus, HBM2 can only cope with an IR-drop of

0.060V. Any larger IR-drop (caused, for example, by a lossy

power supply) may result in incorrect functionality (e.g., not

meeting timing constraints), reduced performance (e.g., con-

straining data transfer rate), and/or data errors.

DRAM stacks face power delivery challenges will be exac-

erbated in future taller stacks. While traditional 2D circuits

may suffer from horizontal IR-drop in a single die, vertical

IR-drop can also be considered especially for taller stacks as

some dies have longer paths to the power supply. For in-

stance, the top DRAM die receives lower voltage than bot-

tom dies since power is supplied through the base logic die

or bottom DRAM die [22]. In addition, as the number of

DRAM dies increases, the power delivered must increase to

supply the additional DRAM die in the stack and thus current

into the stack increases proportionally as well. The re-

sistance of the power delivery network (PDN) increases as

well since the network becomes larger. The probability of

simultaneously switching noise (SSN) also increases since

more banks/channels/pseudo-channels may trigger switch-

ing more wires/TSVs in unison. We also expect future gen-

erations of stacked memories to have a lower nominal supply

voltage to improve power efficiency and smaller TSV sizes

to improve TSV density. The former causes less tolerance to

IR-drop because of smaller voltage margin and the latter

causes more resistance in the PDN.

Potential directions: Designing a more effective PDN by

distributing power and ground (PG) TSVs in the die could

mitigate the IR-drop problem. For example, it has been

shown that placing some PG TSVs on the edge of the DRAM

die and some PG TSVs in the center can help reduce power

supply noise in memory stacks [23]. However, distributing

PG TSVs across the die imposes considerable impacts on

area due to large keep-out zones of TSVs. Incorporating

more PG TSVs in a centralized location could help with

power delivery to some degree but it also comes at the ex-

pense of area and cost. Similarly, including and placing a

sufficient number of voltage regulators and decoupling ca-

pacitors in proper locations could alleviate dynamic IR-drop

caused by DRAM activity at the expense of area and cost

[24], but they do not resolve static IR-drop caused by the

resistance of the PDN.

Summary: Power delivery is an important design challenge

in stacked memories and becomes even more important with

taller stacks due to an increase in power density. The effec-

tiveness of potential techniques for power delivery as well

as their cost can be evaluated carefully.

4. Alternative Bonding and Stacking Tech-
niques

Die bonding is the process of attaching dies to one another

or to a substrate to provide electrical and physical connectiv-

ity between dies. The bonding process is required to manu-

facture 3D die stacks such as DRAM stacks. Table 1 de-

scribes the characteristics of the main bonding techniques for

use within 3D stacks.

The conventional die bonding technique used in HBM is mi-

crobump bonding in which metal microbumps are used to

bond stacked dies and establish connectivity between dies.

The space between dies is filled with underfill to ensure me-

chanical robustness (Figure 2). The main disadvantages of

microbump bonding are (1) large microbump sizes which

degrade TSV density and (2) thick die and underfill which

increase the stack height. The underfill also has a negative

impact on the stack thermal conductivity. The height and di-

ameter of TSVs are usually large in microbump bonding

which can affect the TSV speed, energy efficiency, and cool-

ing of the stack.

Potential directions: There are alternative bonding tech-

niques that eliminate the need of solder interconnect (mi-

crobump) and hence may help overcome the issues related

to the microbump bonding. Two potential alternative bond-

ing techniques are hybrid bonding and direct oxide bonding.

Neither of these techniques have been used yet for high-vol-

ume production of DRAM stacks.

Hybrid bonding [25, 26] using an annealing process to first

bond the dielectric layers of two connecting dies and then

subsequent bonding of the metal pads embedded in these di-

electric layers through thermal expansion and diffusion. The

Table 1. Stack internal bonding techniques and their characteristics

Technique Requirements Microbump/TSV pitch size Die layer thickness Processing thermal budget Heat extraction capacity

Microbump
(solder)

Microbump + TSV landing
pad + Underfill

55µm
50µm (plus 30µm

thick underfill)

~250⁰C for a few (2-3)

minutes
Poor due to underfill

Hybrid Direct electrical connection 2.5µm for wafer-2-wafer 5µm-20µm ~400⁰C for an hour Very good

Direct Oxide
TSV after bonding (TSV

last)
15-20µm 5-20µm ~150⁰C for an hour Very good

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

dielectric bonding is usually achieved at about 150⁰C and the

subsequent thermal bonding between the metal pads may re-

quire an annealing temperature of up to 400⁰C. The hybrid

bonding does not require microbumps and underfill which

may lead to decreased stacking cost and complexity. It can

also achieve small TSV pitch sizes and enable stacking of

thin dies. However, the high annealing temperature for about

an hour required for achieving thermal bonding of metal

pads may degrade DRAM cell reliability. Hence, the feasi-

bility of low-temperature hybrid bonding can be evaluated

for stacked memories.

With direct oxide bonding [25], the surfaces of the stacked

dies achieve oxide-to-oxide bonding using a low-tempera-

ture bonding process. Oxide bonding does not require phys-

ical modification of the CMOS process. However, TSVs are

etched and formed after the bonding process. Since both di-

ameter and length of TSVs in oxide bonding are smaller than

those in microbump bonding (see Table 1), oxide bonding

enables TSV connections with higher speed and better en-

ergy efficiency. The feasibility and cost-benefits of oxide

bonding can be evaluated as well.

Summary: Bonding techniques have direct impacts on 3D

die attributes such as TSV data rate, TSV density, stack

height, reliability, and thermal conductivity. The existing

bonding technique used in volume productions of HBM de-

vices impose limitations on scaling the number of stacked

DRAM dies. Investigating alternative bonding techniques

for high-volume DRAM stacks is of paramount importance

for realization of high-capacity DRAM stacks. Alternative

bonding techniques can be a key enabler of memory stacks

with high capacity, high bandwidth, and acceptable thermal

conductivity.

5. Conclusions and Outlook

In this paper, we have provided an overview of major tech-

nical challenges in the design and implementation of high-

capacity DRAM stacks that integrate many DRAM dies

within a stack. We also presented potential directions to be

investigated. We showed that the main obstacle facing high-

capacity DRAM stacks is stacking a high number of DRAM

dies to provide the required capacity while achieving high

memory bandwidth and high thermal conductivity using a

high-volume, high-yield production process. We believe that

an alternative bonding and stacking technology would ena-

ble tall DRAM stacks with higher internal TSV interconnect

density, less TSV capacitive load, better thermal conductiv-

ity within the stack, etc.

We hope that this paper sets the stage for more research and

engineering of design and implementation of high-capacity,

high-bandwidth DRAM stacks. As explained, future

memory stacks present intriguing challenges, and thus re-

search opportunities. We urge researchers from different do-

mains such as packaging, bonding, reliability, and design ar-

chitecture to participate in studying these challenges, inves-

tigating potential directions, and evaluating techniques to

understand trade-offs and implications. Research in these

domains would help address the challenges and pave the way

for volume production of high-capacity, high-bandwidth

memory stacks.

ACKNOWLEDGMENT

The authors would like to thank Rahul Agarwal, Milind Bha-

gavat, Bryan Black, Hayden Lee, Joe Macri, Aaron Nygren,

Priyal Shah, and Vilas Sridharan for their valuable com-

ments and suggestions throughout the course of this work.

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

REFERENCES

[1] “High bandwidth memory (HBM) DRAM JESD235A,” 2015.
[Online]. Available: https://www.jedec.org/standards-documents/-

docs/jesd235a
[2] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips, 2011.

[3] “Addendum no. 1 to JESD79-4, 3D Stacked DRAM JESD79-4-1,”
2017. [Online]. Available: https://www.jedec.org/standards-docu-
ments/docs/jesd79-4-1

[4] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-

towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,

S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design
and analysis of an APU for exascale computing,” in HPCA, 2017, pp.
85–96.

[5] C. C. Lee, C. Hung, C. Cheung, P. F. Yang, C. L. Kao, D. L. Chen,

M. K. Shih, C. L. C. Chien, Y. H. Hsiao, L. C. Chen, M. Su,

M. Alfano, J. Siegel, J. Din, and B. Black, “An overview of the devel-
opment of a GPU with integrated HBM on silicon interposer,” in IEEE

Electronic Components and Technology Conference (ECTC), 2016, pp.
1439–1444.

[6] “AMD Radeon RX Vega64,” 2018. [Online]. Available: https://-
www.amd.com/en/products/graphics/radeon-rx-vega-64

[7] K. Gibb, “Hats off to Hynix: Inside 1st high bandwidth memory.”
[Online]. Available: https://www.eetimes.com/author.asp?sec-
tion_id=36&doc_id=1327254

[8] D. Yudanov and M. Ignatowski, “Method and apparatus of integrating
memory stacks,” 2017, US Patent Application.

[9] C. Kim, H.-W. Lee, and J. Song, High-Bandwidth Memory Interface,

1st ed. Springer International Publishing, 2014.

[10] D. U. Lee, K. S. Lee, Y. Lee, K. W. Kim, J. H. Kang, J. Lee, and J. H.
Chun, “Design considerations of HBM stacked DRAM and the
memory architecture extension,” in IEEE Custom Integrated Circuits

Conference (CICC), 2015, pp. 1–8.

MCHPC’18, November, 2018, Dallas, Texas, USA A. Farmahini-Farahani et al.

[11] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultane-
ous multi-layer access: Improving 3D-stacked memory bandwidth at
low cost,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 63:1–
63:29, 2016.

[12] S. B. Lim, H. W. Lee, J. Song, and C. Kim, “A 247 uW 800 Mb/s/pin
DLL-based data self-aligner for through silicon via (TSV) interface,”
IEEE J. of Solid-State Circuits, vol. 48, no. 3, pp. 711–723, 2013.

[13] K. Sohn, W. J. Yun, R. Oh, C. S. Oh, S. Y. Seo, M. S. Park, D. H. Shin,

W. C. Jung, S. H. Shin, J. M. Ryu, H. S. Yu, J. H. Jung, H. Lee, S. Y.

Kang, Y. S. Sohn, J. H. Choi, Y. C. Bae, S. J. Jang, and G. Jin, “A 1.2
v 20 nm 307 GB/s HBM DRAM with at-speed wafer-level IO test

scheme and adaptive refresh considering temperature distribution,”
IEEE J. of Solid-State Circuits, vol. 52, no. 1, pp. 250–260, 2017.

[14] “Technical note, uprating semiconductors for high-temperature appli-

cations,” 2004. [Online]. Available: https://www.micron.com/~/me-

dia/documents/products/technical-note/dram/tn0018.pdf

[15] J. Kim and Y. Kim, “HBM: Memory solution for bandwidth-hungry

processors,” in Hot Chips, 2014.

[16] A. Agrawal, J. Torrellas, and S. Idgunji, “Xylem: Enhancing vertical
thermal conduction in 3D processor-memory stacks,” in Micro, 2017,

pp. 546–559.

[17] J. Xie and M. Swaminathan, “Electrical-thermal co-simulation of 3d
integrated systems with micro-fluidic cooling and joule heating ef-

fects,” IEEE Trans. on Components, Packaging and Manufacturing

Technology, vol. 1, no. 2, pp. 234–246, 2011.
[18] J. Cong, G. Luo, J. Wei, and Y. Zhang, “Thermal-aware 3D IC place-

ment via transformation,” in Asia and South Pacific Design Automation

Conference, 2007, pp. 780–785.
[19] M. J. Khurshid and M. Lipasti, “Data compression for thermal mitiga-

tion in the hybrid memory cube,” in Intl. Conf. on Computer Design

(ICCD), 2013, pp. 185–192.

[20] H. Jeon, G. H. Loh, and M. Annavaram, “Efficient RAS support for
die-stacked DRAM,” in Intl. Test Conf., 2014, pp. 1–10.

[21] N. H. Khan, S. M. Alam, and S. Hassoun, “System-level comparison

of power delivery design for 2D and 3D ICs,” in Intl. Conf. on 3D Sys-
tem Integration, 2009, pp. 1–7.

[22] M. Shevgoor, J. S. Kim, N. Chatterjee, R. Balasubramonian, A. Davis,

and A. N. Udipi, “Quantifying the relationship between the power de-
livery network and architectural policies in a 3D-stacked memory de-

vice,” in Micro, 2013, pp. 198–209.

[23] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn,
D. Kwon, J. H. Kim, J.-W. Lee, H.-S. Joo, W.-S. Kim, H.-K. Kim, E.-

M. Lee, S.-R. Kim, K.-H. Ma, D.-H. Jang, N.-S. Kim, M.-S. Choi, S.-

J. Oh, J.-B. Lee, T.-K. Jung, J.-H. Yoo, and C. Kim, “8Gb 3D DDR3
DRAM using through-silicon-via technology,” in Intl. Solid-State Cir-

cuits Conference - Digest of Technical Papers, 2009, pp. 130–
131,131a.

[24] T. Nomura, R. Mori, K. Takayanagi, K. Fukuoka, and K. Nii, “Design
challenges in 3-D SoC stacked with a 12.8 GB/s TSV wide I/O

DRAM,” IEEE J. on Emerging and Selected Topics in Circuits and
Systems, vol. 6, no. 3, pp. 364–372, 2016.

[25] L. Di Cioccio, P. Gueguen, R. Taibi, D. Landru, G. Gaudin, C. Chap-

paz, F. Rieutord, F. de Crecy, I. Radu, L. L. Chapelon, and
L. Clavelier, “An overview of patterned metal/dielectric surface bond-
ing: Mechanism, alignment and characterization,” J. of The Electro-

chemical Society, vol. 158, no. 6, pp. P81–P86, 2011.
[26] G. Gao, L. Mirkarimi, G. Fountain, L. Wang, C. Uzoh, T. Workman,

G. Guevara, C. Mandalapu, B. Lee, and R. Katkar, “Scaling package
interconnects below 20Âµm pitch with hybrid bonding,” in IEEE Elec-
tronic Components and Technology Conf. (ECTC), 2018, pp. 314–322.

Evaluation of Intel Memory Drive Technology Performance for
Scientific Applications

Vladimir Mironov
Department of Chemistry,

Lomonosov Moscow State University
Moscow, Russian Federation
vmironov@lcc.chem.msu.ru

Andrey Kudryavtsev
Intel Corporation

Folsom, California, USA
andrey.o.kudryavtsev@intel.com

Yuri Alexeev
Argonne National Laboratory,
Computational Science Division

Argonne, Illinois, USA
yuri@alcf.anl.gov

Alexander Moskovsky
RSC Technologies

Moscow, Russian Federation
moskov@rsc-tech.ru

Igor Kulikov
Institute of Computational

Mathematics and Mathematical
Geophysics SB RAS

Novosibirsk, Russian Federation
kulikov@ssd.sscc.ru

Igor Chernykh
Institute of Computational

Mathematics and Mathematical
Geophysics SB RAS

Novosibirsk, Russian Federation
chernykh@ssd.sscc.ru

ABSTRACT

In this paper, we present benchmark data for Intel Memory Drive

Technology (IMDT), which is a new generation of Software-defined

Memory (SDM) based on Intel ScaleMP collaboration and using

3D XPoint TM based Intel Solid-State Drives (SSDs) called Optane.

We studied IMDT performance for synthetic benchmarks, scientific

kernels, and applications. We chose these benchmarks to represent

different patterns for computation and accessing data on disks and

memory. To put performance of IMDT in comparison, we used two

memory configurations: hybrid IMDT DDR4/Optane and DDR4

only systems. The performance was measured as a percentage

of used memory and analyzed in detail. We found that for some

applications DDR4/Optane hybrid configuration outperforms DDR4

setup by up to 20%.

CCS CONCEPTS

· Hardware → Non-volatile memory; · Computing method-

ologies → Massively parallel and high-performance simulations; ·

Applied computing; · Software and its engineering → Mem-

ory management;

KEYWORDS

Intel Memory Drive Technology, Solid State Drives, Intel Optane,

ScaleMP

ACM Reference Format:

VladimirMironov, Andrey Kudryavtsev, Yuri Alexeev, AlexanderMoskovsky,

Igor Kulikov, and Igor Chernykh. 2018. Evaluation of Intel Memory Drive

Technology Performance for Scientific Applications. In MCHPC’18: Work-

shop on Memory Centric High Performance Computing (MCHPC’18), No-

vember 11, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3286475.3286479

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286479

1 INTRODUCTION

In the recent years the capacity of system memory for high perfor-

mance computing (HPC) systems has not been kept with the pace

of the increased central processing unit (CPU) power. The amount

of system memory often limits the size of problems that can be

solved. System memory is typically based on dynamic random ac-

cess memory (DRAM). DRAM prices have significantly grown up

in the recent year. In 2017, DRAM prices were growing up approxi-

mately 10-20% quarterly [10]. As a result, memory can contribute

up to 90% to the cost of the servers.

A modern memory system is a hierarchy of storage devices with

different capacities, costs, latencies, and bandwidths intended to

reduce price of the system. It makes a perfect sense to introduce yet

another level in the memory hierarchy between DRAM and hard

disks to drive price of the system down. Solid-State Drives (SSDs)

are a good candidate because they are cheaper than DRAM up to 10

times. What is more important, over the last 10 years, SSDs based

on NAND technology emerged with higher read/write speed and

Input/Ouput Operations per Second (IOPS) metric than hard disks.

Recently, Intel announced [21] a new SSD product based on

novel 3D XPointTM technology under the name Intel® OptaneTM.

It was developed to overcome the drawbacks of NAND-technology:

block-based memory addressing and limited write endurance. To

be more specific, with 3D XPoint each memory cell can be ad-

dressed individually and write endurance of 3D XPoint memory is

significantly higher than NAND SSDs. As a result, 3D XPoint flash

memory can be used instead of DRAM, albeit as a slow memory,

which can be still an attractive solution given that Intel Optane is

notably cheaper than random access memory (RAM) per gigabyte.

A novel Intel Memory Drive Technology (IMDT) allows to use Intel

Optane drives as a system memory. Another important advantage

of 3D XPoint compared to DRAM is that it has a high density of

memory cells, which allows to build compact systems with massive

memory banks.

In this work, we evaluated the capabilities of Intel Optane drives

together with IMDT for numerical simulations requiring large

amount of memory. We started with the overview of IMDT tech-

nology in section 2. In section 3, we described the methodology. In

https://doi.org/10.1145/3286475.3286479
https://doi.org/10.1145/3286475.3286479

MCHPC’18, November 11, 2018, Dallas, TX, USA V. Mironov et al.

Operating

system

Operating

system

Application CPU CPU

PN offset

MMU MMU

Per-process

page directory

TLB TLB

PN offset

Phys. addr.

Phys. addr.

IMDT IMDT

Optane SSD

RAM

Optane SSD

Cache

Back store

Per-OS page

directory

Predict and

prefetch

Figure 1: This figure describes how IntelMemoryDrive Technologyworks. Solid lines represent inquiry, dashed lines represent

data transfer, and double lines represent commands issued.

Sections 4 and 5 we described all benchmarks and corresponding

performance results. In section 6 we discussed the performance

results, and in Section 7 we presented our conclusions and plans

for the future work.

2 OVERVIEW OF INTEL MEMORY DRIVE
TECHNOLOGY

For effective use of Intel Optane in hybrid RAM-SSD memory sys-

tems, Intel corporation and ScaleMP developed a technology called

IMDT [4, 7]. IMDT integrates the Intel Optane into the memory sub-

system and makes it appear like RAM to the operating system and

applications. Moreover, IMDT increases memory capacity beyond

RAM limitations and performs in a completely transparent manner

without any changes in operating system and applications. The

key feature of IMDT is that RAM is effectively used as cache. As a

result, IMDT can achieve good performance compared to all-RAM

systems for some applications at a fraction of the cost as we have

shown in this paper.

ScaleMP initially has developed a technology tomake virtual non-

uniform memory access (NUMA) system using high speed node

interconnect of modern high performance computational clusters.

NUMA systems are typically defined as any contemporary multi-

socket system. It allows a processor to access memory at varying

degrees of latency or łdistancež (e.g. memory attached to another

processor), over a network or fabric. In some cases, this fabric is

purpose-built for such processor communication, like Intel® Quick-

Path and UltraPath Interconnects (Intel® QPI and UPI respectively).

In other cases, standard fabrics such as Peripheral Component In-

terconnect Express (PCIe) or Intel® Omni-Path Fabric are used for

the same purpose along with software-defined memory (SDM) to

provide memory coherency, operating as if additional memory was

installed in the system.

Accessing memory at varying lower performance over networks

has proven to be feasible and useful by using predictive memory

access technologies that support advanced caching and replication,

effectively trading latency for bandwidth. This is exactly what

IMDT is doing to enable non-volatile memory (NVM) to be used

as system memory. Instead of doing it over fabric, however, it does

so with storage. With IMDT, most of the Intel Optane capacity is

transparently used as an extension to the DRAM capacity of the

system.

IMDT is implemented as an operating system (OS)-transparent

virtual machine (Figure 1). In IMDT, Intel Optane SSDs are used as

part of the systemmemory to present the aggregated capacity of the

DRAM and NVM installed in the system as one coherent, shared

memory address space. No changes are required to the operating

system, applications, or any other system components. Additionally

IMDT implements advanced memory access prediction algorithms

to optimize memory access performance.

A popular approach to virtualize disk memory is to store part

of virtual memory (VM) pages on special disk partition or file is

implemented in all popular operating systems nowadays. However,

the resulting performance is very sensitive not only to the storage

speed but also to VM manager implementation. It is very important

to correctly predict whichmemory page on disk will be needed soon

and to load it in RAM to avoid program spinning in a page fault state.

The built-in OS swap in Linux kernel is not very intelligent and

usually affected by this problem. On the contrary, IMDT analyzes

memory access patterns and prefetches the data into the RAM

łcachež (Figure 1) before it is used, resulting in better performance.

IMDT leverage the low-latency media access provide by Intel

Optane SSDs. NAND SSD latency cannot be improved by simply

aggregating multiple drives. Transitioning to Intel Optane SSDs is

another step forward to the reductions of the gap between DRAM

and SSD performance by using lower latency media based on the

3D XPoint technology. However, DRAM still has lower latency

than Intel Optane, which can potentially affect the performance

of applications with DRAM+Optane configuration studied in this

paper.

3 METHODOLOGY

IMDT architecture is based on the hypervisor layer which manages

paging exclusively. This makes a hybrid memory transparent from

one side, however, standard CPU counters become unavailable to

performance profiling tools. Thus, we took an approach to make a

comparison with DRAM-based system side by side. The efficiency

metric was calculated as a ratio of software defined performance

Evaluation of Intel Memory Drive Technology Performance for Scientific Applications MCHPC’18, November 11, 2018, Dallas, TX, USA

counters, if available, or simply the ratio of the time-to-solution on

DRAM-based system and IMDT-based system.

3.1 Hardware and software configuration

In this study, we used dual-socket Intel Broadwell (Xeon E5 2699

v4, 22 cores, 2.2 GHz) node with latest version of BIOS. We have

used two memory configurations for this node. In the first configu-

ration, it was equipped with 256 GB DDR4 registered ECC memory

(16×16 GB Kingston 2133 MHz DDR4) and four Intel® OptaneTM

SSDs P4800X (320 GB memory mode). We used Intel Memory Drive

Technology 8.2 to expand system memory with Intel SSDs up to

approximately 1,500 GB. In the second configuration, the node was

exclusively equipped by 1,536 GB of DDR4 registered ECC memory

(24×64 GBMicron 2666MHzDDR4). In both configurations we used

a stripe of four 400 GB Intel DC P3700 SSD drives as a local storage.

Intel Parallel Studio XE 2017 (update 4) was used to compile the

code for all benchmarks. Hardware counters on non-IMDT setup

were collected using Intel® Performance Counter Monitor [5].

3.2 Data size representation

IMDT assumes that all data is loaded in the RAM before it is actu-

ally used. It is important to note that if the whole dataset fits in

the RAM, it is very unlikely that it will be moved to the Optane

disks. In this case, the difference between IMDT and RAM should

be negligible. The difference will be more visible only when the

data size is significantly larger than the available RAM. Since the

performance results are connected to the actual RAM size, we find

more convenient to represent benchmark sizes in parts of RAM in

IMDT configuration (256 GB) and not in GB or problem dimensions.

Such representation of data sets is more general and the results can

be extrapolated to different hardware configurations.

4 DESCRIPTION OF BENCHMARKS

In this section, we described various types of benchmarks to evalu-

ate performance of IMDT. We broadly divided benchmarks in three

classes ś synthetic benchmarks, scientific kernels, and scientific

applications. The goal is to test performance for a diverse set of sci-

entific applications, which have different memory access patterns

with various memory bandwidth and latency requirements.

4.1 Synthetic benchmarks

4.1.1 STREAM. [17] is a simple benchmark commonly used to

measure sustainable bandwidth of the system memory and cor-

responding computation rate for a few simple vector kernels. In

this work, we have used multi-threaded implementation of this

benchmark. We studied memory bandwidth for a test requiring

≈ 500 GB memory allocation on 22, 44, and 88 threads.

4.1.2 Polynomial benchmark. was used to compute polynomials

of various degree of complexity. Polynomials are commonly used

in mathematical libraries for fast and precise evaluation of various

special functions. Thus, they are virtually present in all scientific

programs. In our tests, we calculated polynomials of predefined

degree over a large array of double precision data stored in memory.

Memory access pattern is similar to the STREAM benchmark.

The only difference that we can finely tune the arithmetic intensity

of the benchmark by changing the degree of computed polynomials.

From this point of view STREAM benchmark is a particular case

of the polynomial benchmark when the polynomial degree is zero

(STREAM copy) or one (STREAM scale). We used Horner’s method

of polynomial evaluation which is efficiently translated to the fused

multiply-add (FMA) operations.

We have calculated performance for polynomials of degrees

16, 64, 128, 256, 512, 768, 1024, 2048, and 8192 using various data

sizes (from 50 to 900 GB). We studied two data access patterns. In

the first one we just read the value from the array of arguments,

calculate the polynomial value and add it to a thread-local variable.

There is only one (read) data stream to the IMDT disk storage

in this case. In another case the result of polynomial calculation

updates corresponding value in the array of arguments. There are

two data streams here (read and write). Arithmetic intensity of this

benchmark was calculated as follows:

AI = 2 ·
polynomial deдree

sizeo f (double)
, (1)

where factor two corresponds to the one addition and one multipli-

cation for each polynomial degree in Horner’s method of polyno-

mial evaluation.

4.1.3 GEMM. (GEneral Matrix Multiplication) is one of the core

routines in Basic Linear Algebra Subprograms (BLAS) library. It is

a level 3 BLAS operation defining matrix-matrix operation. GEMM

is often used for performance evaluations and it is our first bench-

mark to evaluate IMDT performance. GEMM is a compute-bound

operation with O(N 3) arithmetic operations and O(N 2) memory

operations, where N is a leading dimension of matrices. Arithmetic

intensity grows as O(N) depending on matrix size and is flexible.

The source code of the benchmark used in our tests is available

here [6].

4.2 Scientific kernels

4.2.1 LU decomposition. (where łLUž stands for łlower upperž of a

matrix, and also called LU factorization) is a commonly used kernel

in a number of important linear algebraic problems like solving

system of linear equations, finding eigenvalues, etc. In current study,

we used Intel Math Kernel Library (MKL) [3] implementations of

LU decomposition, more specifically dgetrf and mkl_dgetrfnpi.

We also studied the performance of an LU decomposition algorithm

using tile algorithm, which dramatically improved performance

of IMDT. The source code of the latter was taken from the hetero-

streams code base [2].

4.2.2 Fast Fourier Transform (FFT). is an algorithm that samples a

signal over a period of time or space and divides it into its frequency

components. FFT is an important kernel in many scientific codes. In

this work, we have studied the performance of the FFT implemented

in MKL library [3]. We have used three-dimensional decomposition

of the N × N × N grid data. The benchmark sizes were N = (500 ÷

5800) resulting in 0.001-1.5 TB memory footprint.

4.3 Scientific applications

4.3.1 LAMMPS. (Large-scale Atomic/Molecular Massively Parallel

Simulator) is a popular molecular simulation package developed in

Sandia National Laboratory [18]. Its main focus is a force-field based

MCHPC’18, November 11, 2018, Dallas, TX, USA V. Mironov et al.

molecular dynamics. We have used scaled Rhodopsin benchmark

distributed with the source code. Benchmark set was generated

from the original chemical system (32,000 atoms) by its periodical

replication in X ,Y (8 times) and Z (8-160 times) dimensions. The

largest chemical system comprises 328,000,000 atoms (≈ 1.1 TB

memory footprint). Performance metrics ś number of molecular

dynamics steps per second.

4.3.2 GAMESS. (General Atomic and Molecular Electronic Struc-

ture System) is one of the most popular quantum chemistry pack-

ages. It is a general purpose program, where a large number of

quantum chemistry methods are implemented. We used the latest

version of code distributed from GAMESS website [8]. In this work,

we have studied the performance of the Hartree-Fock method. We

have used stacks of benzene molecules as a model chemical system.

By changing the number of benzene molecules in stack we can vary

memory footprint of the application. 6-31G(d) basis set was used in

the simulations.

4.3.3 AstroPhi. is a hyperbolic PDE engine which is used for nu-

merical simulation of astrophysical problems [1]. AstroPhi realizing

a multi-component hydrodynamic model for astrophysical objects

interaction. The numerical method of solving hydrodynamic equa-

tions is based on a combination of an operator splitting approach,

Godunov’s method with modification of Roe’s averaging, and a

piecewise-parabolic method on a local stencil [19, 20]. The rede-

fined system of equations is used to guarantee the non-decrease of

entropy [15] and for speed corrections [11]. The detailed descrip-

tion of a numerical method can be found in [16]. In this work, we

used the numerical simulation of gas expansion into vacuum for

benchmarking. We have used 3D arrays with up to 20003 size (≈ 1.5

TB memory footprint) for this benchmark.

4.3.4 PARDISO. is a package for sparse linear algebra calculations.

It is a part of Intel MKL library [3]. In our work, we studied the

performance of the Cholesky decomposition of sparse (O(N) non-

zero elements) N ×N matrices, where N = (5, 10, 20, 25, 30, 35, 40) ·

106. Memory footprint of benchmarks varied from 36 to 790 GB.

4.3.5 Intel-QS. (former qHiPSTER) is a distributed high-performance

implementation of a quantum simulator on a classical computer,

that can simulate general single-qubit gates and two-qubit con-

trolled gates [22]. The code is fully parallelized with MPI and

OpenMP. The code is architectured in the way that memory con-

sumption exponentially grows as more qubits are being simulated.

We benchmarked a provided quantum FFT test for 30-35 qubit sim-

ulations. 35 qubits simulation required more than 1.5TB of memory.

The code used in our benchmarks was taken from Intel-QS reposi-

tory on Github [9].

5 RESULTS

5.1 Synthetic benchmarks

5.1.1 STREAM. benchmark was used as a reference to a worst case

scenario, where application has low CPU utilization and high mem-

ory bandwidth requirements. We obtained 80 GB/s memory band-

width for the DRAM-configured node, while for IMDT-configured

4

8

16

32

64

128

256

512

1024

2048

F
L

O
P

s
/b

y
te

40%

60%

80%

100%

120%

140%

160%

180%

E
ff
ic

ie
n

c
y

100% 200% 300%

4

8

16

32

64

128

256

512

1024

2048

F
L

O
P

s
/b

y
te

% RAM

100% 200% 300%

% RAM

20%

40%

60%

80%

100%

120%

140%

E
ff
ic

ie
n

c
y

A-1 A-2

B-1 B-2

Figure 2: Polynomial benchmark results. (A) ś one data

stream for 44 (A-1) and 88 (A-2) threads. (B) ś two data

streams for 44 (B-1) and 88 (B-2) threads. The efficiency is

denoted by color with a legend on corresponding row. See

text for more details.

node we got 10 GB/s memory bandwidth for the benchmarks re-

questing maximum available memory. In other words, we are com-

paring best case scenario for DRAM bandwidth with the worst

case scenario on IMDT. Thus, we can expect the worst possible

efficiency of 10/80 = 12.5% IMDT vs DRAM. It should be noted that

running benchmarks which fit in DRAM cache of IMDT results in

the bandwidth equal to (80-100 GB/s), which is comparable to the

DRAM bandwidth. This is what we expected and it is the proof that

IMDT utilizes optimally DRAM cache. The measured bandwidth

actually depends only on the number of threads and it was higher

for the less concurrent jobs. It applies only to IMDT benchmarks

requesting memory smaller than the size of DRAM cache. Mem-

ory bandwidth of DRAM-configured node does not depend on the

workload size nor on the number of threads.

5.1.2 Polynomial benchmark. Results of the polynomial bench-

marks are presented in Figure 2. As one can see in Figure 2, patterns

of efficiency are very similar. If the data fits in the RAM cache of

IMDT then IMDT typically shows better performance than DRAM-

configured node, especially for short polynomials. High concur-

rency (88 threads, Figure 2 (A-2 and B-2)) is also beneficial to IMDT

in these benchmarks. However, a better efficiency can be obtained

for benchmarks with higher order of polynomials. In terms of arith-

metic intensity (eq. (1)), it is required to have at least 256 floating-

point operations (FLOPs) per byte to get IMDT efficiency close to

100%. It will be discussed later in detail (see Section 5.4).

5.1.3 GEMM benchmark. According to our benchmarks shown in

Figure 3, GEMM shows very good efficiency for every problem size.

All observed efficiencies vary from 90% for large benchmarks to

125% for small benchmarks. Such efficiency is expected because

GEMM is purely compute bound. To be more specific, the arithmetic

Evaluation of Intel Memory Drive Technology Performance for Scientific Applications MCHPC’18, November 11, 2018, Dallas, TX, USA

Figure 3: IMDT efficiency plot for GEMM benchmark.

Higher efficiency is better. 100% efficiency corresponds to

DRAM performance.

Figure 4: IMDT efficiency plots for LU and FFT benchmarks.

Two implementations (MKL and tiled) of LU decomposition

were benchmarked. Higher efficiency is better. 100% effi-

ciency corresponds to DRAM performance.

intensity even for a relatively small GEMM benchmark is much

higher than the required value of 250 FLOP/byte per data stream,

which was estimated in polynomial benchmarks. In our tests, we

have used custom (łsegmentedž) GEMM benchmark with improved

data locality: all matrices are stored in a tiled format (arrays of

łsegmentsž) and matrix multiplication goes tile-by-tile. Thus the

arithmetic intensity of all benchmarks is constant and equal to the

arithmetic intensity of a simple tile-by-tile matrix multiplication.

It is approximately equal to 2 FLOPs multiplied by tile dimension

and divided by the size of data type in bytes (4 for float and 8 for

double). In our benchmark with a single-precision GEMMwith typ-

ical tile dimension size of ≈43000, the arithmetic intensity is ≈21500

FLOPs/byte, which is far beyond the required 250 FLOPs/byte.

5.2 Scientific kernels

5.2.1 LU decomposition. The efficiency of LU decomposition im-

plemented in MKL library strongly depends on the problem size.

The efficiency is excellent when a matrix fits into the memory (Fig-

ure 4). We observe about 150% − 180% speedup on IMDT for small

matrices. However, the efficiency decreases down to ≈ 30% for

very large matrices with leading dimension equal or greater than

≈ 2·105. This result was unexpected; in fact, our LU implementation

calls BLAS level 3 functions such as GEMM, which has excellent

efficiency on IMDT as we demonstrated in previous section. We

can provide two explanations for unfavorable memory access pat-

terns in LU decomposition. First one is the partial pivoting which

interchanges rows and columns in the original matrix. Second, ma-

trix is stored as a contiguous array in memory that is known for

its inefficient memory access to the elements of the neighboring

columns (rows in case of Fortran). Both problems are absent in a

special tile-based LU decomposition benchmark implemented in

hetero-streams code base. We also ran benchmarks for this opti-

mized LU decomposition benchmark. Tiling of the matrix not only

improved the performance by about 20% for both łDRAMž and

łIMDTž memory configurations, but also improved the efficiency

of IMDT to ≈90% (see Figure 4). Removing of pivoting only with-

out introducing matrix tiling does not significantly improve the

efficiency of LU decomposition.

5.2.2 Fast Fourier Transform. The results of MKL-FFT benchmark

are similar to those obtained for MKL-LU as shown in Figure 4. For

small problem sizes the efficiency of IMDT exceeds 100%, but for

large benchmarks the efficiency drops down to ≈ 40%. Performance

drop occurs at 100% of RAMutilization. FFT problems typically have

relatively small arithmetic intensity (small ratio of FLOPs/byte).

Thus, obtaining relatively low IMDT efficiency was expected. We

still believe that the FFT benchmark can be optimized for memory

locality to improve IMDT efficiency even higher (see [12ś14] for

the examples of memory-optimized FFT implementations).

5.3 Scientific applications

The benchmarking results for different scientific applications are

shown in Figure 5 and Figure 6. The applications are PARDISO,

AstroPhi, LAMMPS, Intel-QS, and GAMESS. All applications ex-

cept PARDISO show similar efficiency trends. When a benchmark

requests memory smaller than the amount of available DRAM, the

application performance on the IMDT-configured node is typically

higher than for DRAM-configured node. At a certain threshold,

which is typically a multiple of DRAM size, the IMDT efficiency

declines based on the CPU Flop/S and memory bandwidth require-

ments.

5.3.1 MKL-PARDISO. PARDISO is very different from other stud-

ied benchmarks. The observed IMDT efficiency is 120-140% of

łDRAMž-configured node for all studied problem sizes. It was not

very surprising because Cholesky decomposition is known to be

compute intensive. MKL-PARDISO is optimized for the disk-based

out-of-core calculations resulting in excellent memory locality to

access data structures. As a result, this benchmark always benefits

from faster access to the non-local NUMAmemory on IMDT which

results in the improved performance on łIMDTž-configured node.

5.3.2 AstroPhi. In Figure 5 we presented the efficiency plot of

Lagrangian step of the gas dynamic simulation, which is the most

time consuming step (> 90% compute time). This step describes

the convective transport of the gas quantities with the scheme

velocity for the gas expansion into vacuum problem. The number

MCHPC’18, November 11, 2018, Dallas, TX, USA V. Mironov et al.

Figure 5: IMDT efficiency plots for various scientific appli-

cations. Higher efficiency is better. 100% efficiency corre-

sponds to DRAM performance.

Figure 6: GAMESS Hartree-Fock simulation (10 iterations)

for stacks of benzene molecules with 6-31G(d) basis set. (A)

Time to solution in seconds, lower is better. (B) IMDT ef-

ficiency, higher efficiency is better, 100% efficiency corre-

sponds to DRAM performance. The performance of the di-

rect Hartree-Fock on łIMDTž and łDRAMž-configured node

(see text for details) is the same ((A), green line).

of FLOPs/byte is not very high and the efficiency plot follows the

trend we described above. We observe a slow decrease in efficiency

down to ≈50% when the data does not fit into DRAM cache of IMDT.

Otherwise the efficiency is close to 100%.

5.3.3 LAMMPS. We studied the performance of the molecular

dynamics of the Rhodopsin benchmark provided with LAMMPS

distribution. It is an all-atom simulation of the solvated lipid bilayer

surrounding Rhodopsin protein. The calculations are dominated by

the long-range electrostatics interactions in particle-particle mesh

algorithm. The results of benchmarks are presented in Figure 5.

It is obvious that LAMMPS efficiency follows the same pattern as

AstroPhi and FFT: it is more than 100% when tests fit in the DRAM

cache of the IMDT and it is dropping down when tests do not fit.

For tests with high memory usage the efficiency is ≈50%.

5.3.4 Intel-QS. We benchmarked Intel-QS using provided quan-

tum FFT example for 30-35 qubits. Actually, each additional qubit

doubles the amount of memory required for the job. For that reason

we had to stop at 35 qubit test which occupy about 1 TB of memory.

The observed IMDT efficiency was greater than 100% for 30-34

qubits and drops down to ≈70% at 35 qubit simulation. A signifi-

cant portion of the simulation take FFT steps. Thus, degradation

of the performance at high memory utilization was not surprising.

However, the overall efficiency is almost two times better than for

FFT benchmark.

5.3.5 GAMESS. We studied the performance of the two Hartree-

Fock method (HF) algorithms. HF is solved iteratively and for each

iteration a large number of electron-repulsion integrals (ERIs) need

to be re-computed (direct HF) or read from disk or memory (conven-

tional HF). In the special case of conventional HF called incore HF,

ERIs are computed once before HF iterations and stored in DRAM.

In the subsequent HF iterations, the computed ERIs are read from

memory. We benchmarked both direct and incore HF methods. The

former algorithm has small memory footprint, but re-computation

of all ERIs each iteration (typical number of iterations is 20) results

in much longer time to solution compared to incore HF method if

ERIs fit in memory.

The performance of the direct HF method on łDRAMž and

łIMDTž-configured nodes is very similar (see Figure 6 (A), green

line). However, the performance of the incore method differs be-

tween łDRAMž and łIMDTž (see Figure 6 (A), red and yellow lines).

The efficiency shown in Figure 6 (B) for incore IMDT vs incore

DRAM (purple line) behaves similar to other benchmarks ś when

benchmarks fits in the DRAM cache of the IMDT then the efficiency

is close to 100%, otherwise it decreases to≈50%. But for incore IMDT

vs direct DRAM (blue line) the efficiency is much better. The effi-

ciency varies between approximately 200% and 350%. Thus, IMDT

can be used to speed up Hartree-Fock calculations when the amount

of DRAM is not available to fit all ERIs in memory.

5.4 Analysis of IMDT performance

Modern processors can overlap data transfer and computation very

efficiently. A good representative example is the Polynomial bench-

mark (see Section 4.1.2). When the polynomial degree is low the

time required to move data from system memory to CPU is much

higher than the time of polynomial computation (Section 5.1.2, Fig-

ure 2). In this case, the performance is bound bymemory bandwidth.

By increasing the amount of computation, the overlap between data

transfer and computation becomes more efficient and the bench-

mark gradually transforms from a memory-bound to a compute-

bound problem. Increasing of arithmetic intensity is achieved by

increasing the degree of polynomials (see eq. (1)).

On Figure 7 the dependence of average DRAM bandwidths on

the arithmetic intensity is shown for polynomial benchmarks with

Evaluation of Intel Memory Drive Technology Performance for Scientific Applications MCHPC’18, November 11, 2018, Dallas, TX, USA

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256 512 1024 2048

A
v

g
.

D
R

A
M

 b
a

n
d

w
id

th
,

G
B

/s

Arithmetic intensity, FLOP/byte

1 data stream, 44 threads

1 data stream, 88 threads

2 data streams, 44 threads

2 data streams, 88 threads

Figure 7: Average DRAM bandwidth in the polynomial

benchmark depending on the arithmetic intensity (poly-

nomial degree), number of data streams (1 data stream ś

read-only access pattern, 2 data streams ś read/write ac-

cess pattern, see text for details), and the number of work-

ing threads. The results were obtained by Intel Processor

Counter Monitor (sum of System READ and WRITE coun-

ters).

different number of data streams. The improvement of overlap

between data transfer and computation is observed at about 16-

32 FLOP/byte. The computation of low-order polynomials (less

than 16 FLOP/byte) is not limited by the compute power, resulting

in high memory bandwidth. The bandwidth value depends on I/O

pattern (i.e. the number of data streams) and it is limited by the

DRAM memory bandwidth, which is about 80 GB/s.

The bandwidth dependence on the number of data streams of

low-order polynomials results from NUMA memory access. If the

benchmark was optimized for NUMA, the highest bandwidth for

one and two data streams would be the same. However, in IMDT

architecture, while application thread accesses the remote NUMA

node for writes, IMDT places the data to the DRAM attached to the

local NUMA node. This can significantly reduce the pressure on

the cross-socket link and as a result the performance can become

better than DRAM based system performance. It is exactly what

we observed in our tests when all the data fits in the DRAM cache

(see Figure 2).

When the arithmetic intensity grows beyond 16 FLOP/byte, the

memory bandwidth starts decreasing. At 64 FLOP/byte and beyond

the benchmark becomes compute bound. It means that the memory

bandwidth does not depend on the number of data streams but on

the availability of computational resources (i.e. number of threads).

However, the memory bandwidth decreases slowly with the arith-

metic intensity (Figure 7). Taking into account that the memory

bandwidth of our IMDT system is capped by 10 GB/s, we expect

that only those benchmarks that are below this threshold will have

good efficiency. It is expected that it will apply to all benchmarks

with different problem sizes. In terms of the arithmetic intensity, it

corresponds to ≈ 128 − 256 FLOP/byte. This correlation is shown

on Figure 2. The same analysis can be applied to any benchmark to

estimate the potential efficiency of the IMDT approach.

5.5 Summary

To sum up our benchmarking results, our tests show that there is

virtually no difference between using DRAM and IMDT if a bench-

mark requires memory less than the amount of available RAM.

IMDT correctly handles these cases, if the test fits in RAM and

there is no need to use Optane memory. In fact, IMDT frequently

outperforms RAM because IMDT has advanced memory manage-

ment system. The situation is very different for large tests. For some

tests like dense linear algebra, PARDISO and Intel-QS efficiency

remains high, while for other applications like LAMMPS, AstroPhi,

and GAMESS the efficiency slowly declines to about 50%. Even in

the latter case IMDT can be attractive for scientific users since it

enables larger problem sizes to be addressed.

6 DISCUSSION

One of the most important benefits of IMDT is that it significantly

reduces data traffic trough Intel QuickPath Interconnect (QPI) bus

on NUMA systems. For example, GEMM unoptimized benchmark

on łDRAMž-configured node performs about 20-50% slower for

large datasets compared to a small ones. The main reason is over-

loaded QPI bus. When a benchmark saturates QPI bandwidth then

it causes CPU stalls waiting for data. QPI bandwidth in our sys-

tem is 9.6 GT/s (1 GT/s= 109 transfers per second) or ≈10 GB/s

unidirectional (≈20 GB/s bidirectional) and it can easily become a

bottleneck. It is an inherent issue of multisocket NUMA-systems

which adversely affects performance of not only GEMM, but any

other applications.

There are a few ways to resolve this issue. For example, in opti-

mized GEMM implementation [6] matrices are split to tiles, which

are placed in memory intelligently taking into the account the łfirst-

touchž memory allocation policy in Linux OS. As a result, QPI bus

load drops to 5-10% and performance significantly improves achiev-

ing almost theoretical peak. It was observed in our experiments

with GEMM by using Intel Performance Counter Monitor (PCM)

software [5].

There is no such issue with IMDT and performance is consis-

tently close to theoretical peak even for the unoptimized GEMM

implementation. IMDT provides optimal access to the data on the

remote NUMA node improving the efficiency of almost all applica-

tions. This is why we almost never seen in practice a very low IMDT

efficiency even for strongly memory-bandwidth bound benchmarks

like FFT and AstroPhi. Theoretical efficiency minimum of 12.5%

was observed only for the specially designed synthetic benchmarks

like STREAM and polynomial benchmark.

However, IMDT is not a solution to all memory-related issues.

For example, it cannot help in situations when an application has

random memory access patterns across a large number of mem-

ory pages with a low degree of application parallelism. While the

performance penalty is not very high for DRAM memory, frequent

access of the IMDT backstore on SSD can be limited by the band-

width of Intel Optane SSD, and IMDT can only compensate for that

if the workload has a high degree of parallel memory accesses (us-

ing many threads or many processes concurrently). In such cases,

it may be beneficial to redesign data layout for better locality of

data structures. In this work, we observed it when we ran MKL

MCHPC’18, November 11, 2018, Dallas, TX, USA V. Mironov et al.

implementation of LU decomposition. Switching to the tiled imple-

mentation of the LU algorithm results in the significantly improved

efficiency of IMDT because of better data locality. The similar ap-

proach can be applied to other applications. However, it is beyond

the scope of this paper and it is a subject for our future studies.

7 CONCLUSIONS AND FUTUREWORK

IMDT is a revolutionary technology that flattens the last levels

of memory hierarchy: DRAM and disks. One of the major IMDT

advantages is the high density of memory. It will be feasible in the

near future to build systemswithmany terabytes of Optanememory.

In fact, the bottleneck will not be the amount of Optane memory,

but the amount of available DRAM cache for IMDT. It is currently

possible to build an IMDT systemwith 24 TB of addressablememory

(with 3 TB DRAM cache), which is not possible to build with DRAM.

Even if it was possible to build a such system, IMDT offers a more

cost effective solution.

There are HPC applications with large memory requirements.

It is a common practice for such applications to store data in par-

allel network storage or use distributed memory. In this case, the

application performance can be limited by network bandwidth.

There is now another alternative which is to use DRAM+Optane

configuration with IMDT. In theory, the bandwidth of the multiple

striped Optane drives exceeds network bandwidth. IMDT especially

benefits the applications that poorly scale on the multi-node envi-

ronment due to high communication overhead. A good example of

such application is a quantum simulator. Indeed, Intel-QS simulator

efficiency shown in Figure 5 is excellent compared to other applica-

tions. Another good application that fits profile is the visualization

of massive amount of data. We plan to explore the potential of

IMDT for such applications in our future work.

IMDT prefetching subsystem analyzes memory access patterns

in the real time and makes appropriate adjustments according to

workload characteristics. This feature is crucial for IMDT perfor-

mance and differentiates it from other solutions such as OS swap.

We plan to analyze it in detail in our future work.

This work is important because we systematically studied per-

formance of IMDT technology for a diverse set of scientific appli-

cations. We have demonstrated that applications and benchmarks

exhibit reasonable performance level, when the system main mem-

ory is extended with the help of IMDT by Optane SSD. In some

cases, we have seen DRAM+Optane configuration to outperform

DRAM-only system by up to 20%. Based on performance analysis,

we provide recipes how to unlock full potential of IMDT technology.

It is our hope that this work will educate professionals about this

new exciting technology and promote its wide-spread use.

8 ACKNOWLEDGEMENTS

This research used the resources of the Argonne Leadership Com-

puting Facility, which is a U.S. Department of Energy (DOE) Of-

fice of Science User Facility supported under Contract DE-AC02-

06CH11357. We gratefully acknowledge the computing resources

provided and operated by the Joint Laboratory for System Evalua-

tion (JLSE) at Argonne National Laboratory. We thank the Intel®

Parallel Computing Centers program for funding, ScaleMP team for

technical support, RSC Group and Siberian Supercomputer Center

ICMMG SB RAS for providing access to hardware, and Gennady

Fedorov for help with Intel® PARDISO benchmark. This work was

partially supported by the Russian Fund of Basic Researches grant

18-07-00757, 18-01-00166 and by the Grant of the Russian Science

Foundation (project 18-11-00044).

REFERENCES
[1] 2018. AstroPhi. The hyperbolic PDE engine . https://github.com/IgorKulikov/

AstroPhi
[2] 2018. Hetero Streams Library. https://github.com/01org/hetero-streams
[3] 2018. Intel Math Kernel Library. https://software.intel.com/mkl
[4] 2018. Intel Memory Drive Technology. https://www.intel.com/content/www/

us/en/software/intel-memory-drive-technology.html
[5] 2018. Intel Performance Counter Monitor ś A better way to measure CPU

utilization. www.intel.com/software/pcm
[6] 2018. Segmented SGEMM benchmark for large memory systems. https://github.

com/ScaleMP/SEG_SGEMM
[7] 2018. Software Defined Memory at a Fraction of the DRAM Cost ś

white paper. https://www.intel.com/content/www/us/en/solid-state-drives/
intel-ssd-software-defined-memory-with-vm.html

[8] 2018. The General Atomic and Molecular Electronic Structure System (GAMESS).
http://www.msg.ameslab.gov/gamess/index.html

[9] 2018. The Intel Quantum Simulator. https://github.com/intel/Intel-QS
[10] 2018. TrendForce. http://www.trendforce.com
[11] Vitaly A. Vshivkov, Galina G. Lazareva, Alexei V. Snytnikov, I Kulikov, and

Alexander V. Tutukov. 2011. Computational methods for ill-posed problems of
gravitational gasodynamics. 19 (05 2011).

[12] Berkin Akin, Franz Franchetti, and James C. Hoe. 2016. FFTs with Near-
Optimal Memory Access Through Block Data Layouts: Algorithm, Architec-
ture and Design Automation. J. Signal Process. Syst. 85, 1 (Oct. 2016), 67ś82.
https://doi.org/10.1007/s11265-015-1018-0

[13] D. H. Bailey. 1989. FFTs in External of Hierarchical Memory. In Proceedings of
the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing ’89). ACM,
New York, NY, USA, 234ś242. https://doi.org/10.1145/76263.76288

[14] Thomas H Cormen and David M Nicol. 1998. Performing out-of-core FFTs on
parallel disk systems. Parallel Comput. 24, 1 (1998), 5ś20.

[15] S. K. Godunov and I. M. Kulikov. 2014. Computation of discontinuous solutions
of fluid dynamics equations with entropy nondecrease guarantee. Computational
Mathematics and Mathematical Physics 54, 6 (01 Jun 2014), 1012ś1024. https:
//doi.org/10.1134/S0965542514060086

[16] I.M. Kulikov, I.G. Chernykh, A.V. Snytnikov, B.M. Glinskiy, and A.V. Tutukov.
2015. AstroPhi: A code for complex simulation of the dynamics of astrophysical
objects using hybrid supercomputers. Computer Physics Communications 186,
Supplement C (2015), 71 ś 80. https://doi.org/10.1016/j.cpc.2014.09.004

[17] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19ś25.

[18] Steve Plimpton. 1995. Fast Parallel Algorithms for Short-RangeMolecular Dynam-
ics. J. Comput. Phys. 117, 1 (1995), 1ś19. https://doi.org/10.1006/jcph.1995.1039

[19] M. V. Popov and S. D. Ustyugov. 2007. Piecewise parabolic method on local
stencil for gasdynamic simulations. Computational Mathematics and Math-
ematical Physics 47, 12 (01 Dec 2007), 1970ś1989. https://doi.org/10.1134/
S0965542507120081

[20] M. V. Popov and S. D. Ustyugov. 2008. Piecewise parabolic method on a lo-
cal stencil for ideal magnetohydrodynamics. Computational Mathematics and
Mathematical Physics 48, 3 (01 Mar 2008), 477ś499. https://doi.org/10.1134/
S0965542508030111

[21] Navin Shenoy. 2018. What Happens When Your PC Meets In-
tel Optane Memory? https://newsroom.intel.com/editorials/
what-happens-pc-meets-intel-optane-memory/

[22] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik. 2016. qHiPSTER: The
Quantum High Performance Software Testing Environment. ArXiv e-prints (Jan.
2016). arXiv:quant-ph/1601.07195 https://arxiv.org/abs/1601.07195v2

https://github.com/IgorKulikov/AstroPhi
https://github.com/IgorKulikov/AstroPhi
https://github.com/01org/hetero-streams
https://software.intel.com/mkl
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
www.intel.com/software/pcm
https://github.com/ScaleMP/SEG_SGEMM
https://github.com/ScaleMP/SEG_SGEMM
https://www.intel.com/content/www/us/en/solid-state-drives/intel-ssd-software-defined-memory-with-vm.html
https://www.intel.com/content/www/us/en/solid-state-drives/intel-ssd-software-defined-memory-with-vm.html
http://www.msg.ameslab.gov/gamess/index.html
https://github.com/intel/Intel-QS
http://www.trendforce.com
https://doi.org/10.1007/s11265-015-1018-0
https://doi.org/10.1145/76263.76288
https://doi.org/10.1134/S0965542514060086
https://doi.org/10.1134/S0965542514060086
https://doi.org/10.1016/j.cpc.2014.09.004
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1134/S0965542507120081
https://doi.org/10.1134/S0965542507120081
https://doi.org/10.1134/S0965542508030111
https://doi.org/10.1134/S0965542508030111
https://newsroom.intel.com/editorials/what-happens-pc-meets-intel-optane-memory/
https://newsroom.intel.com/editorials/what-happens-pc-meets-intel-optane-memory/
http://arxiv.org/abs/quant-ph/1601.07195
https://arxiv.org/abs/1601.07195v2

xBGAS: Toward a RISC-V ISA Extension for Global, Scalable
Shared Memory

John D. Leidel
Tactical Computing Laboratories

Muenster, Texas

jleidel@tactcomplabs.com

Xi Wang, Frank Conlon, Yong Chen
Texas Tech University

Lubbock, Texas

xi.wang,frank.conlon,yong.chen@ttu.edu

David Donofrio,Farzad Fatollahi-Fard
Lawrence Berkeley National Laboratory

Berkeley, California

ddonofrio,ffard@lbl.gov

Kurt Keville
MIT Lincoln Laboratory

Cambridge, Massachusetts

klk@mit.edu

ABSTRACT

Given the switch from monolithic architectures to integrated sys-

tems of commodity components, scalable high performance com-

puting architectures often suffer from unwanted latencies when

operations depart an individual device domain. Transferring con-

trol and/or data across loosely coupled commodity devices implies

a certain degree of cooperating in the form of complex system soft-

ware. The end result being a total system architecture the operates

in an inefficient manner.

This work presents initial research into creating micro architec-

ture extensions to the RISC-V instruction set that provide tightly

coupled support for common high performance computing opera-

tions. This xBGAS micro architecture extension provides applica-

tions the ability to access globally shared memory blocks directly

from rudimentary instructions. The end result being a highly effi-

cient micro architecture for scalable shared memory programming

environments.

CCS CONCEPTS

· Computing methodologies → Simulation environments; Sim-

ulation tools; · Computer systems organization → Multicore

architectures;

KEYWORDS

RISC-V, instruction set architecture, microarchitecture, sharedmem-

ory

ACM Reference Format:

John D. Leidel, Xi Wang, Frank Conlon, Yong Chen, David Donofrio,Farzad

Fatollahi-Fard, and Kurt Keville. 2018. xBGAS: Toward a RISC-V ISA Ex-

tension for Global, Scalable Shared Memory. In MCHPC’18: Workshop on

Memory Centric High Performance Computing (MCHPC’18), November 11,

2018, Dallas, TX, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/

10.1145/3286475.3286478

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11.
https://doi.org/10.1145/3286475.3286478

1 INTRODUCTION

Modern high performance computing system architectures are

often constructed using general purpose microprocessors, accelera-

tors, memory devices and high performance, low-latency network

architectures. However, despite the advances in fabrication and

device packaging technologies, each of the discrete subcomponents

is largely architected in a vacuum. As a result, the integration of the

scalable system architecture is often governed by layers of software

infrastructure. This often induces unwanted latencies, complexity

and performance degradations in large-scale parallel applications.

Further, given the recent reemergence of extended memory inter-

connection technologies such as GenZ [7], CCIX [1] and Open-

CAPI [2], architects in high performance computing and high per-

formance analytics have sought to exploit these interconnection

methodologies for extended or partitioned addressing across device

and system architectural domains. Several attempts have beenmade

to classify the benefits of such an approach [11] [14] [10], however,

we have yet to see a commercial architecture with native extended

addressing capabilities in the ISA garner wide adoption.

In parallel to this, core hardware architecture research has re-

emerged as a popular research topic. In support of this, several

research groups have created reusable and extensible ISA and plat-

form frameworks in order to promote core research activities in

hardware architecture. Frameworks such as the RISC-V ISA [19, 20]

and the OpenPiton project [4] have emerged as leading candi-

dates for both academic and commercial deployments. As a result,

projects such as the GoblinCore-64 data intensive architecture [18],

the PULPino low-power SoC [17] and the Shakti-T’s light weight se-

curity extensions [15] have been developed using more generalized

instruction set frameworks.

This work presents a RISC-V ISA extension that lies at the con-

vergence of scalable high performance computing and extensible

architecture techniques. The Extended Base Global Address Space,

or xBGAS, RISC-V extension is designed to provide global, scalable

memory addressing support for scalable high performance or en-

terprise computing architectures. xBGAS provides this extended

addressing support via an extended register file that permits archi-

tects to extend the base RISC-V RV64 addressing model to support a

object-based, flat or partitioned addressing across multiple, distinct

nodes. The xBGAS model does so in a manner that supports binary

compatibility with traditional RV64 compiled binaries without a

https://doi.org/10.1145/3286475.3286478
https://doi.org/10.1145/3286475.3286478
https://doi.org/10.1145/3286475.3286478

MCHPC’18, November 11, 2018, Dallas, TX, USA J. Leidel et al.

requirement to rebuild the entire software stack. Finally, while the

xBGAS extension is not based upon the RV128 addressing model, it

can be utilized to implement flat 128 bit addressing.

The remainder of this work is organized as follows. Section 2

discusses previous hardware architectures with similar character-

istics. Section 3 presents the xBGAS machine organization, effec-

tive addressing and instruction set extension. Section 4 introduces

the initial runtime library constructs that mimic the traditional

OpenSHMEM [6] library functions. We conclude with a current

assessment of our work as well as future xBGAS research activities.

2 PREVIOUS WORK

Several previous high performance computing system architectures

have provided similar mechanisms for scalable addressing mecha-

nisms. However, they have done so utilizing proprietary instruction

sets or processor architectures. One more recent example is the

Convey MX-100 system architecture [12, 13]. The MX-100 system

was a heterogeneous architecture that combined traditional x86_64

host processors with a large, dense coprocessor board whose core

processing capabilities utilized FPGA’s. The memory subsystem on

the MX-100 coprocessor board was based upon a unique configura-

tion of custommemory controllers and DDR3 DRAMs that included

support for near-memory atomic operations and full/empty bit op-

erations (tagged memory). The MX-100 memory subsystem also

included a set of additional pins that were designed to accept a

daughter board that re-routed a portion of the internal memory

links to the rear of the device chassis. These links were designed

to support connectivity between up to eight coprocessor devices

whereby the memory addressing structure was partitioned both

physically and logically. While this functionality was designed as a

part of the initial platform, it was never widely deployed.

The second candidate example provides hardware support for

scalable memory addressing is the Cray T3D [9, 16]. The T3D archi-

tecture contained a DTB Annex [3] that permitted local processors

to reference all of the machine’s memory without the assistance

of remote processors. 43 bit virtual addresses were translated into

34 bit addresses with the addition of a index value into the An-

nex table. Each of the 32 Annex entries subsequently specified a

function code and remote processor (PE) for the target operation.

Optionally, two bits were also utilized to specify memory-mapped

devices. These physical architecture targets could be utilized by

traditional load and store instructions (Alpha ISA) as well as three

special memory operations: fetch-and-increment, atomic swap and

prefetch. However, given the size limitations of the DTB Annex

unit, this pure methodology is not inherently applicable to modern,

scalable architectures.

3 RISC-V SCALABLE ADDRESSING

3.1 Application Targets

There are several potential enterprise application targets beyond

scalable high performance computing whereby the xBGAS RISC-V

extension may be applied. While this work specifically focuses on

applying the xBGAS extension for high performance computing,

we may summarize the additional design goals and operational

applications as follows:

RV64I ALU

R
V

6
4
I
R

e
g

is
te

r
F

ile

x0

x9

x10

x31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x
B

G
A

S
 E

x
te

n
d

e
d

 R
e
g

is
te

r
F

ile

e10

e31

.

.

.

.

.

.

.

.

.

.

.

.

.

e9

.

e0

Figure 1: xBGAS Machine Organization

• HPC-PGAS: Our specific research focuses on the ability to

construct high performance computing instruments (HPC)

with partitioned global addressing (PGAS). Programming

models such as UPC and Chapel provide users the ability to

explicitly denote locality in the construction and distribution

of their data members as a part of the language specification.

Rather than providing this functionality using a complex

runtime library, we seek to utilize xBGAS to providemachine-

level support for HPC-PGAS.

• HPA-FLAT: High performance analytics (HPA) problems

may also utilize xBGAS where graph or non-deterministic

data structures cannot be efficiently sharded. In this manner,

xBGAS may provide a flat addressing model similar in design

to RV128.

• MMAP-IO: We may also utilize xBGAS to provide memory

mapped filesystem support for a variety of data intensive or

file serving needs. Efficient mapping of inode tables into the

extended address range may provide significant performance

advantages when accessing large-scale file systems.

• Cloud-BSP: Cloud computing programming models may

also utilize xBGAS. Given the widespread adoption of Java in

cloud computing models, xBGAS provides a path by which

to provide support for memory-mapped objects and global

object visibility without the need to provide full 128-bit ad-

dressing in the Java JVM.

3.2 xBGAS Machine Organization

One of the driving design goals for the xBGAS RISC-V extension

is the natural ability to execute unmodified R64I binary blobs. In

this manner, xBGAS-enabled devices have the ability to boot and

execute RISC-V Linux with all the ancillary kernel modules without

issue. The key portions of the xBGAS functionality and associated

addressing modes that provide this functionality are implemented

via an extended register file that is mapped to the base RISC-V

register file (Figure 1). These registers are only visible and utilized

xBGAS: Toward a RISC-V ISA Extension for Global, Scalable Shared Memory MCHPC’18, November 11, 2018, Dallas, TX, USA

eld x31, 0(x21)

Effective Address

[127:64] = e21 [63:0] = x21 imm+

128-bit base address

Figure 2: xBGAS Effective Addressing

by the extended xBGAS instructions. In this manner, the RISC-V

core is configured to support the standard register width (XLEN in

the RISC-V vernacular) of 64 bits.

In Figure 1, you’ll find that for each base register (xN), we map

an equivalent extended register denoted as eN. The indexing for the

extended register file is mapped to the index of its complementary

base register. However, also note that the first ten extended indices

(0-9) cannot be utilized for addressing. These indices are reserved

for operations in the memory translation layer. This is analogous

to the first ten indices in the general purpose register file that

are specifically allocated to various operations associated with

instruction handling (sp), frame handling (fp), context save/restore

and hard encoding (zero/x0) as defined by the standard RV64 ABI.

As a result, these registers cannot be utilized in generating extended

addresses for xBGAS memory operations. Any attempt to utilize

extended registers below index 10 will result in an exception.

3.3 xBGAS Addressing

Given the aforementioned machine organization, we define the

xBGAS addressing methodology such that the base register file con-

tains the address of the target data block in the desired addressing

mode and the extended register contains an object ID that denotes

the logical storage location for that address. The logical object ID’s

can be mapped to physical node identities, physical address spaces,

storage devices (block devices), memory mapped file systems or

other storage mediums. We also note that the extended registers

can be utilized for flat, 128 bit address spaces. However, we do not

currently have an appropriate application where this is deemed

necessary.

Under normal operations where the general purpose register file

is utilized for addressing, the extended registers are ignored and

the default RV64 addressing mode is utilized. However, when the

processor encounters an xBGAS extended instruction, the extended

register at the target index is utilized for the effective address calcu-

lation. In Figure 2, we encounter an extended load operation whose

base address is found in the x21 register offset by the immediate

value 0. The result is stored in x31. However, when the effective

address is generated, the base register is utilized for the target ad-

dress and the e21 extended register at the same index is utilized

for the object ID. In this manner, we maintain virtual addressing

across the system and permit the remote (target) node to perform

any virtual to physical translation, page manipulation and enforce

any necessary access control.

3.4 xBGAS ISA Extension

Utilizing the xBGAS machine organization and effective addressing

structure, we provide three sets of extended instructions. Note that

these instructions require that the base RV64I instruction set and

A) Collective Operations

PE0

PE1

PE2

PE3

B) Broadcast Operations

PE0

PE1

PE2

PE3

init PE endpoints

eaddie e10, x0, 1

eaddie e11, x0, 2

eaddie e12, x0, 3

perform collective

erld x20, x10, e10

erld x21, x10, e11

erld x22, x10, e12

init PE endpoints

eaddie e10, x0, 1

eaddie e11, x0, 2

eaddie e12, x0, 3

perform broadcast

ersd x10,x20, e10

ersd x10, x21, e11

ersd x10, x22, e12

Figure 3: xBGAS Collectives and Broadcasts

associated functionality is present and functional per the official

RISC-V instruction set specification [19]. We can summarize these

extensions as follows:

• Address Management: The address management instruc-

tions include three basic instructions that provide users the

ability to directly manipulate the values within the extended

registers. These instructions follow the standard RISC-V I-

type instruction encoding and utilize the core RISC-V ALU

much in the same manner as moving data between general

purpose registers. With these instructions, users have the

ability to utilize the extended registers as the source, target

or source and target for unsigned integer arithmetic. This

implies that moving values between registers is done using

basic integer arithmetic similar to the following:

eaddi x10, e22, 0 # Set x10 = e22 + 0

eaddie e22, x10, 0 # Set e22 = x10 + 0

eaddix e22, e21, 0 # Set e22 = e21 + 0

• Integer Load/Store Instructions: Much in the same man-

ner as the base RV64I instruction set, we provide signed and

unsigned loads and stores for all the base integer types up

to 64 bits in width. These instructions are organized in the

standard RISC-V I-type encoding format such that immediate

values can be utilized as offsets to the base (general purpose

register) address.

• Raw Integer Load/Store Instructions: The final type of

instruction contained within the xBGAS specification is the

raw integer load and store instructions. Unlike the previous

types, the raw integer load and store instructions utilize the

RISC-V R-type encoding. These instructions permit special

cases of extended loads and stores whereby the extended

register utilized for extended addressing can be explicitly

specified. This permits applications to perform more com-

plex operations within the higher level programming model.

As we see if Figure 3, these instructions can be utilized to

MCHPC’18, November 11, 2018, Dallas, TX, USA J. Leidel et al.

Node

RISC-V Spike

R
V

6
4
G

x
B

G
A

S

Simulated
Memory Space

mpirun

Rank 0

Node

RISC-V Spike

R
V

6
4
G

x
B

G
A

S

Simulated
Memory Space

Rank 1

Node

RISC-V Spike

R
V

6
4
G

x
B

G
A

S

Simulated
Memory Space

Rank N

………………

MPI_Put
MPI_Get

Figure 4: xBGAS Simulation Environment

create collective and broadcast constructs by simply manip-

ulating the values in the individual extended registers. The

first example (Figure 3.A) depicts an example of a collective

operation. PE0 initiates the operation by first initializing

the PE endpoints using eaddie instructions. Next, PE0 per-

forms the collective operation by issuing three extended

register load operations (erld) using the three initialized

PE’s. The second example (Figure 3.B) depicts an example

of a broadcast operation. Similar to our collective operation,

PE0 initializes the endpoints in registers e10-e12. The broad-

cast is actually performed when PE0 issues the extended

register store operations via the ersd instructions. Note how

PE0 utilizes the same value residing in register x10 to store

to each of the remote PE’s.

4 RUNTIME INFRASTRUCTURE

4.1 Simulation Environment

The xBGAS compiler, tools and functional simulator are based

upon the mainline RISC-V tools. The simulator is based upon the

traditional RISC-V functional simulator, Spike. We have augmented

the simulator in two major areas. First, we have added support for

all of the aforementioned xBGAS and register extensions within the

core simulator.We have further verified that traditional RV64 binary

payloads continue to function as expected with these modifications.

Second, we have further augmented the xBGAS Spike simula-

tor to provide scalable simulation capabilities (Figure 4). The core

simulator has been augmented to support MPI messaging within

the memory simulation functions such that xBGAS instructions

have the ability to initiate shared memory requests between mul-

tiple instantiations of xBGAS Spike simulator. In this manner, the

xBGAS integrated simulation infrastructure is only limited by the

scalability of the parallel infrastructure on which it is deployed.

4.2 xBGAS Runtime

The xBGAS runtime infrastructure is designed to provide machine-

level functionality via a C-based library such that users and applica-

tions may perform memory allocation and data motion in the form

of gets and puts via the xBGAS instruction set extensions. The li-

brary is architected to serve as a machine-level runtime layer under

more traditional programming models such as OpenSHMEM [6],

UPC++ [8] and Chapel [5].

The xBGAS runtime infrastructure is implemented via a combina-

tion of C and assembly language. The assembly language functions

are utilized to implementation high performance utility functions

such as querying the environment as well as high performance data

motion functions. The runtime infrastructure provides four main

functions summarized as follows:

• Constructor: The constructor routines perform the envi-

ronment initialization prior to the application encountering

the main function. In this manner, all of the PE endpoints

have been initialized and the logical to physical mapping

tables for the xBGAS object references have been initialized.

• Memory Allocation: The memory allocation routines are

designed to mimic the OpenSHMEM shmalloc notion of allo-

cating congruent blocks of memory on each participating PE.

Currently, we require minimum allocations of at least a 4KiB

page in order to avoid unnecessary paging when accessing

remote memory.

• Environment: The environment routines provide basic in-

formation back to the calling application. This includes the

logical PE identifier, the number of participating PEs and the

ability to query whether an address is accessible on a remote

PE.

• Data Motion: The final block of routines provides rudi-

mentary data motion in the form of gets and puts. The data

motion routines support all the rudimentary types defined

xBGAS: Toward a RISC-V ISA Extension for Global, Scalable Shared Memory MCHPC’18, November 11, 2018, Dallas, TX, USA

in the OpenSHMEM specification [6]. The routines are also

provided with blocking and non-blocking versions. Given

the native weak memory ordering of many of the RISC-V

implementations, we have made every effort to produce high

performance implementations of the data motion routines

that are manually unrolled. As a result, any time a data mo-

tion is requested for at least eight elements (regardless of

the size of the element), the runtime library will utilize a

manually unrolled data motion routine written in assembly

to perform the actual transfer.

5 CONCLUSIONS

In conclusion, this work presents the initial research behind a scal-

able, globally shared memory micro architecture extension to the

RISC-V instruction set. The xBGAS infrastructure provides basic

extensions to the core register infrastructure and instruction set

definitions whereby applications have the ability to directly ac-

cess remote memory blocks via rudimentary instructions. Further,

the xBGAS infrastructure provides this support in a manner that

maintains the ability to execute pure RV64I binaries without mod-

ification. As a result, our extended RISC-V infrastructure has the

immediate ability to boot and execute a full Linux operating system.

In addition to the basic hardware specification, we also provide

an initial simulation environment and associated runtime infras-

tructure such that we have the ability to begin porting more ex-

pressive programming models such as OpenSHMEM, UPC++ and

Chapel. These software utilities will assist in initial performance

characterizations and hardware prototyping efforts.

6 FUTUREWORK

While this work does not contain specific results regarding the

performance of the xBGAS infrastructure, we have demonstrated

functional tests using the extended instructions on the xBGAS sim-

ulator. In addition, we have also demonstrated a functional Linux

kernel executing on the simulator. Future work will be done to

demonstrate the performance ramifications of the extended instruc-

tions on various different networks. This performance prototyping

will likely be done in conjunction with the Sandia Structural Simu-

lation Toolkit (SST) Stake simulation infrastructure that provides

RISC-V simulation capabilities in SST. In this manner, we have the

ability to model cycle-based compute and network traffic using

various latency configurations, topologies and backing memory

stores.

In addition to the aforementioned performance modeling, we

also seek to develop a hardware implementation of the xBGAS

extensions. The hardware prototype is currently being designed

in conjunction with the RISC-V Rocket implementation in Chisel

HDL. The initial deployment target for the xBGAS infrastructure

will target a high performance FPGA platform.

ACKNOWLEDGMENTS

The authors would like to thank the following individuals for their

assistance in reviewing various portions of the xBGAS specification.

Dr. Bruce Jacobs (University of Maryland) for his help in review-

ing the feasibility of virtual to physical memory translation, Mr.

John Shalf (Lawrence Berkeley National Laboratory) for his help in

reviewing application scenarios and Mr. Steven Wallach (Micron)

for his help in reviewing the application to PGAS programming

environments.

REFERENCES
[1] [n. d.]. CCIX Consortium. https://www.ccixconsortium.com/. Accessed: 2017-

09-09.
[2] [n. d.]. OpenCAPI Consortium. http://opencapi.org/. Accessed: 2017-09-09.
[3] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick. 1995.

Empirical evaluation of the CRAY-T3D: a compiler perspective. In Proceedings
22nd Annual International Symposium on Computer Architecture. 320ś331.

[4] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’16). ACM, New York, NY, USA, 217ś232. https://doi.org/10.1145/
2872362.2872414

[5] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel
Programmability and the Chapel Language. IJHPCA 21 (2007), 291ś312.

[6] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS Community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model (PGAS ’10). ACM, New York, NY, USA,
Article 2, 3 pages. https://doi.org/10.1145/2020373.2020375

[7] GenZ Consortium. 2017. GenZ Core Specification. Technical Re-
port. GenZ Consortium. http://genzconsortium.org/specifications/
draft-core-specification-july-2017/

[8] UPC++ Specification Working Group. 2018. UPC++ Specification v1.0 Draft 5.
Technical Report. Lawrence Berkeley National Laboratory.

[9] Vijay Karamcheti and Andrew A. Chien. 1995. A Comparison of Architectural
Support for Messaging in the TMC CM-5 and the Cray T3D. SIGARCH Comput.
Archit. News 23, 2 (May 1995), 298ś307. https://doi.org/10.1145/225830.224440

[10] John D Leidel, , Xi Wang, and Yong Chen. 2017. Toward a Memory-Centric,
Stacked Architecture for Extreme-Scale, Data-Intensive Computing. InWorkshop
On Pioneering Processor Paradigms, 2017 IEEE Symposium on High Performance
Computer Architecture. IEEE.

[11] John D. Leidel. 2017. GoblinCore-64: A Scalable, Open Architecture for Data
Intensive High Performance Computing. Ph.D. Dissertation. Texas Tech University.

[12] J. D. Leidel, J. Bolding, and G. Rogers. 2013. Toward a Scalable Heterogeneous
Runtime System for the Convey MX Architecture. In 2013 IEEE International
Symposium on Parallel Distributed Processing, Workshops and Phd Forum. 1597ś
1606. https://doi.org/10.1109/IPDPSW.2013.18

[13] J. D. Leidel, K. Wadleigh, J. Bolding, T. Brewer, and D. Walker. 2012. CHOMP: A
Framework and Instruction Set for Latency Tolerant, Massively Multithreaded
Processors. In 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis. 232ś239. https://doi.org/10.1109/SC.Companion.2012.39

[14] John D. Leidel, Xi Wang, and Yong Chen. 2015. GoblinCore-64: Architectural Spec-
ification. Technical Report. Texas Tech University. http://gc64.org/wp-content/
uploads/2015/09/gc64-arch-spec.pdf

[15] Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala, and Kamakoti
Veezhinathan. 2017. Shakti-T: A RISC-V Processor with Light Weight Security
Extensions. In Proceedings of the Hardware and Architectural Support for Security
and Privacy (HASP ’17). ACM, New York, NY, USA, Article 2, 8 pages. https:
//doi.org/10.1145/3092627.3092629

[16] Wilfried Oed andMartinWalker. 1993. An Overview of Cray Research Computers
Including the Y-MP/C90 and the NewMPP T3D. In Proceedings of the Fifth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA ’93). ACM, New
York, NY, USA, 271ś272. https://doi.org/10.1145/165231.165266

[17] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou,
Eric Flamand, Frank K. Gurkaynak, and Luca Benini. 2016. PULPino: A small
single-core RISC-V SoC. http://iis-projects.ee.ethz.ch/images/d/d0/Pulpino_
poster_riscv2015.pdf RISC-V Workshop.

[18] Xi Wang, John D. Leidel, and Yong Chen. 2016. Concurrent Dynamic Memory
Coalescing on GoblinCore-64 Architecture. In Proceedings of the Second Interna-
tional Symposium on Memory Systems (MEMSYS ’16). ACM, New York, NY, USA,
177ś187. https://doi.org/10.1145/2989081.2989128

[19] Andrew Waterman and Krste Asanovic. 2017. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Version 2.2. Technical Report. SiFive, Inc. https://riscv.
org/specifications/

[20] Andrew Waterman and Krste Asanovic. 2017. The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Version 1.10. Technical Report. SiFive, Inc.
https://riscv.org/specifications/

https://www.ccixconsortium.com/
http://opencapi.org/
https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2020373.2020375
http://genzconsortium.org/specifications/draft-core-specification-july-2017/
http://genzconsortium.org/specifications/draft-core-specification-july-2017/
https://doi.org/10.1145/225830.224440
https://doi.org/10.1109/IPDPSW.2013.18
https://doi.org/10.1109/SC.Companion.2012.39
http://gc64.org/wp-content/uploads/2015/09/gc64-arch-spec.pdf
http://gc64.org/wp-content/uploads/2015/09/gc64-arch-spec.pdf
https://doi.org/10.1145/3092627.3092629
https://doi.org/10.1145/3092627.3092629
https://doi.org/10.1145/165231.165266
http://iis-projects.ee.ethz.ch/images/d/d0/Pulpino_poster_riscv2015.pdf
http://iis-projects.ee.ethz.ch/images/d/d0/Pulpino_poster_riscv2015.pdf
https://doi.org/10.1145/2989081.2989128
https://riscv.org/specifications/
https://riscv.org/specifications/
https://riscv.org/specifications/

Understanding Application Recomputability without Crash
Consistency in Non-Volatile Memory

Jie Ren
University of California, Merced

jren6@ucmeced.edu

Kai Wu
University of California, Merced

kwu42@ucmerced.edu

Dong Li
University of California, Merced

dli35@ucmerced.edu

ABSTRACT

Emerging non-volatile memory (NVM) is promising to be used as
main memory, because of its good performance, density, and energy
efficiency. Leveraging the non-volatility of NVM as main memory,
we can recover data objects and resume application computation
(recomputation) after the application crashes. The existing work
studies how to ensure that data objects stored in NVM can be re-
covered to a consistent version during system recovery, a property
referred to as crash consistency. However, enabling crash consis-
tency often requires programmodification and brings large runtime
overhead.

In this paper, we use a different view to examine application
recomputation in NVM. Without taking care of consistency of
data objects, we aim to understand if the application can be re-
computable, given possible inconsistent data objects in NVM. We
introduce a PIN-based simulation tool, NVC, to study application
recomputability in NVMwithout crash consistency. The tool allows
the user to randomly trigger application crash and then perform
postmortem analysis on data values in caches and memory to exam-
ine data consistency. We use NVC to study a set of applications. We
reveal that some applications are inherently tolerant to the data in-
consistency problem. We perform a detailed analysis of application
recomputability without crash consistency in NVM.

ACM Reference Format:

Jie Ren, Kai Wu, and Dong Li. 2018. Understanding Application Recom-
putabilitywithout Crash Consistency inNon-VolatileMemory. InMCHPC’18:

Workshop on Memory Centric High Performance Computing (MCHPC’18),

November 11, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3286475.3286476

1 INTRODUCTION

Emerging byte-addressable non-volatile memory (NVM) technolo-
gies, such as memristors [21] and spin-transfer torque MRAM (STT-
MRAM) [12], provide better density and energy efficiency than
DRAM. Those memory technologies also have the durability of
the hard drive and DRAM-like performance. Those properties of
NVM allow us to use NVM as main memory, which blurs the tradi-
tional divide between byte-addressable, volatile main memory and
block-addressable, persistent storage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286476

Leveraging the non-volatility of NVM as main memory, we can
recover data objects and resume application computation (recom-
putation) after the application crashes. However, with write-back
caching, stores may reach NVM out of order, breaking data object
recoverability. Also, data objects cached in the cache hierarchy and
stored in NVM may not be consistent. Such inconsistence persists
after the application restarts and may impact application execution
correctness. Consequently, many existing work [2, 3, 7, 15, 17, 28]
studies how to ensure that data objects stored in NVM can be re-
covered to a consistent version during system recovery, a property
referred to as crash consistency.

To ensure crash consistency, the programmer typically invokes
ISA-specific cache flushing mechanisms via inline assembly or li-
brary calls (e.g., CLFLUSH) to ensure persist order. To enable crash
consistency, log-based mechanisms and the checkpoint mecha-
nism [3, 6, 23, 29] are often employed to make a copy of critical
data objects. However, frequent cache flushing, data logging and
checkpointing can cause program stalls and large runtime over-
head [33].

In this paper, we use a different view to examine application
recomputation in NVM. Without taking care of consistency of
data objects, we aim to understand if the application can be re-
computable, given possible inconsistent data objects in NVM. We
define application recomputability regarding application outcome

correctness. In particular, we claim an application is recomputable
after a crash if the application outcome is correct. If an application
is recomputable without crash consistency of data objects, then
we do not need to employ any cache flushing or logging mech-
anisms, which improves performance. Having the performance
improvement is especially attractive to applications in the field of
high-performance computing (HPC).

Evaluating application recomputability without crash consis-
tency is not trivial, because of the following reasons. First, to evalu-
ate application recomputation, we must collect data object values
in NVM for recomputation, when the crash happens. Without avail-
able NVM hardware, the traditional DRAM-based main memory,
although often used to emulate NVM [27], can lose data when
the crash happens. NVDIMM-N provide a possible solution to ad-
dress the problem. In particular, when a power failure happens,
NVDIMM-N copies the data from the volatile traditional DRAM
to flash storage and copies it back when power is restored. In the
solution of NVDIMM-N [24], the traditional DRAM is used to emu-
late NVM, and a small backup power source (e.g., a large battery)
is used to make the data copy during the power failure. However,
NVDIMM-N is not suitable for our evaluation, because our evalua-
tion involves a large amount of application crash tests. For those
tests, a machine with NVDIMM-N has to repeatedly stop and restart,
which is time-consuming and impacts the machine reliability.

https://doi.org/10.1145/3286475.3286476
https://doi.org/10.1145/3286475.3286476

MCHPC’18, November 11, 2018, Dallas, TX, USA Jie Ren, Kai Wu, and Dong Li

Second, we must determine data consistency when the crash
happens. This requires that we compare data in caches and its coun-
terpart in memory. This indicates that we must track data dirtiness
of each cache line in caches. To quantify how much inconsistency
there is between two data copies, we must also record data values
of dirty cache lines. The real hardware does not allow us to track
data values and dirtiness of cache lines. The existing simulators
usually do not store data values in caches and main memory for
simulation.

To evaluate application recomputability without crash consis-
tency, we introduce a PIN [19]-based simulation tool, named NVC

(standing for Non-Volatile memory Crash tester). In essence, the
tool is a PIN-based cache simulator plus rich functionality for crash
tests. The tool allows the user to randomly trigger application crash
and then perform postmortem analysis on data values in caches
and memory to examine data consistency. The tool associates rich
data semantics with data values, such that the user can determine
which data objects are critical to application recomputatbility. The
tool is highly customizable, allowing the user to configure cache
hierarchy, cache coherence, and the association between data val-
ues and data semantics. The tool also allows the user to test the
impact of different cache flushing mechanisms (e.g., CLFLUSH, CLWB
and CFLUSHOPT) on data consistency. The tool also integrates the
functionality of restarting the application with postmortem data in
memory to determine application recomputability.

NVC is useful for several scenarios. Beyond being used to study
application recomputability, NVC can be used as a debugger tool.
As a debugger tool, NVC can be used to examine if the persist order
enforced by the programmer is correct. It can also be used to detect
if the data value of a specific variable is consistent as expected by
the programmer when the application crashes.

We use NVC to study recomputability of several representative
applications from the fields of HPC and machine learning. Using
thousands of crash tests, we statistically reveal that some applica-
tions do not need crash consistency on critical data objects and
are highly recomputable after crashes. We study the reasons that
account for the application’s inherent tolerance to crash consis-
tency, including memory access pattern, data size, and application
algorithm.

The major contributions of the paper are summarized as follows.

• We introduce a tool, NVC, to study application recomputabil-
ity in NVM without crash consistency, which is unprece-
dented.
• We use NVC to study a set of applications. Different from the
existing work that relies on enforcing crash consistency for
application recomputation, we reveal that some applications
are inherently tolerant to crash consistency. We perform a
detailed analysis of the reasons.

2 PROBLEM DEFINITION AND
BACKGROUND

Definition of data objects. Data objects considered in the paper
refer to large data structures that store computation results. An
example of such data structures is multi-dimensional arrays that
represent large matrices. When running an application in a large-
scale parallel system, those data objects are often the target to apply

checkpoint. In a programming model for NVM (e.g., PMDK [14]),
those data objects can be placed into a memory (NVM)-mapped file
for the convenience of application restart.

In this paper, we do not consider memory address-related crash
consistency. The memory address-related crash consistency prob-
lem can cause dangling pointers, multiple frees, and memory leaks.
Those problems can easily cause memory segmentation fault when
the application restarts. Many existing efforts (e.g., [6, 29]) can ad-
dress the memory address-related crash consistency. Those efforts
are complementary to our work.

In addition, we do not consider those applications with strong
demand for memory transactions. Those applications include trans-
actional key-value store and the relational database. For those ap-
plications, losing data consistency has a severe impact on the func-
tionality of those applications, although some of them usually do
not have any problem to restart after crashes.

Application recomputability. We define application recom-
putability in terms of application outcome correctness. In particular,
we claim an application is recomputable after a crash, if the ap-
plication can restart and the final application outcome remains
correct.

The application outcome is deemed correct, as long as it is accept-
able according to application semantics. Depending on application
semantics, the outcome correctness can refer to precise numeri-
cal integrity (e.g., the outcome of a multiplication operation must
be numerically precise), or refer to satisfying a minimum fidelity
threshold (e.g., the outcome of an iterative solver must meet certain
convergence thresholds).

We distinguish restart and recomputability in the paper. After
the application crashes, the application may resume execution,
which we call restart, but there is no guarantee that the application
outcome after the application restarts is correct. If the application
outcome is correct, we claim application is recomputable.

Application restart.When the application crashes, data objects
that are placed into a memory (NVM)-mapped file are persistent
and usable to restart the application. Other data objects in NVM,
either being consistent or inconsistent, are not used for application
restarting.

Typically it is the programmer’s responsibility to decide which
data objects should be placed into the file. Those data objects are
critical to application execution correctness. We name those data
objects as critical data objects in the paper. In many applications,
non-critical data objects are either read-only or can be recomputed
based on the critical data objects.

In our study, we focus on applications with iterative structures.
In those applications, there is a main computation loop dominating
computation time. We choose those applications because they are
promising to be recomputable after crashes: The iterative structures
of those applications may allow the computation of those appli-
cations to amortize the impact of corrupted critical data objects.
There are a large amount of those applications, including most HPC
applications and many machine learning training algorithms.

Understanding Application Recomputability without Crash Consistency in NVM MCHPC’18, November 11, 2018, Dallas, TX, USA

3 NVC: A TOOL FOR STUDYING
APPLICATION RECOMPUTABILITY

NVC is a PIN-based crash simulator. NVC simulates a multi-level
cache hierarchy with cache coherence and main memory; NVC also
includes a random crash generator, a set of APIs to support the con-
figuration of crash tests and application restart, and a component
to examine data inconsistency for post-crash analysis. For the sim-
ulation of cache and main memory, different from the traditional
PIN-based cache simulator, NVC not only captures microarchitec-
ture level, cache-related hardware events (e.g., cache misses and
cache invalidation), but also records the most recent value of data
objects in the simulated caches and main memory.

NVC is highly configurable and supports a range of crash tests
with different configurations, summarized as follows.

• Cache configuration, including the selection of a cache
coherence protocol and typical microarchitecture configura-
tions (e.g., cache associativity and cache size);
• Crash configuration, including when to trigger the crash
and which data objects are critical;
• Cache flush configuration, including specifying which
cache flushing instruction will be used to ensure data con-
sistency;
• Recomputation configuration, including specifying a point
within a program for restarting.

We describe the main functionality of NVC as follows.
Cache simulation. Besides supporting the simulation of multi-

level, private/shared caches with different capacities and associa-
tivity, our cache simulation supports the simulation of cache co-
herence, which allows us to study the impact of cache coherence
on data consistency. With the deployment of a cache coherence
protocol, it is possible that a private cache has a stale copy of a
cache block, while NVM has the most updated one, causing data
inconsistency. NVC can capture such data inconsistency and ignore
it if configured to do so. In our evaluation, we use data in NVM to
restart and does not count such data inconsistency, because NVM
has the most updated data values.

Using PIN to intercept every memory read and write instruc-
tions from the application, NVC can get memory addresses and
corresponding data values associated with memory accesses. NVC
also records cache line information, such as data values in each
cache line, cache line dirtiness, and validness.

Our cache simulation supports different cache flushing mech-
anisms. In particular, we provide three APIs: flush_cache_line(),
cache_line_write_back() and write_back_invalidate_cache(). Table 1
contains more details.

Main memory simulation. Different from the traditional mi-
croarchitectural simulation for main memory, the main memory
simulation in NVC aims to record data values. In particular, NVC
uses a hashmap with memory addresses as keys and data values
as values. Using the hashmap enables easy updates of data values:
whenever the cache simulation in NVC writes back any cache line,
the main memory simulation can easily find the corresponding
record in the simulated main memory.

Random crash generation. NVC emulates the occurrence of a
crash by stopping application execution after a randomly selected
instruction. To allow the user to limit crash occurrence to a specific

code region (e.g., a function call or a loop), NVC introduces two
functions, start_crash() and end_crash(), to delineate the code region.
NVC intercepts the invocations of the two functions to determine
where to trigger a crash. To statistically quantify application recom-
putability, we perform a large number of crash tests (thousands of
tests) per benchmark.

To enforce random crash generation, NVC profiles the total num-
ber of instructions (specified as N), before crash tests. For each
crash test, NVC generates a random number n (1 ≤ n ≤ N). After n
instructions are executed, NVC stops application execution. Further-
more, NVC has functionality to report call path information when
a crash happens. This is implemented by integrating CCTLib [1]
into NVC. CCTlib is a PIN-based library that collects calling con-
texts during application execution. The call path information is
useful for the user to interpret crash results. In particular, the call
path information introduces the program context information for
analyzing crash results. Having the context information is useful
to distinguish those crash tests that happen in the same program
position (i.e., the same program statement), but with different call
stacks.

Data inconsistent rate calculation. NVC reports data incon-
sistent rate after a crash happens. The data inconsistent rate is
defined in terms of either all data in main memory or specific data
objects. If the data inconsistent rate is for all data in main mem-
ory, then the data inconsistent rate is the ratio of the number of
inconsistent data bytes to the size of whole memory footprint of
the application. If the data inconsistent rate is for specific data ob-
jects, then the data inconsistent rate is the ratio of the number of
inconsistent data bytes of the specific data objects to the size of the
data objects.

We use the following method to calculate the data inconsistent
rate. We distinguish cache line and cache block in the following
discussion. The cache line is a location in the cache, and the cache
block refers to the data that goes into a cache line. When a crash
happens, NVC examines cache line status in the simulated cache hi-
erarchy. If a cache line in a private cache has łinvalidatež status, this
cache line is not considered for the calculation of data inconsistence
rate, because either another private cache or main memory has an
updated version of the cache line data and inconsistent data rate
will be based on the new version of the cache line data. If a cache
line has łdirtyž status, then NVM compares the dirty cache block
of the cache line with the corresponding data in main memory to
determine the number of dirty data bytes. Note that for a specific
dirty cache block, we only consider it once, even if the cache block
may correspond to multiple cache lines in the cache hierarchy.

To calculate the data inconsistent rate for the critical data objects,
NVC must know memory addresses and data types of those data
objects, such that we can determine if a cache line has data of
the critical data objects. NVC relies on the user to use a dummy
function, critical_data(), to pass memory address and data type
information of a data object to NVC. This function is nothing but
uses memory address and data type as function arguments. NVC
intercepts them and associate them with a critical data object.

Application restart. When restarting the application, NVC
reads the critical data objects, initializes other data objects using
the initialization function of the application, and then resumes the

MCHPC’18, November 11, 2018, Dallas, TX, USA Jie Ren, Kai Wu, and Dong Li

Table 1: APIs for using NVC.

Signature Description

void start_crash(); void end_crash(); Define where a crash could happen. A crash could happen within the
code region encapsulated by the two APIs.

critical_data(void const *p, char type[], int const size); Collect the address, type and size information of a critical data object.
consistent_data(void const *p, char type[], int const size); Collect the address, type and size information of a consistent data object.
void cache_line_write_back(void const *p); Writes back a dirty cache line containing the address p, and marks the

cache line as clean in the cache hierarchy. This API is used to emulate
CLWB.

void flush_cache_line(void const *p); Flush a cache line containing address p, invalidate this cache line from
every level of the cache hierarchy in the cache coherence domain. This
API is used to emulate CLFLUSH and CLFLUSHOPT.

void write_back_invalidate_cache() Writes back all dirty cache lines in the processor's cache to main memory
and invalidates (flushes) the cache hierarchy. This API is used to emulate
WBINVD.

main computation loop. Note that when NVC restarts the appli-
cation, except the critical data objects, other data objects are not
usable, even though NVC has data values for those data objects.
This is because data semantics for those data values are lost. NVC
does not know which data values belong to which data objects.

In our crash tests, we restart the application from the iteration
of the main loop where the crash happens, instead of recomputing
the whole main loop. To know which iteration to restart, we flush
the cache line that contains the iterator at the end of each iteration
to make the iterator consistent.

Putting all together. Figure 1 generally depicts the workflow
of using NVC. To use NVC, the user needs to insert specific APIs to
specify critical data objects, the initialization phase of the applica-
tion for a restart, and specific code regions for crash tests. The user
also needs to configure cache simulation and crash tests. During
the application execution, NVC leverages the infrastructure of PIN
to instrument the application and analyze instructions for cache
simulation. NVC triggers a crash as configured and then perform
post-crash analysis to report data inconsistent rate and then restart
the application.

An example case. We take MG as an example to explain how
we perform a crash test. We use the same method to preform crash
tests for other benchmarks.

Figure 2 shows how we add NVC APIs into MG. MG has two
critical data objects and their information is passed to NVC in Line
7 and Line 8. The crash test happens in the main computation
loop encapsulated by start_crash() and end_crash(). Right before
the main computation loop, we flush whole cache hierarchy (Line
11) to ensure that all data is consistent before we start the crash
test. Within the main loop, we flush the cache line containing the
iterator at the end of each iteration (Line 15) for the convenience
of application restart.

4 RECOMPUTABILITY EVALUATION

4.1 Execution Platform and Simulation
Configurations.

In this paper, we simulate a two-level, inclusive cache hierarchy,
using the LRU replacement policy. The first level is a private cache

1 . . .
2 s t a t i c doub le u [NR] ;
3 s t a t i c doub le r [NR] ;
4 . . .
5 i n t main (i n t argc , char ∗ ∗ argv) {
6 i n t i t ;
7 c r i t i c a l _ d a t a (&u [0] , " doub le " , NR) ;
8 c r i t i c a l _ d a t a (& r [0] , " doub le " , NR) ;
9 c o n s i s t e n t _ d a t a (& i t , " i n t " , 1) ;
10 . . .
11 wr i t e _ b a c k _ i n v a l i d a t e _ c a c h e () ;
12 s t a r t _ c r a s h () ;
13 f o r (i t = 1 ; i t <= n i t ; i t ++) {
14 . . .
15 c a c h e _ l i n e _w r i t e _ b a c k (& i t) ;
16 }
17 end_cra sh () ;
18 . . .
19 }

Figure 2: Add NVC APIs into MG

(256KB per core and we simulate 8 cores). The second level is a
shared cache (20MB). In addition, we use a write-back and no-write
allocate policy for the first level cache, and a write-back and write
allocate policy for the second level cache. The cache line size is 64
bytes for both caches.

4.2 Benchmark Background.

We use three benchmarks from NAS parallel benchmark (NPB)
suite 3.3.1 and one machine learning code (Kmeans [4]) for our
study. Those benchmarks are summarized in Table 2. For each
benchmark, we use two different input problems, such that we can
study the impact of different memory footprint sizes on application
recomputability. We describe the benchmarks in details in this
section.

Conjugate gradient method (CG). CG is used to compute an
approximation to the smallest eigenvalue of a large sparse symmet-
ric positive definite matrix. CG is an iterative method, in the sense
that it starts with an imprecise solution and then iteratively con-
verges towards a better solution. CG has a verification phase at the
end of CG. The verification tracks the solution convergence towards

Understanding Application Recomputability without Crash Consistency in NVM MCHPC’18, November 11, 2018, Dallas, TX, USA

Figure 1: The general workflow of using NVC.

100% 99% 96%
100%

90% 89%
95%

34%

6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

phase1 phase2 phase3

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x=1

x=4

x=8

(a) CLASS=A

100%

46%

7%

100%

48%

2%

100%

54%

3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

phase1 phase2 phase3

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x=1

x=4

x=8

(b) CLASS=B

Figure 3: Recomputation success rate for CG.

a precision solution. We determine if CG successfully recomputes
based on the CG verification.

CG has sparse, unstructured matrix vector multiplication with
irregular memory access patterns. In CG, we have five critical data
objects (x , p, q, r and z), taking 1% of total memory footprint size.

Fourier transform (FT). This benchmark solves a partial dif-
ferential equation using forward and inverse fast Fourier transform
(FFT). FT has a main loop repeatedly performing FFT. At the end
of each iteration of the main loop, FT has a verification phase to
examine the result correctness of each iteration. The verification
phase compares some checksums embedded in data objects of FT
with reference checksums to determine the result correctness. Since

4%
0% 0% 0%2% 0% 0% 0%

6%
0% 0% 0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

evolve cfft3 cfft2 cfft1

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x = 1

x = 4

x = 8

(a) CLASS=A

5%
0% 0% 0%

4%
0% 0% 0%

4%
0% 0% 0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

evolve cfft3 cfft2 cfft1

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x = 1

x = 4

x = 8

(b) CLASS=B

Figure 4: Recomputation success rate for FT.

FT is not an iterative solver and has verification at each iteration of
the main loop, we simulation one iteration for our study, in order to
save simulation time. We determine if FT successfully recomputes
based on the FT verification.

FT has strided memory access patterns. Depending on the input
problem size of FT, the stride size can be large, causing intensive
accesses to main memory. In FT, we have two critical data objects
(u0 and u1), taking at least 80% of total memory footprint size.

Multigrid method (MG). MG is used to obtain an approxima-
tion solution to the discrete Poisson problem based on the multigrid
method. MG is also an iterative method, in the sense that MG al-
ternatively works at finer or coarser variants of the input problem

MCHPC’18, November 11, 2018, Dallas, TX, USA Jie Ren, Kai Wu, and Dong Li

16%
20%19%

15%
11% 13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

phase 1 phase2

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x = 1

x = 4

x = 8

(a) CLASS=A

20%
15%

12% 10%13%
18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

phase 1 phase2

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x = 1

x = 4

x = 8

(b) CLASS=B

Figure 5: Recomputation success rate for MG.

5.70

18.66

30.78

6.09

18.47

30.40

5.89

18.45

30.52

0

5

10

15

20

25

30

35

phase1 phase2 phase3

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x=1 x=4 x=8

(a) kdd as input

3.08

9.69

16.03

3.43

9.34

15.70

3.69

9.58

15.94

0

5

10

15

20

25

30

35

phase1 phase2 phase3

re
co

m
p

u
ta

ti
o

n
 s

u
cc

e
ss

 r
a

te

(t
h

re
a

d
=

x)

x=1 x=4 x=8

(b) 8192 as input

Figure 6: Recomputation success rate for Kmeans.

to compute the increasingly more accurate solutions. MG has a
verification phase at the end of MG. The verification tracks the

Table 2: Benchmark information.

Benchmark Description Memory footprint size of two

input problems

CG Iterative
solver

Class A: 55MB, Class B: 398MB

FT Spectral
method

Class A: 321MB, Class B: 1283MB

MG Iterative
solver

Class A: 431MB, Class B: 431MB

Kmeans Clustering
analysis

kdd_cup: 133MB, 819200: 222MB

solution convergence towards a precision solution. We determine
if MG successfully recomputes based on the MG verification.

MG has either short or long distance data movement, depending
on whether MG works on finer or coarser granularity of the input
problem.Working at the coarse granularity, MG can cause intensive
main memory accesses. In MG, we have two critical data objects (u
and r), taking a least 70% of total memory footprint size.

Kmeans. Kmeans is a clustering algorithm to classify a set of
input data points inton clusters. Kmeans is an iterative algorithm: In
each iteration, each data point is associated with its nearest cluster,
and then a new cluster centroid for each cluster is formed. Kmeans
iteratively determines the cluster centroid for each cluster. Kmeans
will stop clustering when a convergence criteria is met. Given a set
of data points as input, the algorithm identifies related points by
associating each data point with its nearest cluster, computing new
cluster centroids and iterating until converge.

Kmeans has streaming memory accesses (lacking temporal data
locality). In Kmeans, we have centers as critical data objects, which
is the position information of cluster centroids. centers takes less
than 1% of total memory footprint.

4.3 Recomputability Summary.

We evaluate and characterize application recomputability by trigger-
ing crashes at different execution phases and changing the number
of threads to run benchmarks. Each case of our study is a combina-
tion of using a specific number of threads and triggering crashes at
a specific execution phase. Each case of our study includes 100 crash
tests. For each crash test, we stop the benchmark in one iteration of
the main loop, and then restart the benchmark and examine if the
benchmark can complete successfully by running the remaining
iterations of the main loop. For the benchmarks CG and MG, the
number of iterations of the main loop from one run to another
remains constant, but for Kmeans, the number of iterations is not
constant from one run to another. In addition, Kmeans can always
recompute (converge) successfully after the crash. To evaluate the
recomputability of Kmeans, we use the number of iterations after
the crash for Kmeans to converge as a metric. If Kmeans needs
more iterations to converge after the crash than before the crash,
then Kmeans has bad recomputability.

Understanding Application Recomputability without Crash Consistency in NVM MCHPC’18, November 11, 2018, Dallas, TX, USA

4.4 Recomputability at Different Execution
Phases

We trigger crashes at different execution phases of each benchmark.
For CG and Kmeans, we evenly divide the whole iteration space of
the main loop into three parts, each of which corresponds to one
phase. For MG, we evenly divide the whole iteration space into two
parts (not three parts), because MG has a small number of iterations.
For FT, we only have one iteration, as described in Appendix A. We
divide the iteration into four phases (evolve, cfft3, cfft2, and cfft1)
based on algorithm knowledge. Our following discussion focuses on
the recomputation results of using one thread to run benchmarks.
Figures 3a-6b shows the results.

CG with Class A as input shows strong recomputability: at least
96% of all crash tests can recompute successfully. However, when
we use a larger input (Class B), CG shows weak recomputability in
Phases 2 and 3 (the recomputation success rate is 46% and 7% respec-
tively). FT shows very weak recomputability: the recomputability
success rate is less than 6% in all cases. MG also shows relatively
weak recomputability: the recomputability success rate is 15%-20%.
Kmeans can recompute successfully in all cases, showing strong
recomputability.

Observation 1. Different applications have large variance in
recomputability. Some applications (e.g., CG and Kmeans) can re-
compute successfully in almost all cases, while some applications
(e.g., FT) have close to zero tolerance to crash inconsistency.

Observation 2. Application recomputability is related to the
input problem size. With different input problems, application re-
computability can behave differently.

The observation 2 is aligned with our intuition. The application
with a larger input problem can lead to a smaller portion of data
objects in the cache hierarchy. This reduces the data inconsistent
rate when a crash happens, and results in a better possibility to
recompute.

When crashes happen at different execution phases of CG (Class
B as input), CG shows different recomputability (100%, 46% and
7% for Phases 1, 2 and 3 respectively). CG does not show good
recomputability at the late phase (Phase 3). Kmeans shows the
similar results: when crashes happen at different execution phases,
Kmeans uses a different number of iterations to converge. At the
late phase (Phase 3), Kmeans needs a larger number of iterations.

Observation 3. Application recomputability is different across
different execution phases.

The iterative structure of some applications has capabilities of
tolerating approximate computation by amortizing approximation
across iterations [11]. A crash and restart cause approximate com-
putation, because of data inconsistence. A crash happening at the
early execution phase has more iterations to tolerate approximation
and has a higher possibility to recompute.

Implication 1. If we enforce crash consistency to improve ap-
plication recomputability, we do not need to enforce it throughout
application execution. Reducing the necessity of enforcing crash
consistency is helpful to improve application performance. Some ap-
plications with specific input problems are naturally recomputable
after crashes. They do not need to enforce crash consistency.

4.5 Recomputability with Different Numbers
of Threads

We use 1, 4 or 8 threads to run applications. The results are shown
in Figures 3a-6b. For CG with Class A, the number of threads has a
significant impact on recomputability. As the number of threads
increases, the recomputability goes worse. The recomputability
for 1, 4 and 8 threads is 99%, 93%, and 45%, respectively. However,
for CG (Class B), FT, MG and kmeans, the recomputability is not
sensitive to the number of threads.

Observation 5. Application recomputability can be negatively
impacted by the number of threads. However, applications with
weak recomputability (e.g., FT and MG) remain to have weak re-
computability when using different numbers of threads.

We attribute the above observation to the possible larger working
set for critical data objects in caches when using a larger number of
threads. When a crash happens, having a larger working set size for
critical data objects in caches means more data is inconsistent. On
the other hand, using a larger number of threads can cause higher
data consistent rate, because of more cache line eviction. More
cache line eviction implicitly causes more data to be consistent. We
discuss the data inconsistent rate in Section 4.6.

Furthermore, Kmeans seems to be a special case. Kmeans has
strong recomputability: the recomputation rate is always 100%, no
matter howmany threads we use to run Kmeans and trigger crashes.
Different from CG (Class A) that also has strong recomputability,
the recomputability of Kmeans is not impacted by the number of
threads at all. We attribute such observation to the strong tolerance
to data corruption of Kmeans.

Implication 2. When using the different number of threads, we
must use different strategies to ensure application recomputability.
When using a larger number of threads to run an application, there
is often a need to enforce stronger crash consistency.

4.6 Analysis based on Data Inconsistent Rate

Figures 7a-10b show the data inconsistent rate for individual critical
data objects as well all data objects. We define the data inconsistent
rate in Section 3.

For CG, the data objects q and r have a high inconsistent rate in
all cases. The variance of data inconsistent rate across cases is also
small. We conclude that the recomputability of CG seems to be less
correlated with the data inconsistent rate of these two data objects.
We further notice that the data objectsp and z has a large variance in
data inconsistent rate across cases, when using Class A as input. For
p, using a larger number of threads causes higher data inconsistent
rate; for z, using a larger number of threads has opposite effects.
We conclude that using a larger number of threads, accessing to
p and z may have opposite impact on application recomputability.
Given the fact that the recomputability of CG (Class A as input) is
not sensitive to the number of threads, the impacts of p and z on
application recomputability seem to be neutralized.

We have the similar observations for other benchmarks.
Observation 6. We cannot easily explain the variance of appli-

cation recomputability based on the data inconsistent rate. There
seems to be a small correlation between application recomputability
and the data inconsistent rate.

MCHPC’18, November 11, 2018, Dallas, TX, USA Jie Ren, Kai Wu, and Dong Li

0%

20%

40%

60%

80%

100%

u0 u1 all data

D
a

ta
 I
n

c
o

n
s
is

te
n

t
R

a
te

1 thread evolve 4 thread evolve 8 thread evolve

1 thread cffts3 4 thread cffts3 8 thread cffts3

1 thread cffts2 4 thread cffts2 8 thread cffts2

1 thread cffts1 4 thread cffts1 8 thread cffts1

(a) CLASS=A

0%

20%

40%

60%

80%

100%

u0 u1 all data

D
a

ta
 I
n

c
o

n
s
is

te
n

t
R

a
te

1 thread evolve 4 thread evolve 8 thread evolve

1 thread cffts3 4 thread cffts3 8 thread cffts3

1 thread cffts2 4 thread cffts2 8 thread cffts2

1 thread cffts1 4 thread cffts1 8 thread cffts1

(b) CLASS=B

Figure 8: Data inconsistent rate for FT.

The above observation may be because of the following reason.
The data inconsistence rate only tells us that data is inconsistent,
but cannot quantify the value difference between caches and main
memory. Two crash tests may cause the same data inconsistent rate
for a data object, but have quite different data values in the data
object. Different data values can cause different application recom-
putability. Using the different number of threads and different input
problems can cause a big difference in data values between caches
and main memory when the crash happens. Such big differences
cause different application recomputability.

Implication 3. Considering the cache effects to determine appli-
cation inconsistent rate is not sufficient to understand application
recomputability. We must also consider how different data values
in caches and main memory are when the crash happens.

4.7 Discussions and Future Work

NVC is based on PIN that uses binary instrumentation. Running an
application with a large memory footprint and intensive memory
accesses with NVC can be time-consuming. In our experiments,
using NVC to run the application with large input size can cause
hundreds of times slowdown. Such long execution time brings chal-
lenges for running a large number of crash tests. We plan to extend
our work by introducing a new technique to accelerate our analysis.
In particular, we plan to proportionally scale down the applica-
tion’s data set and cache size for faster simulation without losing
the result correctness for quantifying application recomputability.

NVC allows us to learn the application recomputability and the
reason behind. We plan to learn more representative applications

0%

20%

40%

60%

80%

100%

u r all data

D
a

ta
 I
n

c
o

n
s
is

te
n

t
R

a
te

1TP1 4TP1 8TP1 1TP2 4TP2 8TP2

(a) CLASS=A

0%

20%

40%

60%

80%

100%

u r all data
D

a
ta

 I
n

c
o

n
s
is

te
n

t
R

a
te

1TP1 4TP1 8TP1 1TP2 4TP2 8TP2

(b) CLASS=B

Figure 9: Data inconsistent rate forMG. In the legend, łTž stands for

thread and łPž stands for phase. xTyP means using x threads and

trigger crashes in Phase y .

and introduce a mechanism to leverage application recomputability
to avoid checkpoint or cache flushing for better performance.

5 RELATED WORK

Many existing work focuses on enabling crashing consistency in
NVM, using software- and hardware-based approaches. Different
from the existing work, we study application recomputability with-
out crash consistency. We review the existing work related to crash
consistency as follows.

Software support for crash consistency. Enabling crash con-
sistency in NVM with software-based approaches is widely ex-
plored. Undo logging and redo logging are two of the most common
methods to enable crash consistency, often based on atomic and
durable transactions. Using undo and redo logging, once a transac-
tion fails or the application crashes, any uncommitted modifications
are ignored, and the application rolls back to the latest version of
data in the log.

Persistent Memory Development Kit (PMDK) [13] from Intel
supports the transaction system in NVM by undo logging. Similarly,
NV-Heaps [7], REWIND [3] and Atlas [2] adopt write-ahead undo
logging in NVM. Kolli et al. [15] propose an undo logging that
minimizes the write ordering constraint by delaying to commit the
data modification.

Mnemosyne [28], a set of programming APIs and libraries for
programming with persistent memory, uses redo logging. Lu et
al. [17] optimize Mnemosyne to reduce the overhead of supporting
transaction by delaying and minimizing the cache flushing. To

Understanding Application Recomputability without Crash Consistency in NVM MCHPC’18, November 11, 2018, Dallas, TX, USA

0%

20%

40%

60%

80%

100%

x p q r z all data

D
a

ta
 In

co
n

si
st

e
n

t
R

a
te

1TP1

4TP1

8TP1

1TP2

4TP2

8TP2

1TP3

4TP3

8TP3

(a) CLASS=A

0%

20%

40%

60%

80%

100%

x p q r z all data

D
a

ta
 In

co
n

si
st

e
n

t
R

a
te

1TP1

4TP1

8TP1

1TP2

4TP2

8TP2

1TP3

4TP3

8TP3

(b) CLASS=B

Figure 7: Data inconsistent rate for CG. In the legend, łTž stands for thread and łPž stands for phase. xTyP means using x threads and trigger

crashes in Phase y .

achieve that, they maintain the correct overwrite order of data but
do not write them back into memory immediately. A full processor
cache flushing will be scheduled when they accumulate enough
uncommitted data. Giles et al. [10] provide a redo logging based
lightweight atomicity and durability transaction by ensuring fast
paths to data in processor caches, DRAM, and persistent memory
tiers.

Some existing work focuses on enabling crash consistency for
specific data structures, including NV-Tree [32], FPTree [22], NVC-
Hashmap [25], CDDS [26] and wBTree [5]. Those data structures
support atomic and durable updates, and hence support crash con-
sistency.

Our work can be very helpful for the above work. In particular,
NVC can be used to check if crash consistency based on undo log
and redo log enables data consistence as expected.

Some existing work considers crash consistency with the context
of file system [8, 9, 30]. NOVA [31] is such a file system optimized
for heterogeneous memory (DRAM and NVM) systems. It provides
strong consistency guarantees and maintains independent logs for
each inode to improve scalability. Octopus [16] is another example.
Octopus is a RDMA-enabled distributed persistent memory file sys-
tem. Octopus can have high performance when enforcing metadata
consistency, by a łcollect-dispatchž transaction. With the collect-
dispatch transaction, Octopus collects data from remote servers for
local logging and then dispatching them to remote sides by RDMA
primitives.

Among the above software-based work, some of them [15, 17] in
fact relaxes requirements on crash consistency and does not require
crash consistency to be timely enforced, in order to have better

performance. Since our work does not require crash consistency,
our work also relaxes requirements on crash consistency.

Hardware support for crash consistency. Lu et al. [18] use
hardware-based logging mechanisms to relax the write ordering
requirements both within a transaction and across multiple transac-
tions. To achieve such goal, they largely modify the cache hierarchy
and propose a non-volatile last level CPU cache. Ogleari et al. [20]
combine undo and redo hardware logging scheme to relax ordering
constraints on both caches and memory controllers for NVM-based
systems. Meanwhile, to minimize the frequency of using write-back
instructions, they add a hardware-controlled cache to implement a
writeback cache. Our work is different from the above hardware-
based work, because we do not require hardware modification for
crash consistency.

6 CONCLUSIONS

Using NVM as main memory brings an opportunity to leverage
NVM’s non-volatility for application restarting and recomputing
based on the remaining data objects in NVM, after the application
crashes. Different from the existing work that enables crash con-
sistency for application recomputation, we statistically quantify
recomputability of a set of applications without crash consistency
in NVM. We develop a tool (named NVC) that allows us to trigger
random crash, examine data consistency and restart application for
our study. Using the tool, we real that some applications have very
good recomputability without crash consistency on critical data
objects. Our work is the first one that studies application recom-
putability without crash consistency. Our work opens a door to
remove runtime overhead of those crash-consistency mechanisms

MCHPC’18, November 11, 2018, Dallas, TX, USA Jie Ren, Kai Wu, and Dong Li

0%

20%

40%

60%

80%

100%

clusters all data

D
a

ta
 I
n

c
o

n
s
is

te
n

t
R

a
te

1TP1

4TP1

8TP1

1TP2

4TP2

8TP2

1TP3

4TP3

8TP3

(a) kdd_cup as input

0%

20%

40%

60%

80%

100%

clusters all data

D
a

ta
 I
n

c
o

n
s
is

te
n

t
R

a
te

1TP1

4TP1

8TP1

1TP2

4TP2

8TP2

1TP3

4TP3

8TP3

(b) 819200 as input

Figure 10: Data inconsistent rate for kmeans. In the legend, łTž

stands for thread and łPž stands for phase. xTyP means using x

threads and trigger crashes in Phase y .

(e.g., logging and checkpoint). Our work makes NVM a more feasi-
ble solution for application recomputation in those fields with the
high-performance requirement.

REFERENCES
[1] Milind Chabbi, Xu Liu, and John Mellor-Crummey. 2014. Call Paths for Pin Tools.

In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization.

[2] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’14).

[3] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND:
Recovery write-ahead system for in-memory non-volatile data-structures. Proc.
VLDB Endow. 8, 5 (Jan. 2015), 497ś508.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC).

[5] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile Main Memory.
Proc. VLDB Endow. 8, 7 (Feb. 2015), 786ś797.

[6] Joel Coburn, Adrian Caulfield, Ameen Akel, Laura Grupp, Rajesh Gupta, Ranjit
Jhala, and Steve Swanson. 2011. NV-heaps: Making Persistent Objects Fast and
Safe with Next-generation, Non-volatile Memories. In Proc. of 16th Int. Conf.
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’11).

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[8] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through Byte-
addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd Sympo-
sium on Operating Systems Principles (SOSP ’09).

[9] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software for
Persistent Memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys ’14).

[10] E. R. Giles, K. Doshi, and P. Varman. 2015. SoftWrAP: A lightweight framework
for transactional support of storage class memory. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST).

[11] Serge Gratton, Philippe L. Toint, and Anke Tröltzsch. 2011. How much gradient
noise does a gradient-based linesearch method tolerate?

[12] Xiaochen Guo, Engin Ipek, and Tolga Soyata. 2010. Resistive Computation:
Avoiding the Power Wall with Low-Leakage, STT-MRAM Based Computing. In
International Symposium on Computer Architecture (ISCA).

[13] Intel. 2014. Persistent Memory Development Kit. https://pmem.io/. (2014).
[14] Intel. 2014. Intel NVM Library. http://pmem.io/nvml/libpmem/. (2014).
[15] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.

2016. High-Performance Transactions for Persistent Memories. In Proceedings of
the Twenty-First International Conference onArchitectural Support for Programming
Languages and Operating Systems (ASPLOS ’16).

[16] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled
Distributed Persistent Memory File System. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17).

[17] Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred Persistence: Efficient Transac-
tions in Persistent Memory. Trans. Storage 12, 1, Article 3 (Jan. 2016), 29 pages.

[18] Y. Lu, J. Shu, L. Sun, and O. Mutlu. 2014. Loose-Ordering Consistency for per-
sistent memory. In 2014 IEEE 32nd International Conference on Computer Design
(ICCD).

[19] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. 2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proc. 2005 ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI ’05). Chicago, IL, 190ś200.

[20] Ethan L. Miller Matheus Ogleari and Jishen Zhao. 2018. Steal but No Force:
Efficient Hardware Undo+Redo Logging for Persistent Memory Systems. In Pro-
ceedings of the 24th IEEE International Symposium on High-Performance Computer
Architecture (HPCA).

[21] P. Mazumder, S. M. Kang, and R. Waser. 2012. Memristors: Devices, Models, and
Applications [Scanning the Issue]. Proc. IEEE (2012), 1911ś1919.

[22] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In SIGMOD.

[23] Andy Rudoff. 2013. Programming Models for Emerging Non-Volatile Memory
Technologies. The USENIX Magazine 38, 3 (2013), 40ś45.

[24] Arthur Sainio. 2016. NVDIMM: Changes are Here So WhatâĂŹs Next?. In In-
Memory Computing Summit 2016.

[25] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. 2015.
NVC-Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Memo-
ries. In Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement
and Analytics (IMDM ’15).

[26] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies.

[27] Haris Volos, GuilhermeMagalhaes, Ludmila Cherkasova, and Jun Li. 2015. Quartz:
A Lightweight Performance Emulator for Persistent Memory Software. In Proc.
16th Annu. Middleware Conference (Middleware ’15). Vancouver, Canada, 37ś49.

[28] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS).

[29] H. Volos, A. J. Tack, and M. M. Swift. 2011. Mnemosyne: Lightweight Persistent
Memory. In Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[30] X. Wu and A. L. N. Reddy. 2011. SCMFS: A file system for Storage Class Memory.
In 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 1ś11.

[31] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (FAST’16).

[32] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In 13th USENIX Conference on File and Storage Technologies (FAST
15).

[33] S. Yang, K. Wu, Y. Qiao, D. Li, and J. Zhai. 2017. Algorithm-Directed Crash Con-
sistence in Non-volatile Memory for HPC. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER).

https://pmem.io/
http://pmem.io/nvml/libpmem/

A Preliminary Study of Compiler Transformations
for Graph Applications on the Emu System

Prasanth Chatarasi and Vivek Sarkar
Georgia Institute of Technology

Atlanta, Georgia, USA

{cprasanth,vsarkar}@gatech.edu

ABSTRACT

Unlike dense linear algebra applications, graph applications

typically suffer from poor performance because of 1) ineffi-

cient utilization of memory systems through random memory

accesses to graph data, and 2) overhead of executing atomic

operations. Hence, there is a rapid growth in improving both

software and hardware platforms to address the above chal-

lenges. One such improvement in the hardware platform is a

realization of the Emu system, a thread migratory and near-

memory processor. In the Emu system, a thread responsible

for computation on a datum is automatically migrated over

to a node where the data resides without any intervention

from the programmer. The idea of thread migrations is very

well suited to graph applications as memory accesses of the

applications are irregular. However, thread migrations can

hurt the performance of graph applications if overhead from

the migrations dominates benefits achieved through the mi-

grations.

In this preliminary study, we explore two high-level com-

piler optimizations, i.e., loop fusion and edge flipping, and

one low-level compiler transformation leveraging hardware

support for remote atomic updates to address overheads aris-

ing from thread migration, creation, synchronization, and

atomic operations. We performed a preliminary evaluation of

these compiler transformations by manually applying them

on three graph applications over a set of RMAT graphs from

Graph500.—Conductance, Bellman-Ford’s algorithm for the

single-source shortest path problem, and Triangle Counting.

Our evaluation targeted a single node of the Emu hardware

prototype, and has shown an overall geometric mean reduc-

tion of 22.08% in thread migrations.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00

https://doi.org/10.1145/3286475.3286481

KEYWORDS

Loop fusion, Edge flipping, Graph algorithms, Thread mi-

gratory, Near-memory, Atomic operations, The Emu system,

Compilers

ACM Reference Format:

Prasanth Chatarasi and Vivek Sarkar. 2018. A Preliminary Study

of Compiler Transformations for Graph Applications on the Emu

System. In MCHPC’18: Workshop on Memory Centric High Perfor-

mance Computing (MCHPC’18), November 11, 2018, Dallas, TX,

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3286475.3286481

1 INTRODUCTION

Though graph applications are increasing in importance with

the advent of "big data", achieving high performance with

graph algorithms is non-trivial and requires careful attention

from programmers [20]. Two significant bottlenecks to achiev-

ing higher performance on existing CPU and GPU-based ar-

chitectures are 1) inefficient utilization of memory systems

through random memory accesses to graph data, and 2) over-

head of executing atomic operations. Since graph applications

are typically cache-unfriendly and are not well supported by

existing traditional architectures, there is growing attention

being paid by the architecture community to innovate suitable

architectures for such applications. One such innovation is

the Emu system, a highly scalable near memory system with

support for migrating threads without programmer interven-

tion [8]. The system is designed to improve the performance

of data-intensive applications exhibiting weak locality, i.e.,

from irregular and cache-unfriendly memory access which

are often found in graph analytics [18] and sparse matrix al-

gebra operations [19].

Emu architecture. An Emu system consists of multiple

Emu nodes interconnected by a fast rapid IO network, and

each node (shown in Figure 1) contains nodelets, station-

ary cores and migration engines. Each nodelet consists of a

Narrow Channel DRAM (NCDRAM) memory unit and mul-

tiple Gossamer cores, and the co-location of the memory unit

with the cores makes the overall Emu system a near-memory

system. Even though each nodelet has a different physical co-

located memory unit, the Emu system provides a logical view

1

https://doi.org/10.1145/3286475.3286481
https://doi.org/10.1145/3286475.3286481
https://doi.org/10.1145/3286475.3286481

MCHPC’18, November 11, 2018, Dallas, TX, USA P. Chatarasi et al.

of the entire memory via the partitioned global address space

(PGAS) model with memory contributed by each nodelet.

Each gossamer core of a nodelet is a general-purpose, sim-

ple pipelined processor with no support for data caches and

branch prediction units, and is also capable of supporting 64

concurrent threads using fine-grain multi-threading. A key as-

pect of the Emu system is thread migration by hardware, i.e.,

a thread is migrated on a remote memory read by removing

thread context from the nodelet and transmitting the thread

context to a remote nodelet without programmer intervention.

As a result, each nodelet requires multiple queues such as

service, migration and run queues to process threads spawned

locally (using spawn instruction) and also migrated threads.

Figure 1: Overview of a single Emu node (Figure

source: [10]), where a dotted circle represents a nodelet.

Note that, the co-location of the narrow channel memory

unit (NCDRAM) with gossamer cores makes the overall

Emu system a near memory system.

Software support. The Emu system supports the Cilk par-

allel programming model for thread spawning and synchro-

nization using cilk_spawn, cilk_sync and cilk_for

constructs [11]. Since the Emu hardware automatically takes

care of thread migration and management; hence the Cilk run-

time is discarded in the toolchain. Also, it is important to note

that appending a cilk_spawn keyword before a function

invocation to launch a new task is directly translated to the

spawn instruction of the Emu ISA during the compilation.

The Emu system also provides libraries for data allocation

and distribution over multiple nodelets, and intrinsic functions

for atomic operations and migrating thread control functions.

Also, there has been significant progress made in supporting

standard C libraries on the Emu system.

Even though the Emu system is designed to improve the

performance of data-sensitive workloads exhibiting weak-

locality, the thread migrations across nodelets can hamper

the performance if overhead from the thread migration dom-

inates the benefits achieved through the migration. In the

next section, we study both high-level and low-level com-

piler transformations which can be applied to original graph

applications to mitigate the overheads as mentioned earlier.

2 COMPILER TRANSFORMATIONS

In this section, we discuss two high-level compiler transfor-

mations (Node fusion and Edge flipping)1, and one low-level

compiler transformation leveraging the remote atomic update

feature of the hardware, to mitigate the impact of overheads

in the performance of graph applications on the Emu system.

2.1 Node/Loop Fusion

Programmers write graph applications with multiple parallel

loops over nodes of a graph either to 1) compute various prop-

erties of a node (e.g., in Conductance [7, 21]), or 2) query on

computed properties of nodes (e.g., in Average teenage follow-

ers [17]). In such scenarios, multiple such parallel loops can

be grouped into a single parallel loop, and compute multiple

properties in the same loop or query immediately after com-

puting the properties. This grouping can result in reducing

thread migrations occurring in later loops, and also overheads

arising from thread creation and synchronization. The group-

ing of multiple such parallel loops is akin to loop fusion, a

classical compiler transformation for improving locality; but

we use the transformation to reduce unnecessary migrations

(for more details, see Section 3.2).

2.2 Edge Flipping

Edge flipping is another compiler transformation discussed

in [15] to flip a loop over incoming edges of a node with

outgoing edges of the node. However, we generalize the edge

flipping transformation to allow flips between both incoming

and outgoing edges. To allow this bi-directional flipping, the

transformation assumes an input graph to be bi-directional,

i.e., each node in the graph stores a list of incoming edges

along with outgoing edges.

Vertex centric graph algorithms such as Page rank, Bellman-

Ford algorithm for single-source shortest path, Page coloring

offer opportunities to explore the edge flipping transforma-

tion since these algorithms either explore incoming edges of

a node to avoid synchronization (pull-based approach), or

explore outgoing edges to reduce random memory accesses

(push-based approach), or explore a combination [6, 29]. We

discuss the above push-pull dichotomy in Section 2.2, using

1Note that these high-level transformations – node fusion and edge flipping –

have already been explored in past work on optimizing graph algorithms on

the x86 architectures [15], and we are evaluating them in the context of the

EMU system in this paper.

2

Exploring Compilers Transformations for EMU. MCHPC’18, November 11, 2018, Dallas, TX, USA

the Bellman-Ford’s algorithm as a representative of vertex-

centric graph algorithms.

2.3 Use of Remote Updates

Remote updates, one of the architectural features of the Emu,

are stores and atomic operations to a remote memory location

that don’t require returning a value to the thread, and these

operations do not result in thread migrations [8]; instead they

send an information packet to the remote nodelet containing

the data and the operation to be performed. These remote

updates also can be viewed as very efficient special-purpose

migrating threads, and they don’t return a result unlike reg-

ular atomic operations, but they return an acknowledgement

that the memory unit of the remote nodelet has accepted the

operation. We leverage this feature as a low-level compiler

transformation replacing regular atomic operations that don’t

require returning a value by the corresponding remote up-

dates. The benefits of this transformation can be immediately

seen in vertex-centric algorithms (Section 3.3) and also in the

triangular counting algorithm (Section 3.4).

3 EXPERIMENTS

In this section, we present the benefits of applying the com-

piler transformations on graph algorithms. We begin with an

overview of the experimental setup and the graph algorithms

used in the evaluation, and then we present our discussion on

preliminary results for each algorithm.

3.1 Experimental Setup

Our evaluation uses dedicated access to a single node of

the Emu system, i.e., the Emu Chick prototype2 which uses

an Arria 10 FPGA to implement Gossamer cores, migration

engines, and stationary cores of each nodelet. Table 1 lists the

hardware specifications of a single node of the Emu Chick.

Table 1: Specifications of a single node of the Emu system.

Emu system

Microarch Emu1 Chick

Clock speed 150 MHz

#Nodelets 8

#Cores/Nodelet 1

#Threads/Core 64

Memorysize/Nodelet 8 GB

NCDRAM speed 1600MHz

Compiler toolchain emusim.HW.x (18.08.1)

In the following experiments, we compare two experimen-

tal variants: 1) Original version of a graph algorithm running

with all cores of a single node and 2) Transformed version af-

ter manually applying compiler transformations on the graph

2Several aspects of the system are scaled down in the prototype Emu system,

e.g., number of gossamer cores of a nodelet

algorithm. In all experiments, we measure only the execution

time of the kernel and report the geometric mean execution

time measured over 50 runs repeated in the same environment

for each data point. The speedup is defined as the execution

time of the original version of a graph algorithm divided by

the execution time of the transformed version of the program

running with all cores of a single node of the Emu system in

both cases,i.e., eight cores.

We also use an in-house simulation environment of the

Emu prototype, whose specifications match with the hardware

details mentioned in Table 1, to measure statistics of programs

such as thread migrations, threads created and terminated.

We are not currently aware of any methods for extracting

these statistics from the hardware. We define the percentage

reduction in thread migrations3 as follows:

%reduction in migrations

= (1 −
(#migrations in the transformed version

#migrations in the original version
)
)

× 100

Finally, we evaluate the benefits of compiler transformations

by measuring both improvements in execution time on the

Emu hardware and reduction in thread migrations on the Emu

simulator.

Graph applications: For our evaluation, we consider three

graph algorithms, i.e., 1) Conductance algorithm, 2) Bellman-

Ford’s algorithm for Single-source shortest path (SSSP) prob-

lem, and 3) Triangle counting algorithm. Both original and

transformed versions of above algorithms are implemented

using the Meatbee framework [13], an in-house experimental

streaming graph engine used to develop graph algorithms for

the Emu system. The Meatbee framework, inspired by the

STINGER framework [9], uses a striped array of pointers to

distribute the vertex array across all nodelets in the system,

and also implements the adjacency list as a hash table with a

small number of buckets.

Input data-sets: We use RMAT graphs (edges of these

graphs are generated randomly with a power-law distribution),

scale4 from 6 to 14 as specified by Graph500 [2]. Note that all

the above graphs specified by Graph500 are generated using

the utilities present in the STINGER framework. Table 2

presents details of the RMAT graphs used in our evaluation,

and total thread migrations and execution times of the original

graph algorithms on the Emu system.

3Note that the thread migration counts are for the entire program, and we are

not currently aware of any existing approaches on how to obtain migration

counts for a specific region of code.
4A scale of n for an input graph refers to having 2

n vertices.

3

MCHPC’18, November 11, 2018, Dallas, TX, USA P. Chatarasi et al.

Scale #vertices #edges

Thread migrations in

the original program

Execution time of the original program (ms),

geometric mean of 50 runs

Conductance SSSP-BF Triangle counting Conductance SSSP-BF Triangle counting

6 64 1K 6938 10915 26407 4.45 26.32 53.63

7 128 2K 13812 22851 84168 7.51 393.04 163.36

8 256 4K 28221 48354 252440 13.89 1634.64 547.84

9 512 8K 59068 104653 809423 32.13 2887.61 1694.09

10 1K 16K 122088 220204 2475350 64.59 4589.42 3942.55

11 2K 32K 253364 474118 7381977 134.43 10225.10 12649.30

12 4K 64K 522530 1136600 21777902 844.38 32140.30 36199.60

13 8K 128K 1065640 2332741 64063958 1841.53 - 185864.00

14 16K 256K 2171311 4569519 180988114 7876.99 - 721578.00

Table 2: Experimental evaluation of three graph algorithms (Conductance, SSSP-BF and Triangle counting) on

the RMAT graphs from scales 6 to 14 specified by Graph500. Transformations applied on the algorithms:

Conductance/SSSP-BF/Triangle counting: (Node fusion)/(Edge flipping and Remote updates)/ (Remote updates). The

evaluation is done a single node of the Emu system described in Table 1. Note that we had intermittent termination

issues while running SSSP-BF from scale 13-14 on the Emu node, and hence we omitted its results.

3.2 Conductance algorithm

The conductance algorithm is a graph metric application to

evaluate a graph partition by counting the number of edges

between nodes in a given partition and nodes in other graph

partitions [7, 21]. The algorithm is frequently used to detect

community structures in social graphs. An implementation of

the conductance algorithm is shown in Algorithm 1. The im-

plementation5 at a high-level consists of three parallel loops

iterating over vertices of a graph to compute different prop-

erties (such as din, dout, dcross) of a given partition

(specified as id in the algorithm). Finally, these properties

are used to compute conductance value of the partition of the

graph.

As can be seen from the implementation, the EMU hard-

ware spawns a thread for every vertex (v) of the graph from

the first parallel loop (lines 2-4), and migrates to a nodelet

where the vertex property partition_id is stored after

encountering the property (v.partition_id) at line 3.

Since the degree property of the vertex (v) is also stored on

the same nodelet as of the other property6, the thread doesn’t

migrate on encountering the property, v.degree, at line 4.

After reduction of the din variable, the hardware performs

a global synchronization of all spawned threads because of

an implicit barrier after the parallel loop. After the synchro-

nization, the hardware again spawns a thread for every vertex

from the second parallel loop (lines 5-7), and migrates after

encountering the same property (v.partition_id at line

6). The same behavior is repeated in the third parallel loop as

5The implementation is from a naive translation from existing graph analytics

domain-specific compilers for non-EMU platforms.
6The properties of vertices (such as partition_id, degree) are allo-

cated similar to the vertex allocation, i.e., uniformly across all nodelets.

Algorithm 1: An implementation of the Conductance

algorithm [7, 21].

1 def CONDUCTANCE(V , id):

2 for each v ∈ V do in parallel with reduction

3 if v.partition_id == id then

▷ Thread migration for v .partition_id value

4 din+ = v .deдree

5 for each v ∈ V do in parallel with reduction

6 if v.partition_id != id then

7 dout+ = v .deдree

8 for each v ∈ V do in parallel with reduction

9 if v.partition_id == id then

10 for each nbr ∈ v .nbrs do

11 if nbr .partition_id != id then

12 dcross+ = 1

13 return dcross/((din < dout)?din : dout)

well (lines 8-12). The repeated migrations to the same nodelet

from multiple parallel loops, which arise from accessing the

same property or a different property which is stored on the

same nodelet, can be reduced by fusing all the three parallel

loops into a single loop. Also, the fusion of multiple parallel

loops can reduce the overhead of multiple thread creations

and synchronization. As can be seen from Figure 2, we have

observed a geometric mean reduction of 6.06% in the total

number of thread migrations after fusing three loops. As a

result, we also found a geometric mean speedup of 1.95x in

the execution time of the computation over the scale 6-14

of RMAT graphs specified by Graph500. This performance

improvement demonstrates the need for fusing parallel loops

over nodes of a graph to compute values/properties together

4

Exploring Compilers Transformations for EMU. MCHPC’18, November 11, 2018, Dallas, TX, USA

to reduce thread migrations in applications such as Conduc-

tance.

0.0

2.5

5.0

7.5

10.0

Scale of RMAT graphs specif ed by Graph500

6 7 8 9 10 11 12 13 14

5.295.38
5.49

5.68
5.85

6.17

6.62
6.92

7.55

1.66

2.061.972.022.082.172.12
2.01

1.58

Speedup after applying loop fusion

%reduction in thread migrations after applying loop fusion

Figure 2: Speedup over the original conductance algo-

rithm on a single Emu node (8 nodelets) and % reduc-

tions in thread migrations after applying loop fusion.

3.3 Single Source Shortest Path using

Bellman-Ford’s Algorithm (SSSP-BF)

Bellman-Ford’s algorithm is used to compute shortest paths

from a single source vertex to all the other vertices in a

weighted directed graph. An implementation of the algo-

rithm is shown in Algorithm 2. We added a minor step (at

lines 15, 18, 23-25) in the body of the t-loop to the im-

plementation for termination if subsequent iterations of the

t-loop will not make any more changes, i.e., the distance

computed (temp_distance) for each vertex in the current

iteration is the same as the distance in the previous iteration

(distance).

As can be seen from the implementation, the EMU hard-

ware spawns a thread for every vertex (v) of the graph from

the parallel loop (lines 6-13) nested inside the t-loop. The

thread responsible for a particular vertex (v) in a given it-

eration (t) migrates to an incoming neighbor vertex (u) on

encountering the accesses distance(u) and weight(u,

v) (line 8). After adding the values, the thread migrates back

to the original node for writing after encountering the access

temp_distance(u) (line 9). The same migration behav-

ior is repeated for every incoming neighbor vertex, and finally

the local value based on the best distance from incoming

neighbors is computed. This approach is commonly known

as a pull-based approach since the vertex pulls information

from incoming neighbors to update its local value. However,

the back and forth migrations for every neighbor vertex via

incoming edges can be avoided by doing the edge flipping

transformation (discussed in Section 2.2), i.e., the loop iterat-

ing over incoming edges is flipped into a loop over outgoing

Algorithm 2: An implementation of the Bellman-Ford’s

algorithm (SSSP-BF).

1 def SSSP_BFS(V , id):

2 distance(id) ← 0

3 distance(v) ← MAX , for ∀v ∈ (V − {id})

4 temp_distance(v) ← 0, for ∀v ∈ V

5 for t ← 0 to |V | − 1 do

6 for each v ∈ V do in parallel

7 for each u ∈ incominд_neiдhbors(v) do

8 temp = distance(u) +weiдht(u,v)

▷Migration for distance(u) value

9 if distance(v) > temp then

10 temp_distance(v) = temp

11 end

12 end

13 endfor

14

15 modi f ied ← f alse

16 for each v ∈ V do in parallel

17 if distance(v)! = temp_distance(v) then

18 modi f ied ← true

19 distance(v) = temp_distance(v)

20 end

21 endfor

22

23 if modified == false then

24 break;

25 end

26 end

27 return distance;

edges. The transformations leads to a push-based approach for

the SSSP algorithm, in which a vertex pushes its contribution

(distance(u) + weight(u, v)) to its neighbors ac-

cessible via outgoing edges and doesn’t require migrating to

the neighbors, as in the pull-based approach. Since multiple

vertices can have a common neighbor, the contribution is done

atomically, i.e., by using atomic_min in our implementation.

As a result of applying edge-flipping transformation, we

have observed a geometric mean reduction of 8.69% in the

total number of thread migrations (shown in Figure 3). How-

ever, the push-based approach with regular atomic updates

didn’t perform well compared with the pull-based approach

from the scale of 7 to 9 (shown in Figure 4), because of ir-

regularity in the input graphs and imbalance in the number

of incoming and outgoing edges. As a result, the cost of mi-

grating back and forth in the pull-based approach was not

expensive compared to doing more atomic updates in the

push-based approach for the above data points. This observa-

tion is in accordance with the push-pull dichotomy discussed

in [6, 29].

5

MCHPC’18, November 11, 2018, Dallas, TX, USA P. Chatarasi et al.
%

 r
e

d
u

c
ti

o
n

 i
n

 t
h

re
a

d
 m

ig
ra

ti
o

n
s
 a

ft
e

r
a

p
p

ly
in

g

e
d

g
e

-f
ip

p
in

g
 t

ra
n

s
fo

rm
a

ti
o

n

0.0

22.5

45.0

67.5

90.0

Scale of RMAT graphs specif ed by Graph500

12 7 8 9 10 11 12

40.11

36.63
38.0237.6738.67

37.37

27.81

8.799.489.599.158.517.797.73

Using regular atomic updates Using remote atomic updates

Figure 3: % reductions in thread migrations of SSSP-

BF algorithm after applying edge flipping with regular

atomic updates and with remote atomic updates on a sin-

gle node (8 nodelets) of Emu Chick.

Figure 4: Speedup of SSSP-BF algorithm on a single Emu

node (8 nodelets) after applying edge flipping with regu-

lar atomic updates and with remote updates.

Furthermore, the push-based approach can be strengthened

by replacing regular atomic updates with remote atomic up-

dates since a node which is pushing its contribution (i.e., its

distance) to neighbors via outgoing edges doesn’t need a re-

turn value. By doing so, we have observed a geometric mean

reduction of 30.28% in thread migrations (shown in Figure 3)

compared to the push-based approach with regular atomic

updates. Also, there is an overall geometric mean improve-

ment of 1.57x in execution time relative to the push-based

approach with regular atomic updates (shown in Figure 4).

The above performance improvement demonstrates the need

for using remote atomic updates for scalable performance,

and also exploring hybrid approaches involving both push

and pull strategies based on input graph data.

3.4 Triangle Counting Algorithm

Triangle counting is another graph metric algorithm which

computes the number of triangles in a given undirected graph,

and also computes the number of triangles that each node

belongs to [24]. The algorithm is frequently used in complex

network analysis, random graph models, and also real-world

applications such as spam detection. An implementation of

the Triangle counting is shown in Algorithm 3, and it works by

iterating over each vertex(v), picking two distinct neighbors

(u, w), and check if there exists an edge between them to be

part of a triangle. Also, the implementation avoids duplicate

counting by delegating the counting of a triangle to the vertex

with lower id.

Algorithm 3: An implementation of the Triangle count-

ing algorithm [24].

1 tc(v) ← 0, for ∀v ∈ (V)

2 for each v ∈ V do in parallel

3 for each u ∈ v .nbrs do

4 if nbr1 > v then

5 for each w ∈ v .nbrs do

6 if w > u then

7 if edдe_exists(u,w) then

8 tc_count ++; //Atomic

9 tc(v) ++; //Atomic

10 tc(u) ++; //Atomic

11 tc(w) ++; //Atomic

▷ Above regular atomics can be

replaced by the remote updates.

0.0

1.0

2.0

3.0

4.0

Scale of RMAT graphs specif ed by Graph500

6 7 8 9 10 11 12 13 14

59.4359.0858.5557.7956.8955.3052.8749.5143.76

1.011.011.011.031.011.03

1.26

1.10
1.01

Speedup after using remote atomic updates
%reduction in thread migrations after using remote atomic updates

Figure 5: Speedup over the original triangle counting im-

plementation on a single Emu node (8 nodelets) and % re-

ductions in thread migrations after using remote atomic

updates.

6

Exploring Compilers Transformations for EMU. MCHPC’18, November 11, 2018, Dallas, TX, USA

In the above implementation of the triangle counting al-

gorithm, whenever a triangle is identified (line 7), the imple-

mentation atomically increments the overall triangles count

and triangle counts of the three vertices of the triangle. As

part of the atomic update operation, the thread performs a

migration to the nodelet having the address. However, the

thread incrementing the triangle counts doesn’t need the re-

turn value of the increment for further computation; hence,

the regular atomic updates can be replaced by remote atomic

updates to reduce thread migrations. After replacing with re-

mote updates, we have observed a geometric mean reduction

of 54.55% in the total number of thread migrations (shown

in Figure 5). As a result, we also found a geometric mean

speedup of 1.05x7 in the execution time of the kernel over the

scale 6-14 of RMAT graphs specified by Graph500.

4 RELATED WORK

There is an extensive body of literature in optimizing graph

applications for a variety of traditional architectures [3, 4, 27],

accelerators [12, 16], and processing in memory (PIM) ar-

chitectures [1, 22]. Also, there has been significant research

done on optimizing task-parallel programs to reduce the over-

heads arising from task creation, synchronization [23, 25, 30]

and migrations [26]. In this section, we discuss past work

closely related to optimizing irregular applications for the

Emu system and also past work on compiler optimizations in

mitigating task (thread) creation, synchronization and migra-

tion overhead.

Emu related past work. Kogge et al. in [19] discussed

migrating thread paradigm of the Emu system as an excellent

match for systems with significant near-memory processing,

and evaluated its advantage over a sparse matrix application

(SpMV) and a streaming graph analytic benchmark (Fire-

hose). Hein et al. [14] characterized the Emu chick hardware

prototype (same as what we used in our evaluation) using

custom kernels and discussed memory allocation, thread mi-

grations strategies for SpMV kernels. In this work, we study

high-level, and low-level compiler transformations that can

benefit existing graph algorithms by leveraging the intricacies

discussed in [5, 8, 14, 19, 28].

Programming models support and compiler optimiza-

tions for reducing thread creation, synchronization and

migration overheads. Task-parallel programs often result

in considerable overheads in task creation and synchroniza-

tion, and hence approaches in [23, 25, 30] presented compiler

frameworks to transform the input program to reduce the over-

heads using optimizations such as task fusion, task chunking,

synchronization (finish construct) elimination. Our study

7Note that the computational complexity of the triangle counting algorithm

is significant, i.e., O (m
3
2) where m is number of edges, and even 5% im-

provement is equivalent to few thousands of msecs as reported in Table 2.

on the loop fusion transformation to reduce thread creation

and synchronization overheads on the Emu system is inspired

by the above compiler frameworks and also from the Green-

Marl DSL compiler [15].

5 CONCLUSIONS AND FUTURE WORK

Graph applications are increasing in popularity with the ad-

vent of "big data", but achieving higher performance is not

trivial. The major bottlenecks in graph applications are 1)

inefficient utilization of memory subsystems through random

memory accesses to the graph data, and 2) overhead of ex-

ecuting atomic operations. Since these graph applications

are cache-unfriendly and are not well handled by existing

traditional architectures, there is growing attention in the ar-

chitecture community to innovate suitable architectures for

such applications.

One of the innovative architecture to handle graph applica-

tions is a thread migratory architecture (Emu system), where

a thread responsible for computation on a data is migrated

over to a nodelet where the data resides. However, there are

significant challenges which need to be addressed to gain

the potential of Emu system, and they are reducing thread

migration, creation, synchronization, and atomic operation

overheads. In this study, we explored two high-level compiler

optimizations, i.e., loop fusion and edge flipping, and one

low-level compiler transformation leveraging remote atomic

updates to address the above challenges. We performed a

preliminary evaluation of these compiler transformations by

manually applying them on three graph applications over a set

of RMAT graphs from Graph500.—Conductance, Bellman-

Ford’s algorithm for the single-source shortest path problem,

and Triangle Counting. Our evaluation targeted a single node

of the Emu hardware prototype, and has shown an overall

geometric mean reduction of 22.08% in thread migrations.

This preliminary study clear motivates us in exploring the

implementation of automatic compiler transformations to al-

leviate the overheads arising from running graph applications

on the Emu system.

6 ACKNOWLEDGMENTS

We would like to thank Eric Hein for his help in getting us

started with the Emu system and using the Meatbee frame-

work to develop graph algorithms. Also, we would like to

acknowledge Jeffrey Young for his help with the Emu ma-

chine at Georgia Tech.

REFERENCES
[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. 2015. A scal-

able processing-in-memory accelerator for parallel graph processing.

In 2015 ACM/IEEE 42nd Annual International Symposium on Com-

puter Architecture (ISCA). 105–117. https://doi.org/10.1145/2749469.

2750386

7

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750386

MCHPC’18, November 11, 2018, Dallas, TX, USA P. Chatarasi et al.

[2] David A Bader, Jonathan Berry, Simon Kahan, Richard Murphy, E Ja-

son Riedy, and Jeremiah Willcock. 2011. Graph500 Benchmark 1

(search) Version 1.2. Technical Report. Graph500 Steering Committee.

[3] David A. Bader and Kamesh Madduri. 2005. Design and Implementa-

tion of the HPCS Graph Analysis Benchmark on Symmetric Multipro-

cessors. In Proceedings of the 12th International Conference on High

Performance Computing (HiPC’05). Springer-Verlag, Berlin, Heidel-

berg, 465–476. https://doi.org/10.1007/11602569_48

[4] D. A. Bader and K. Madduri. 2006. Designing Multithreaded Algo-

rithms for Breadth-First Search and st-connectivity on the Cray MTA-2.

In 2006 International Conference on Parallel Processing (ICPP’06).

523–530. https://doi.org/10.1109/ICPP.2006.34

[5] Mehmet E. Belviranli, Seyong Lee, and Jeffrey S. Vetter. 2018. De-

signing Algorithms for the EMU Migrating-threads-based Algorithms.

In High Performance Extreme Computing Conference (HPEC), 2018

IEEE. IEEE.

[6] Maciej Besta, MichałPodstawski, Linus Groner, Edgar Solomonik, and

Torsten Hoefler. 2017. To Push or To Pull: On Reducing Communi-

cation and Synchronization in Graph Computations. In Proceedings

of the 26th International Symposium on High-Performance Parallel

and Distributed Computing (HPDC ’17). ACM, New York, NY, USA,

93–104. https://doi.org/10.1145/3078597.3078616

[7] Bela Bollobas. 1998. Modern Graph Theory. Springer.

[8] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,

K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar, M.

Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein. 2016.

Highly Scalable Near Memory Processing with Migrating Threads

on the Emu System Architecture. In 2016 6th Workshop on Irregular

Applications: Architecture and Algorithms (IA3). 2–9. https://doi.org/

10.1109/IA3.2016.007

[9] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER:

High performance data structure for streaming graphs. In 2012 IEEE

Conference on High Performance Extreme Computing. 1–5. https:

//doi.org/10.1109/HPEC.2012.6408680

[10] EmuTechnology. 2017 (accessed December 12, 2017). Emu Sys-

tem Level Architecture. http://www.emutechnology.com/products/

#lightbox/0/

[11] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In Proceedings

of the ACM SIGPLAN 1998 Conference on Programming Language

Design and Implementation (PLDI ’98). ACM, New York, NY, USA,

212–223. https://doi.org/10.1145/277650.277725

[12] Pawan Harish and P. J. Narayanan. 2007. Accelerating Large Graph

Algorithms on the GPU Using CUDA. In Proceedings of the 14th

International Conference on High Performance Computing (HiPC’07).

Springer-Verlag, Berlin, Heidelberg, 197–208.

[13] Eric Hein. 2017. Meatbee, An Experimental Streaming Graph Engine.

https://github.gatech.edu/ehein6/meatbee.

[14] E. Hein, T. Conte, J. Young, S. Eswar, J. Li, P. Lavin, R. Vuduc, and

J. Riedy. 2018. An Initial Characterization of the Emu Chick. In 2018

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 579–588. https://doi.org/10.1109/IPDPSW.

2018.00097

[15] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun.

2012. Green-Marl: A DSL for Easy and Efficient Graph Analysis.

In Proceedings of the Seventeenth International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems (ASPLOS XVII). ACM, New York, NY, USA, 349–362. https:

//doi.org/10.1145/2150976.2151013

[16] S. Hong, T. Oguntebi, and K. Olukotun. 2011. Efficient Parallel Graph

Exploration on Multi-Core CPU and GPU. In 2011 International Con-

ference on Parallel Architectures and Compilation Techniques. 78–88.

https://doi.org/10.1109/PACT.2011.14

[17] Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Oluko-

tun. 2014. Simplifying Scalable Graph Processing with a Domain-

Specific Language. In Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization (CGO ’14). ACM,

New York, NY, USA, Article 208, 11 pages. https://doi.org/10.1145/

2544137.2544162

[18] P. M. Kogge. 2017. Graph Analytics: Complexity, Scalability, and

Architectures. In 2017 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). 1039–1047. https://doi.

org/10.1109/IPDPSW.2017.176

[19] Peter M. Kogge and Shannon K. Kuntz. 2017. A Case for Migrating

Execution for Irregular Applications. In Proceedings of the Seventh

Workshop on Irregular Applications: Architectures and Algorithms

(IA3’17). ACM, New York, NY, USA, Article 6, 8 pages. https://doi.

org/10.1145/3149704.3149770

[20] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2016. Parallel

Graph Analytics. Commun. ACM 59, 5 (April 2016), 78–87. https:

//doi.org/10.1145/2901919

[21] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Net-

work Analysis and Graph-Mining Library. ACM Trans. Intell. Syst.

Technol. 8, 1, Article 1 (July 2016), 20 pages. https://doi.org/10.1145/

2898361

[22] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. 2017. Graph-

PIM: Enabling Instruction-Level PIM Offloading in Graph Computing

Frameworks. In 2017 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA). 457–468. https://doi.org/10.

1109/HPCA.2017.54

[23] V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar.

2013. A Transformation Framework for Optimizing Task-Parallel

Programs. ACM Trans. Program. Lang. Syst. 35, 1, Article 3 (April

2013), 48 pages. https://doi.org/10.1145/2450136.2450138

[24] Thomas Schank. 2007. Algorithmic Aspects of Triangle-Based Network

Analysis. Ph.D. Dissertation. Universität Karlsruhe.

[25] Jun Shirako, Jisheng M. Zhao, V. Krishna Nandivada, and Vivek N.

Sarkar. 2009. Chunking Parallel Loops in the Presence of Synchro-

nization. In Proceedings of the 23rd International Conference on

Supercomputing (ICS ’09). ACM, New York, NY, USA, 181–192.

https://doi.org/10.1145/1542275.1542304

[26] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2010. Hi-

erarchical Place Trees: A Portable Abstraction for Task Parallelism

and Data Movement. In Proceedings of the 22Nd International Confer-

ence on Languages and Compilers for Parallel Computing (LCPC’09).

Springer-Verlag, Berlin, Heidelberg, 172–187. https://doi.org/10.1007/

978-3-642-13374-9_12

[27] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon,

Bruce Hendrickson, and Umit Catalyurek. 2005. A Scalable Dis-

tributed Parallel Breadth-First Search Algorithm on BlueGene/L. In

Proceedings of the 2005 ACM/IEEE Conference on Supercomput-

ing (SC ’05). IEEE Computer Society, Washington, DC, USA, 25–.

https://doi.org/10.1109/SC.2005.4

[28] Jeffrey Young, Eric Hein, Srinivas Eswar, Patrick Lavin, Jiajia Li, Jason

Riedy, Richard Vuduc, and Tom Conte. 2018. A Microbenchmark

Characterization of the Emu Chick. arXiv:cs.DC/1809.07696

[29] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman P. Amarasinghe. 2018. GraphIt - A High-

Performance DSL for Graph Analytics. CoRR abs/1805.00923 (2018).

arXiv:1805.00923 http://arxiv.org/abs/1805.00923

[30] Jisheng Zhao, Jun Shirako, V. Krishna Nandivada, and Vivek Sarkar.

2010. Reducing Task Creation and Termination Overhead in Explicitly

Parallel Programs. In Proceedings of the 19th International Conference

on PACT. ACM, New York, NY, USA, 169–180.

8

https://doi.org/10.1007/11602569_48
https://doi.org/10.1109/ICPP.2006.34
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/HPEC.2012.6408680
http://www.emutechnology.com/products/#lightbox/0/
http://www.emutechnology.com/products/#lightbox/0/
https://doi.org/10.1145/277650.277725
https://github.gatech.edu/ehein6/meatbee
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1109/PACT.2011.14
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1109/IPDPSW.2017.176
https://doi.org/10.1109/IPDPSW.2017.176
https://doi.org/10.1145/3149704.3149770
https://doi.org/10.1145/3149704.3149770
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2898361
https://doi.org/10.1145/2898361
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/1542275.1542304
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1007/978-3-642-13374-9_12
https://doi.org/10.1109/SC.2005.4
http://arxiv.org/abs/cs.DC/1809.07696
http://arxiv.org/abs/1805.00923
http://arxiv.org/abs/1805.00923

Data Placement Optimization in GPU Memory Hierarchy using
Predictive Modeling

Larisa Stoltzfus
University of Edinburgh

Edinburgh, UK

larisa.stoltzfus@ed.ac.uk

Murali Emani
Lawrence Livermore National Laboratory

Livermore, CA

emani1@llnl.gov

Pei-Hung Lin
Lawrence Livermore National Laboratory

Livermore, CA

lin32@llnl.gov

Chunhua Liao
Lawrence Livermore National Laboratory

Livermore, CA

liao6@llnl.gov

ABSTRACT

Modern supercomputers often use Graphic Processing Units (or

GPUs) to meet the ever-growing demands for high performance

computing. GPUs typically have a complex memory architecture

with various types of memories and caches, such as global memory,

shared memory, constant memory, and texture memory. The place-

ment of data on these memories has a tremendous impact on the

performance of the HPC applications and identifying the optimal

placement location is non-trivial.

In this paper, we propose a machine learning-based approach to

build a classifier to determine the best class of GPU memory that

will minimize GPU kernel execution time. This approach utilizes a

set of performance counters obtained from profiling runs alongwith

hardware features to generate the trained model. We evaluate our

approach on several generations of NVIDIA GPUs, including Kepler,

Maxwell, Pascal, and Volta on a set of benchmarks. The results show

that the trained model achieves prediction accuracy over 90% and

given a global version, the classifier can accurately determine which

data placement variant would yield the best performance.

CCS CONCEPTS

•Computer systems organization→Heterogeneous (hybrid)

systems; • Computing methodologies→ Machine learning;

KEYWORDS

GPU, Data placement, Memory, Machine Learning

ACM Reference Format:

Larisa Stoltzfus, Murali Emani, Pei-Hung Lin, and Chunhua Liao. 2018.

Data Placement Optimization in GPU Memory Hierarchy using Predictive

Modeling. In MCHPC’18: Workshop on Memory Centric High Performance

Computing (MCHPC’18), November 11, 2018, Dallas, TX, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3286475.3286482

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286482

Figure 1: GPU memory hierarchy (from NVIDIA [13])

1 INTRODUCTION

Supercomputers use various types of memory and increasingly

complex designs to meet the ever growing need for data by modern

massively parallel processors (e.g., Graphic Processing Units or

GPUs). On anNVIDIAKepler GPU, for instance, there aremore than

eight types of memory (global, texture, shared, constant, various

caches, etc.). Figure 1 shows a typical GPU memory hierarchy.

With unified CPU-GPU memory space support on the latest GPUs

(e.g., NVIDIA Volta), data placement becomes even more flexible,

allowing direct accesses to data across the boundaries of multiple

GPUs and CPU. This problem will critically affect the effective

adoptions of new generations of supercomputers, such as Sierra

hosted at LLNL [1] and Summit at ORNL [2] featuring NVIDIA

Volta GPUs using 3D stacked memory, unified CPU-GPU memory

space, and other memory complexities. As HPC applications get

ported to run on the new supercomputers with GPUs, they will

have to rely on a range of optimizations including data placement

optimization to reach desired performance.

Studies [4, 8] have shown that placing data onto the proper part

of a memory system also known as data placement optimization,

MCHPC’18, November 11, 2018, Dallas, TX, USA Larisa Stoltzfus, Murali Emani, Pei-Hung Lin, and Chunhua Liao

has significant impact on program performance; it is able to fre-

quently speed up carefully written GPU kernels by over 50% (up

to 13.5× on an MPEG video encoding kernel [7]). State-of-art lit-

erature explored different techniques to optimize data placement

on older generations of GPUs. A portable compiler/runtime sys-

tem for deciding the optimal GPU data placement is proposed in

PORPLE [3, 5]. Internally it uses a lightweight performance model

based on cache reuse distance to determine the data placement pol-

icy. Huang and Li [6] have proposed a new approach by analyzing

correlations among different data placements. It then uses a sample

placement policy to predict the performance for other placements

on a Kepler GPU. A rule-based system to guide memory placement

on Tesla GPUs based on data access patterns has been introduced

in Jang et al. [7]. Mei et al. [11] and Jia et al. [9] have proposed

microbenchmarking to analyze and expose cache parameters of

Fermi, Kepler, Maxwell and Volta respectively.

The novelty in this work is in predicting optimal data place-

ment on newer GPUs. Machine learning-based approach helps to

automate the decision making process for optimal data placement

without modifying the implementation of the underlying algorithm.

Prior state-of-art approaches used offline profiling analysis, but

were unable to capture the required features at runtime. By observ-

ing the runtime features of just the global/default version of a code,

the proposed approach is able to determine which memory place-

ment will yield best performance. In this work, we use a machine

learning-based approach where a classifier model is trained once

offline. During inference, runtime features are captured and passed

as an input feature vector to the model that determines the optimal

data placement location.

This paper makes the following novel contributions:

• determining the optimal data placement location on-the-fly

during run-time

• providing a simple, lightweight solution that is applicable to

diverse applications

• introducing an approach and supplying data which can be

reused for other optimizations, such as determining optimal

data layouts.

2 MOTIVATION

In this section, we demonstrate how the data placement in memory

could impact the program execution time. Here we first provide a

brief description of GPU memory hierarchy and then show how

different placement of data onto various types of memories impact

the kernel execution time.

2.1 GPU Memory Structure

GPUs have a highly complex memory hierarchy in order to exploit

their massive parallel computing potentials. A high-level overview

of the major types of memories listed in Table 1, as exposed to

programmers via the CUDA API is listed as follows:

• Global Memory: This largest off-chip memory serves as

default, main memory on a GPU. Global memory accesses

are characterized with limited memory bandwidth and long

latencies compared with on-chip memory or cache.

• Shared Memory: This on-chip memory is characterized by

low-latency and high-bandwidth. It is software-managed

Memory type Location Access Cached Scope

Global Off-Chip Read-Write Y Global

Shared On-Chip Read-Write N SM

Constant Off-Chip Read-only Y Global

Texture Off-Chip Read-only Y Global

Table 1: GPU memory types

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

Memory Type [Platform]

S
p

ee
d

u
p

(a) Speedup of Sparse Matrix Vector Multiplication

Kepler Maxwell Pascal Volta

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0

1

2

3

4

S
p
ee
d
u
p

(b) Speedup of Matrix Multiplication

Figure 2: Impact of data placement on kernel performance

across different GPUs. Speedups over default vary with dif-

ferent memory variants shown on x-axis.

and is accessible by active threads that belong to a streaming

multiprocessor (SM) unit on a GPU.

• Constant Memory: This is a predefined within the global

memory space and is set as read-only. The memory space is

globally visible to all threads.

• Texture Memory: Similar to read-only constant memory,

texture memory is off-chip memory space that is optimized

for 2D spatial locality. It is suited for threads that access

memory addresses that are closer to each other in 2D.

Although all NVIDIA GPUs have a similar high-level design,

different generations of GPUs introduce new memory properties or

implement the samememories using different physical organization.

For example, Fermi GPUs introduced true cache hierarchy for global

memory while previous GPUs did not have such caches. On Kepler

GPUs, L1 cache and shared memory are combined together while

texture cache is backed by its ownmemory chip. Pascal andMaxwell

GPUs have dedicated memory for their shared memory. For the

latest Volta GPUs, L1 cache, shared memory and texture cache

are all merged into a single unified memory, All these hardware

changes have a direct impact on memory optimization.

MCHPC’18, November 11, 2018, Dallas, TX, USA Larisa Stoltzfus, Murali Emani, Pei-Hung Lin, and Chunhua Liao

Feature Description

achieved_occupancy ratio of average active warps

to maximum number of warps

active_warps average of active warps per cycle

l2_subp1_write_sysmem_sector_queries number of system memory write

requests to slice 1 of L2 cache

l2_subp0_total_write_sector_queries total number of memory write

requests to slice 0 of L2 cache

l2_subp0_total_read_sector_queries total number of memory read

requests to slice 0 of L2 cache

l2_subp0_read_sector_misses total number of memory read

misses from slice 0 of L2 cache

fb_subp1_write_sectors number of DRAM write requests

to sub partition 1

dram_read_throughput device memory read throughput

eligible_warps_per_cycle average number of warps

eligible to issue per active cycle

l2_read_transactions memory read transactions at

L2 cache for all read requests

l2_write_transactions memory write transactions

at L2 cache for all write requests

gld_throughput global memory load throughput

flop_count_sp single-precision FLOPS executed

by non-predicated threads

flop_count_sp_special single-precision special FLOPS

executed by non-predicated threads

warp_nonpred_execution_efficiency ratio of average active threads

executing non-predicated

instructions to the maximum

number of threads

warp_execution_efficiency ratio of average active threads

to the maximum number of threads

Table 3: List of selected features to train the classifiers

Classifier Prediction accuracy

RandomForest 95.7%

LogitBoost 95.5%

IterativeClassifierOptimizer 95.5%

SimpleLogistic 95.4%

JRip 95.0%

Table 4: Classifiers and their prediction accuracies

prediction accuracies are based on unseen test data. A selection of

classifiers with high prediction accuracies is listed in Table 4.

3.2 Online Inference

The classifier built in the offline training phase is then used for

predicting the best data placement for new applications at runtime

through the CUPTI profiler API. Honing in on the fewest number of

features needed, the application is profiled in real-time, the features

are then fed as input to the classifier. Based on the prediction, the

best version of the application is then executed. The assumption

here is that different memory variants of the code already exist

and the appropriate version that is determined by the classifier is

executed at runtime.

0

25

50

75

100

co
nst

an
t

gl
ob

al

sh
ar

ed

te
xt

ure

Memory Type

%
 P

re
d

ic
te

d

 texture constant shared global

Figure 4: Graph showing the model-predicted memory

classes with the best performing memory variants. Across

all GPUs the model correctly predicts the best performing

variant in at least 80% and up to 95% cases.

4 EVALUATION

Here we list the hardware and software platforms used to evaluate

the proposed approach, followed by the experimental results that

show how close the model predicted memory variant is with the

best possible one. Table 5 shows the four machines used for our

experiments. They contain four generations of GPUs namely Kepler,

Maxwell, Pascal and Volta. The programs run include Sparse Matrix

Vector Multiplication (SPMV), Molecular Dynamics Simulation (MD),

Computational Fluid Dynamics Simulation (CFD), Matrix-Matrix

Multiplication (MM), ParticleFilter, ConvolutionSeparable, Stencil27,

and Matrix Transpose.

In the first run, the best performing version of each benchmark

is determined. The benchmarks were run using a script to collect

average values over ten iterations and the median of these values is

taken. Each kernel was run for five times towarm up the GPU before

timings were taken. In order to collect consistent performance

times, the performance benchmarks used cudaEventRecord() to

denote kernel start and stop places and cudaEventElapsedTime()

to calculate the time elapsed. cudaDeviceSynchronize()was used

after these calls and data transfer times are excluded in order to

isolate performance differences from memory usage.

5 ANALYSIS

In this section, we demonstrate how well the JRIP model performs

and the accuracy in its predictions for each of the benchmarks across

the different platforms. We have selected this model because it is

the most portable of those available and all of the top performing

models hover around ∼95% prediction accuracies. This model has a

relative absolute error of ∼9.5%. The prediction accuracies obtained

from other classifiers are listed in Table 4. The results of ourmachine

learning model experiments show that we are able to get very

good results from tree-based models. Even if the model may not

accurately predict the best performing data placement, it may still

predict a better data placement than the global version.

The graph in Figure 4 shows the results for the best data place-

ment class comparing the model predicted memory variants with

Data Placement Optimization in GPU Memory Hierarchy using Predictive Modeling MCHPC’18, November 11, 2018, Dallas, TX, USA

Kepler (K40) Maxwell (M60) Pascal (P100) Volta (V100)

CPU IBM Power8 @2.2GHz Intel Xeon E5-2670

@2.60 GHZ

IBM Power8 @2.2GHz Intel Xeon E5-2699

@2.20GHz

Computation capability 3.5 5.2 6.0 7.0

SMs 15 16 56 80

Cores/SM 192 SP cores/64 DP

cores

128 cores 64 cores 64 SP cores/32 DP cores

Texture Units/SM 16 8 4 4

Register File Size/SM 256 KB 256 KB 256 KB 256 KB

L1 Cache/SM Combined 64K

L1+Shared

Combined 24KB Combined 24 KB 128 KB Unified

Texture Cache 48KB

Shared Memory/SM Combined 64K

L1+Shared

96 KB 64 KB

L2 Cache 1536 KB 2048 KB 4096 KB 6144KB

Constant Memory 64 KB 64 KB 64 KB 64 KB

Global Memory 12 GB 8 GB 16 GB 16 GB

Table 5: Key specifications of selected GPUs of different generations

the best performing ones. We found that the memory class pre-

dicted by the machine learning model is accurate in at least 80%

and up to 95% of cases. Specially, given a global memory variant,

this model is able to correctly predict which of the memory variants

would yield the best performance (lowest execution time). These

results are averaged across different GPUs.

It can be observed from the figure that, except for few instances,

the offline trained model is able to correctly classify the best mem-

ory variant by observing the default global variant. The model

correctly classifies global and texture memory variants to the ac-

tual best performing variants. The percentage of correct predictions

is however lower for shared memory variants.

6 CONCLUSION

We have presented an automated approach to data placement opti-

mization using machine learning to tune applications on GPUs. We

built a classifier to determine the memory variant that could yield

the best performance. The evaluations demonstrate that the model

predictions are nearly as accurate as the best achievable cases.

This work has shown that there is an immense possibility for

machine learning to be applied to automate data placement op-

timizations. As part of the future work, this technique would be

integrated into an automated workflow and have runtime code

generation of the appropriate memory variant based on the model

decision. Ideally, a compiler would handle these low-level details.

Additionally, the overhead of using CUPTI profiling tools interface

means that performance suffers. Essentially, the profiler must run

the kernel of interest for each metric or event, meaning that extra

iterations are added. This could be alleviated by running cut down

data sizes. Finally, this work could easily be applied to other areas

such as different data layout optimizations.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under con-

tract DE-AC52-07NA27344 and was supported by the LLNL-LDRD

Program under Project No. 18-ERD-006. (LLNL-CONF-758021)

REFERENCES
[1] 2018. Sierra- next generation HPC system at LLNL. https://computation.llnl.gov/

computers/sierra. (2018).
[2] 2018. Summit at Oak Ridge Leadership Computing Facility. https://www.olcf.

ornl.gov/summit/. (2018).
[3] Guoyang Chen, Xipeng Shen, Bo Wu, and Dong Li. 2017. Optimizing data

placement on GPU memory: A portable approach. IEEE Trans. Comput. 66, 3
(2017), 473–487.

[4] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. 2014. PORPLE: An Extensible
Optimizer for Portable Data Placement on GPU. In The 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 88–100.

[5] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. 2014. PORPLE: An extensible
optimizer for portable data placement on GPU. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
88–100.

[6] Yingchao Huang and Dong Li. 2017. Performance modeling for optimal data
placement on GPU with heterogeneous memory systems. In Cluster Computing
(CLUSTER), 2017 IEEE International Conference on. IEEE, 166–177.

[7] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. 2010. Exploiting
memory access patterns to improve memory performance in data-parallel archi-
tectures. IEEE Transactions on Parallel & Distributed Systems 1 (2010), 105–118.

[8] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo Park. 2011.
SSLShader: Cheap SSL Acceleration with Commodity Processors. In The 8th
USENIX Conference on Networked Systems Design and Implementation (NSDI).
1–14.

[9] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[10] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. CoRR
abs/1804.06826 (2018). arXiv:1804.06826 http://arxiv.org/abs/1804.06826

[11] Xinxin Mei and Xiaowen Chu. 2017. Dissecting GPU memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(2017), 72–86.

[12] NVIDIA. 2018. CUDA Profiling Tools Interface. (2018). https://developer.nvidia.
com/cuda-profiling-tools-interface

[13] CUDA NVIDIA. 2007. NVIDIA CUDA programming guide (version 1.0). NVIDIA:
Santa Clara, CA (2007).

On the Applicability of PEBS based Online Memory Access
Tracking for Heterogeneous Memory Management at Scale

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez,
Dominique Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3

Barcelona Supercomputing Center, Spain
2CEA, France

3RIKEN Center for Computational Science, Japan

{aleix.rocanonell,leonardo.bautista,vbeltran}@bsc.es,dominique.martinet@cea.fr,{bgerofi,yutaka.ishikawa}@riken.jp

ABSTRACT

Operating systems have historically had to manage only a single

type of memory device. The imminent availability of heterogeneous

memory devices based on emergingmemory technologies confronts

the classic single memory model and opens a new spectrum of

possibilities for memory management. Transparent data movement

between different memory devices based on access patterns of

applications is a desired feature to make optimal use of such devices

and to hide the complexity of memory management to the end user.

However, capturing memory access patterns of an application at

runtime comes at a cost, which is particularly challenging for large-

scale parallel applications that may be sensitive to system noise.

In this work, we focus on the access pattern profiling phase prior

to the actual memory relocation. We study the feasibility of using

Intel’s Processor Event-Based Sampling (PEBS) feature to record

memory accesses by sampling at runtime and study the overhead

at scale. We have implemented a custom PEBS driver in the IHK/-

McKernel lightweight multi-kernel operating system, one of whose

advantages is minimal system interference due to the lightweight

kernel’s simple design compared to other OS kernels such as Linux.

We present the PEBS overhead of a set of scientific applications and

show the access patterns identified in noise sensitive HPC applica-

tions. Our results show that clear access patterns can be captured

with a 10% overhead in the worst-case and 1% in the best case when

running on up to 128k CPU cores (2,048 Intel Xeon Phi Knights

Landing nodes). We conclude that online memory access profiling

using PEBS at large-scale is promising for memory management in

heterogeneous memory environments.

CCS CONCEPTS

· Software and its engineering→ Operating systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286477

KEYWORDS

high-performance computing, operating systems, heterogeneous

memory

ACM Reference Format:

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez, Dominique

Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3. 2018. On the Applica-

bility of PEBS based Online Memory Access Tracking for Heterogeneous

Memory Management at Scale. In MCHPC’18: Workshop on Memory Centric

High Performance Computing (MCHPC’18), November 11, 2018, Dallas, TX,

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3286475.

3286477

1 INTRODUCTION

The past decade has brought an explosion of new memory tech-

nologies. Various high-bandwidth memory types, e.g., 3D stacked

DRAM (HBM), GDDR and multi-channel DRAM (MCDRAM) as

well as byte addressable non-volatile storage class memories (SCM),

e.g., phase-change memory (PCM), resistive RAM (ReRAM) and the

recent 3D XPoint, are already in production or expected to become

available in the near future.

Management of such heterogeneous memory types is a major

challenge for application developers, not only in terms of placing

data structures into the most suitable memory but also to adaptively

move content as application characteristics changes in time. Oper-

ating system and/or runtime level solutions that optimize memory

allocations and data movement by transparently mapping applica-

tion behavior to the underlying hardware are thus highly desired.

One of the basic requirements of a system level solution is the

ability to track the application’s memory access patterns in real-

time with low overhead. However, existing solutions for access pat-

tern tracking are often based on dynamic instrumentation, which

have prohibitive overhead for an online approach [16]. Conse-

quently, system level techniques targeting heterogeneous memory

management typically rely on a two-phase model, where the ap-

plication is profiled first, based on which the suggested allocation

policy is then determined [5, 19].

Intel’s Processor Event-Based Sampling (PEBS) [3] is an exten-

sion to hardware performance counters that enables sampling the

internal execution state of the CPU (including the most recent

virtual address accessed) and periodically storing a snapshot of it

into main memory. The overhead of PEBS has been the focus of

previous works [1, 15], however, not in the context of large-scale

high-performance computing (HPC).

MCHPC’18, November 11, 2018, Dallas, TX, USA

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez,

Dominique Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3

The hardware PEBS support provides a number of configuration

knobs that control how often PEBS records are stored and how often

the CPU is interrupted for additional background data processing.

Because such disruption typically degrades performance at scale [6,

12], it is important to characterize and understand this overhead to

assess PEBS’ applicability for heterogeneous memory management

in large-scale HPC. Indeed, none of the previous studies focusing

on PEBS’ overhead we are aware of have addressed large-scale

environments.

We have implemented a customPEBS driver in the IHK/McKernel

lightweight multi-kernel operating system [8, 9]. Our motivation

for a lightweight kernel (LWK) is threefold. First, lightweight ker-

nels are known to be highly noise-free and thus they provide an

excellent environment for characterizing PEBS’ overhead. Second,

McKernel has a relatively simple code-base that enables us to rapidly

prototype kernel level features for heterogeneous memory man-

agement and allow direct integration with our PEBS driver. Our

custom driver can be easily configured and enables fine-grained

tuning of parameters that are otherwise not available in the Linux

driver (see Section 3 for more details). Finally, the Linux PEBS dri-

ver on the platform we used in this study, i.e., the Oakforest-PACS

machine [13] based on Intel’s Xeon Phi Knight’s Landing chip, was

not available.

As the baseline for OS level hierarchy memory management, we

aimed at answering the following questions. What is the overhead

of real-time memory accesses tracking at scale? What is the trade-

off between sampling granularity and the introduced overhead? Is

it feasible to rely on PEBS for collecting such information online?

Specifically, in this paper we make the following contributions:

• An implementation of a custom PEBS driver in an LWK with

the ability of fine-tuning its parameters

• Systematic evaluation of PEBS’ overhead on a number of

real HPC applications running at large scale

• Demonstration of captured memory access patterns as the

function of different PEBS parameters

Previous studies have reported PEBS failing to provide increased

accuracy with reset values (see Section 2.1) lower than 1024 [1, 15]

as well as the Linux kernel becoming unstable when performing

PEBS based sampling on high frequency [18]. On up to 128k CPU

cores (2,048 Xeon Phi KNL nodes), we find that our custom driver

captures increasingly accurate access patterns reliably even with

very low reset values. Across all of our workloads, PEBS incurs an

overhead of 2.3% on average with approximately 10% and 1% in the

worst and best cases, respectively.

The rest of this paper is organized as follows. We begin by ex-

plaining the background and motivations in Section 2. We describe

the design and implementation of our custom PEBS driver in Sec-

tion 3. Our large-scale evaluation is provided in Section 4. Section 5

discusses related work, and finally, Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section lays the groundwork for the proposed driver archi-

tecture by providing background information on Intel’s Processor

Event-Based Sampling facility [3] and the IHK/McKernel light-

weight multi-kernel OS [7ś9].

2.1 Processor Event-Based Sampling

Processor Event-Based Sampling (PEBS) is a feature of some In-

tel microarchitectures that builds on top of Intel’s Performance

Counter Monitor (PCM).

The PCM facility allows to monitor a number of predefined

processor performance parameters (hereinafter called "events") by

counting the number of occurrences of the specified events1 in a set

of dedicated hardware registers. When a PCM counter overflows

an interrupt is triggered, which eases the process of sampling.

PEBS extends the idea of PCMby transparently storing additional

processor information while monitoring a PCM event. However,

only a small subset of the PCM events actually support PEBS. A

"PEBS record" is stored by the CPU in a user-defined memory buffer

when a configurable number of PCM events, named "PEBS reset

counter value" or simply "reset", occur. The actual PEBS record

format is microarchitecture dependent, but it generally includes

the set of general-purpose registers.

A "PEBS assist" in Intel nomenclature is the action of storing

the PEBS record into the CPU buffer. When the record written in

the last PEBS assist reaches a configurable threshold inside the

CPU PEBS buffer, an interrupt is triggered. The interrupt handler

should process the PEBS data and clear the buffer, allowing the CPU

to continue storing more records. The PCM’s overflow interrupt

remains inactive while a PCM event is being used with PEBS.

2.2 Lightweight Multi-kernels

Memory'

'

'

'

'

'

'

'

'

'

'

' IHK+Master'

Delegator'

'module'

CPU'
CPU'CPU' CPU'

…' …'

McKernel'
Linux'

'

'

System'

daemon'

Kernel'

daemon'

Proxy'process'

IHK+Slave'

ApplicaAon'

Interrupt'

System'

call'

System'

call'

ParAAon' ParAAon'

Figure 1: Overview of the IHK/McKernel architecture.

Lightweight multi-kernels emerged recently as a new operating

system architecture for HPC, where the basic idea is to run Linux

and a LWK side-by-side in compute nodes to attain the scalabil-

ity properties of LWKs and full compatibility with Linux at the

same time. IHK/McKernel is a multi-kernel OS developed at RIKEN,

whose architecture is depicted in Figure 1. A low-level software

infrastructure, called Interface for Heterogeneous Kernels (IHK)

[21], provides capabilities for partitioning resources in a many-core

environment (e.g., CPU cores and physical memory) and it enables

management of lightweight kernels. IHK is capable of allocating

and releasing host resources dynamically and no reboot of the host

machine is required when altering its configuration. The latest ver-

sion of IHK is implemented as a collection of Linux kernel modules

1The exact availability of events depends on the processor’s microarchitecture. How-
ever, a small set of "architectural performance events" remain consistent starting from
the Intel Core Solo and Intel Core Duo generation.

On the Applicability of PEBS based Online Memory Access

Tracking for Heterogeneous Memory Management at Scale MCHPC’18, November 11, 2018, Dallas, TX, USA

without any modifications to the Linux kernel itself, which enables

relatively straightforward deployment of the multi-kernel stack

on a wide range of Linux distributions. Besides resource and LWK

management, IHK also facilitates an Inter-kernel Communication

(IKC) layer.

McKernel is a lightweight co-kernel developed on top of IHK.

It is designed explicitly for HPC workloads, but it retains a Linux

compatible application binary interface (ABI) so that it can execute

unmodified Linux binaries. There is no need for recompiling appli-

cations or for anyMcKernel specific libraries. McKernel implements

only a small set of performance sensitive system calls and the rest

of the OS services are delegated to Linux. Specifically, McKernel

provides its own memory management, it supports processes and

multi-threading, it has a simple round-robin co-operative (tick-less)

scheduler, and it implements standard POSIX signaling. It also im-

plements inter-process memory mappings and it offers interfaces

for accessing hardware performance counters.

For more information on system call offloading, refer to [8], a

detailed description of the device driver support is provided in [9].

Recently we have demonstrated that lightweight multi-kernels can

indeed outperform Linux on various HPC mini-applications when

evaluated on up to 2,048 Intel Xeon Phi nodes interconnected by

Intel’s OmniPath network [7]. As mentioned earlier, with respect

to this study, one of the major advantages of a multi-kernel LWK is

the lightweight kernel’s simple codebase that enables us to easily

prototype new kernel level features.

3 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of theMcKernel

PEBS driver. Figure 2 shows a summary of the entire PEBS records

lifecycle.

Increase PCM
register count

PEBS assist writes
PEBS record into

CPU buffer
transparently

PCM register reaches
 PEBS reset counter value

CPU buffer
reaches
thresholdRead CPU PEBS

buffer and filter load
addresses

Write addresses +
timestamp into per

thread buffer
Reset CPU buffer

Dump per process
mappings and per

thread PEBS buffer
into a file

Store mapping
details into per
process buffer

If munmap operation of
any size

or mmap > 4MiB

Load Instruction
triggers L2 cache

miss

mmap/munmap
operation

On thread exit

S
ce

na
rio

 1
S

ce
na

rio
 2

S
ce

na
rio

 3

Interrupt triggered

 Interrupt Handler

Figure 2: Memory addresses acquisition processes using In-

tel’s PEBS facility in IHK/McKernel

McKernel uses PEBS as a vehicle to keep track of memory ad-

dresses issued by each monitored system thread. Ideally, McKernel

would keep track of all load and store instructions. However, this is

not supported by all Intel microarchitectures. In particular, our test

environment powered by the Intel Knights Landing processor only

supports recording the address of load instructions that triggered

some particular event. PEBS records are always associated with a

PCM event. The most general KNL PCM events that support load

address recording are L2_HIT_LOADS and L2_MISS_LOADSwhich

account for L2 hits and L2 misses, respectively.

Both the count of L2 misses and L2 hits in a page boundary for

a given time frame can be used as a metric that determines how

likely is the page to be accessed in the future. A page with a high

count of either L2 misses or L2 hits reveals that the page is under

memory pressure. In the case of misses, we additionally know that

the cache is not able to hold the pages long enough to be reused.

And in the case of hits, we know that either pages are accessed

with high enough frequency to remain in the cache or simply the

whole critical memory range fits into the cache.

In principle, a page with a high L2 miss ratio seems to be a good

candidate for being moved into a faster memory device because

missing the L2 in the case of KNL means that data must be ser-

viced from either main memory or the L2 of another core. However,

the same page might actually have a higher ratio of L2 hits, indi-

cating that another page with a lower hit ratio might benefit still

more from being moved. In consequence, fair judgment should take

into consideration both events. Unfortunately, KNL features a sin-

gle PCM counter with PEBS support, which means that sampling

both events requires to perform dynamic switching at runtime.

Nonetheless, the purpose of this work is just a step behind. Our

objective is to focus on the study of a single PEBS enabled PCM

counter at scale. Therefore, for simplicity, we decided to rely on the

L2_MISS_LOADS event to record the load addresses.

McKernel initializes the PEBS CPU data structures at boot time

on each CPU. Processes running in McKernel will enable PEBS

on all the CPUs where its threads are running as soon as they

start. As long as the threads are being run, PEBS assists will write

PEBS records into the CPU’s buffer transparently regardless of their

execution context (user or kernel space).

The PEBS record format for the Knights Landing architecture

consists of (among others) the set of general-purpose registers and

the address of the load instruction causing the record dump (PEBS

assist) if applicable. In total, 24 64-bit fields are stored, adding up

to a total of 192 bytes for each PEBS record. There is no timestamp

information stored in each PEBS record so it is not possible to know

exactly when the record took place.

When the PEBS remaining capacity reaches the configured thresh-

old, an interrupt is triggered. The PEBS interrupt handler filters all

fields in the PEBS records but the load address and saves them into

a per-thread circular buffer. Then, the CPU PEBS buffer is reset,

allowing the CPU to continue storing records. Altogether with the

load addresses, a timestamp is saved at the time the interrupt han-

dler is running. This timestamp tags all the PEBS records processed

in this interrupt handler execution for posterior analysis.

When each of the application’s threads exit, the entire contents

of the per-thread buffer is dumped into a file. We have developed a

small python visualization tool to read and generate plots based on

the information provided.

The registered load addresses might not belong to application-

specific user buffers but from anywhere in the address space. For

offline visualization purposes we are mostly interested in profil-

ing the application’s buffers and hence, it is convenient to provide

some means to filter the undesired addresses. Load addresses can

MCHPC’18, November 11, 2018, Dallas, TX, USA

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez,

Dominique Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3

be sparse, and visualizing the entire address space of an applica-

tion to detect patterns might be difficult. It is important to notice

that filtering is not a requirement for online monitoring of high

demanded pages, this is only necessary for visualization.

A simple heuristic to do so is to filter out all addresses of small

mappings. To minimize the impact of filtering, the postprocessing is

done offline in our visualization script. Hence, McKernel only keeps

track of all mappings greater than four megabytes by storing its

start addresses, the length and the timestamp at which the operation

completed. All munmap operations are also registered regardless

of its size because they might split a bigger tracked area. The map-

pings information are stored into a per-process buffer, shared by all

threads using a lock-free queue. The per-process mappings buffer

is also dumped into the PEBS file at each thread’s termination time.

Our PEBS addresses viewer loads the file and reconstructs the

processes virtual memory mappings history based on the mmap

and munmap memory ranges and timestamps. Then, it reads all

the registered PEBS load addresses and classifies them into the

right spatial and temporal mapping or discards them if no suitable

mapping is found. Finally, individual plots are shown per mapping.

The PEBS data acquisition rate is controlled by the configurable

number of events that trigger a PEBS assist and the size of the CPU

PEBS buffer (which indirectly controls the threshold that triggers

an interrupt). We have added a simple interface into McKernel

to dynamically configure these parameters at application launch

time by resizing the CPU buffer and reconfiguring the PEBS MSR

registers as requested. This differs from the current Linux Kernel

driver in which it is only possible to configure the reset counter

value but not the PEBS buffer size.

It would be ideal to have a big enough CPU buffer to hold all

load addresses the application generates to both reduce the mem-

ory movements between buffers and to suppress the interrupts

overhead. However, having a small interrupt rate also diffuses the

time perception of memory accesses because timestamps are asso-

ciated with PEBS records in the interrupt handler. Therefore, this

implementation actually requires to set up a proper interrupt rate

to understand the evolution of memory accesses in time. Note that

instead of relying on the interrupt handler to harvest the PEBS CPU

buffer, another option is to dedicate a hardware thread to this task.

We plan to implement this option in the near future.

4 EVALUATION

4.1 Experimental Environment

All of our experiments were performed on Oakforest-PACS (OFP),

a Fujitsu built, 25 petaflops supercomputer installed at JCAHPC,

managed by The University of Tsukuba and The University of

Tokyo [13]. OFP is comprised of eight-thousand compute nodes

that are interconnected by Intel’s Omni Path network. Each node

is equipped with an Intel® Xeon Phi™ 7250 Knights Landing (KNL)

processor, which consists of 68 CPU cores, accommodating 4 hard-

ware threads per core. The processor provides 16 GB of integrated,

high-bandwidth MCDRAM and it also is accompanied by 96 GB of

DDR4 RAM. The KNL processor was configured in Quadrant flat

mode; i.e., MCDRAM and DDR4 RAM are addressable at different

physical memory locations and are presented as separate NUMA

nodes to the operating system.

The software environment was as follows. Compute nodes run

CentOS 7.4.1708 with Linux kernel version 3.10.0-693.11.6. This

CentOS distribution contains a number of Intel supplied kernel

level improvements specifically targeting the KNL processor that

were originally distributed in Intel’s XPPSL package. We used Intel

MPI Version 2018 Update 1 Build 20171011 (id: 17941) in this study.

For all experiments, we dedicated 64 CPU cores to the appli-

cations (i.e., to McKernel) and reserved 4 CPU cores for Linux

activities. This is a common scenario for OFP users where daemons

and other system services run on the first four cores even in Linux

only configuration.

4.2 Mini-applications

Weused a number of mini-applications from the CORAL benchmark

suite [2] and one developed at the The University of Tokyo. Along

with a brief description, we also provide information regarding

their runtime configuration.

• GeoFEM solves 3D linear elasticity problems in simple cube

geometries by parallel finite-element method [17]. We used

weak-scaling for GeoFEM and ran 16 MPI ranks per node,

where each rank contained 8 OpenMP threads.

• HPCG is the High Performance Conjugate Gradients, which

is a stand-alone code that measures the performance of basic

operations in a unified code for sparse matrix-vector mul-

tiplication, vector updates, and global dot products [4]. We

used weak-scaling for HPCG and ran 8 MPI ranks per node,

where each rank contained 8 OpenMP threads.

• Lammps is a classical molecular dynamics code, an acronym

for Large-scale Atomic/Molecular Massively Parallel Simula-

tor [20]. We used weak-scaling for Lammps and ran 32 MPI

ranks per node, where each rank contained four OpenMP

threads.

• miniFE is a proxy application for unstructured implicit finite

element codes [11]. We used strong-scaling for miniFE and

ran 16 MPI ranks per node, where each rank contained four

OpenMP threads.

• Lulesh is the Livermore Unstructured Lagrangian Explicit

Shock Hydrodynamics code which was originally defined

and as one of five challenge problems in the DARPA UHPC

program [14]. We used weak-scaling for Lulesh and ran 8

MPI ranks per node, where each rank contained 16 OpenMP

threads.

• AMG2013 is a parallel algebraic multigrid solver for linear

systems arising from problems on unstructured grids [10].

We used weak-scaling for AMG and ran 16 MPI ranks per

node, where each rank contained 16 OpenMP threads.

4.3 Results

For each workload described above, we use nine different PEBS

configurations. We scale the PEBS reset value from 256, through 128

to 64 and used PEBS per-CPU buffer sizes of 8kB, 16kB and 32kB. As

mentioned earlier, the reset value controls the sampling granularity

while the PEBS buffer size impacts the PEBS IRQ frequency. We

emphasize again that contrary to previous reports on PEBS’ inability

to provide increased accuracy with reset values lower than 1024 [1,

15, 18], we find very clear indications that obtaining increasingly

On the Applicability of PEBS based Online Memory Access

Tracking for Heterogeneous Memory Management at Scale MCHPC’18, November 11, 2018, Dallas, TX, USA

0.0%	

2.0%	

4.0%	

6.0%	

8.0%	

10.0%	

12.0%	

2k	(32)	 4k	(64)	 8k	(128)	 16k	(256)	 32k	(512)	 64k	(1024)	 128k	(2048)	

O
v
e
rh
e
a
d
		

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(a) GeoFEM (The University of Tokyo)

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

3.0%	

3.5%	

4.0%	

2k	(32)	 4k	(64)	 8k	(128)	 16k	(256)	 32k	(512)	 64k	(1024)	128k	(2048)	

O
v
e
rh
e
a
d
	

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(b) HPCG (CORAL)

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

2k	(32)	 4k	(64)	 8k	(128)	 16k	(256)	 32k	(512)	 64k	(1024)	 128k	(2048)	

O
v
e
rh
e
a
d
		

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(c) LAMMPS (CORAL)

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

3.0%	

3.5%	

4.0%	

4.5%	

1728					

(27)	

4096						

(64)	

8000	

(125)	

13824	

(216)	

32k				

(512)	

46656	

(729)	

64000	

(1000)	

85184	

(1331)	

110592	

(1728)	

O
v
e
rh
e
a
d
		

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(d) Lulesh (CORAL)

0.0%	

1.0%	

2.0%	

3.0%	

4.0%	

5.0%	

6.0%	

7.0%	

8.0%	

9.0%	

2k	(32)	 4k	(64)	 8k	(128)	 16k	(256)	 32k	(512)	 64k	(1024)	 128k	(2048)	

O
v
e
rh
e
a
d
		

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(e) MiniFE (CORAL)

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

3.0%	

3.5%	

4.0%	

4.5%	

2k	(32)	 4k	(64)	 8k	(128)	 16k	(256)	 32k	(512)	 64k	(1024)	 128k	(2048)	

O
v
e
rh
e
a
d
		

#	of	CPU	cores	(#	of	nodes)	

PEBS	256	32kB	 PEBS	256	16kB	 PEBS	256	8kB	

PEBS	128	32kB	 PEBS	128	16kB	 PEBS	128	8kB	

PEBS	64	32kB	 PEBS	64	16kB	 PEBS	64	8kB	

(f) AMG2013 (CORAL)

Figure 3: PEBS overhead for GeoFEM, HPCG, LAMMPS, Lulesh, MiniFE and AMG on up to 2,048 Xeon Phi KNL nodes

accurate samples with lower reset values is possible, for which we

provide more information below.

We ran each workload for all configurations scaling from 2,048 to

128k CPU cores, i.e., from 32 to 2,048 compute nodes, respectively.

We compare individually the execution time of each benchmark run

on McKernel with and without memory accesses tracking enabled.

We report the average value of three executions, except for a few

long-running experiments, where we took only two samples (e.g.,

MCHPC’18, November 11, 2018, Dallas, TX, USA

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez,

Dominique Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3

0 100 200 300 400 500
Sample set ID

0x2aab22402000

0x2aab22502000

0x2aab22602000

0x2aab22702000

0x2aab22802000

0x2aab22902000

0x2aab22a02000

Vi
rtu

al
 A

dd
re

ss

(a) PEBS reset = 64

0 100 200 300 400 500
Sample set ID

0x2aab22402000

0x2aab22502000

0x2aab22602000

0x2aab22702000

0x2aab22802000

0x2aab22902000

0x2aab22a02000
Vi

rtu
al

 A
dd

re
ss

(b) PEBS reset = 128

0 100 200 300 400 500
Sample set ID

0x2aab22402000

0x2aab22502000

0x2aab22602000

0x2aab22702000

0x2aab22802000

0x2aab22902000

0x2aab22a02000

Vi
rtu

al
 A

dd
re

ss

(c) PEBS reset = 256

Figure 4: MiniFE access pattern with different PEBS reset values (8kB PEBS buffer)

0 100 200 300 400
Sample set ID

0xc4c000

0xd4c000

0xe4c000

0xf4c000

0x104c000

0x114c000

0x124c000

0x134c000

0x144c000

0x154c000

0x164c000

0x174c000

0x184c000

Vi
rtu

al
 A

dd
re

ss

(a) PEBS reset = 64

0 100 200 300 400
Sample set ID

0xc4c000

0xd4c000

0xe4c000

0xf4c000

0x104c000

0x114c000

0x124c000

0x134c000

0x144c000

0x154c000

0x164c000

0x174c000

0x184c000

Vi
rtu

al
 A

dd
re

ss

(b) PEBS reset = 128

0 100 200 300 400
Sample set ID

0xc4c000

0xd4c000

0xe4c000

0xf4c000

0x104c000

0x114c000

0x124c000

0x134c000

0x144c000

0x154c000

0x164c000

0x174c000

0x184c000

Vi
rtu

al
 A

dd
re

ss

(c) PEBS reset = 256

Figure 5: Lulesh access pattern with different PEBS reset values (8kB PEBS buffer)

for GeoFEM). Note that all measurements were taken on McKernel

and no Linux numbers are provided. For a detailed comparison

between Linux and McKernel, refer to [7].

Figure 3 summarizes our application level findings. The X-axis

represents node counts while the Y-axis shows relative overhead

compared to the baseline performance. For each bar in the plot,

the legend indicates the PEBS reset value and the PEBS buffer size

used in the given experiment. The general tendency of overhead

for most of the measurements matched our expectations, i.e., the

most influential factor in performance overhead is the PEBS reset

value, whose impact can be relaxed to some extent by adjusting the

PEBS buffer size.

Across all workloads, we observe the largest overhead on Ge-

oFEM (shown in Figure 3a) when running with the lowest PEBS

reset value of 64 and the smallest PEBS buffer of 8kB, where the

overhead peaked at 10.2%. Nevertheless, even for GeoFEM a less

aggressive PEBS configuration, e.g., a reset value of 256 with 32kB

PEBS buffer size induces only up to 4% overhead.

To much of our surprise, on most workloads PEBS’s periodic

interruption of the application does not imply additional overhead

as we scale out with the number of compute nodes. In fact, on some

of the workloads, e.g., HPCG (shown in Figure 3b) and Lammps

(shown in Figure 3c) we even observe a slight decrease in overhead

for which we have currently no precise explanation and for which

identifying its root cause further investigation is required. Note

that both of these workloads were weak scaled and thus are pre-

sumed to compute on a quasi-constant amount of per-process data

irrespective of scale.

One particular application that did experience growing over-

head as the scale increased is MiniFE, shown in Figure 3e. MiniFE

was the only workload we ran in strong-scaled configuration and

our previous experience with MiniFE indicates that it is indeed

sensitive to system noise [7]. Despite the expectation that due to

the decreasing amount of per-process data at larger node counts

the PEBS’ overhead would gradually diminish, the disruption from

constant PEBS interrupts appears to amplify its negative impact.

To demonstrate the impact of PEBS’ reset value on the accu-

racy of memory access tracking we provide excerpts on memory

access patterns using different reset values. We have been able to

observe similar memory access patterns for all benchmarks tested,

but we present the results for MiniFE and Lulesh as an example.

Figure 4 and Figure 5 show the heatmaps of the access patterns

On the Applicability of PEBS based Online Memory Access

Tracking for Heterogeneous Memory Management at Scale MCHPC’18, November 11, 2018, Dallas, TX, USA

2 4 6 8 10
Time between interrupts (ms)

0

50

100

150

200

250

300

350

Co
un

t

PEBS Counter Reset
64
128
256

Figure 6: Distribution of elapsed time between PEBS inter-

rupts for MiniFE with three different reset values

1 50 100 150 200 250 300
Number of L2 misses

100

101

102

103

104

Nu
m

be
r o

f d
iff

er
en

t p
ag

es
 (l

og
 sc

al
e)

Figure 7: Access histogram per page for MiniFE execution

captured on 32 nodes for three reset values, 64, 128 and 256. The

X-axis represents the sample set ID, i.e., periods of time between

PEBS interrupts, while the Y-axis indicates the virtual address of

the corresponding memory pages. Although PEBS addresses are

captured at byte granularity, page size is the minimum unit the OS’

memory manager works with. In fact, for better visibility, we show

the heatmap with higher unit sizes, i.e., in blocks of 4 pages.

One of the key observations here is the increasingly detailed

view of the captured access pattern as we decrease the PEBS reset

counter. As seen, halving the reset value from 128 to 64 gives a 2X

higher granularity per sample set, e.g., the stride access of MiniFE is

stretched with respect to the sample IDs. Note that one iteration of

MiniFE’s buffer presented in the plot corresponds to approximately

330ms. To put the accuracy into a more quantitative from the 1536

pages of the buffer shown in the figure, PEBS with 64 reset value

reports 1430 pages touched, while using reset values of 128 and 256

report 1157 and 843, respectively. To the contrary, Lulesh’s plots

indicate that access patterns that do not significantly change in time

can be captured also with lower granularity and thus the reset value

should be adjusted dynamically based on the application. Note that

the number of computational nodes used affects the amount of

memory each node works with and might alter the visible pattern.

However, as long as the memory share per core does not fit in the

L2 the patterns will generally remain similar.

The implicit effect of altering the PEBS reset counter is the in-

crease or decrease rate of the PEBS interrupt frequency, assuming

a constant workload. The capacity of controlling the interrupt rate

should have a clear impact on the expected overhead, at least in

noise sensitive applications such as minife. We have presented the

relationship between overhead and PEBS reset counter in Figure

3 and we now show the relationship between PEBS reset counter

and interrupt frequency in Figure 6. The elapsed time between

interrupts is shown for three executions of MiniFE with 64, 128 and

256 values. As expected, we can see a clear correlation between

the average duration and the reset counter value being the former

smaller when the later decreases. We also note that the duration of

the interrupt handler itself took approximately 20 thousand cycles.

It is also interesting to observe the formation of two close peaks per

execution. This tendency identifies two different access patterns

within the application that lead to a different L2 miss generation

scheme.

The presence of particularly hot pages can be easily localized by

inspecting the histogram of aggregated L2 misses shown in Figure

7. The plot shows the number of different pages that had N number

of L2 misses on the Y-axis, where N is shown on the X-axis. We

can easily see that most of the pages in MiniFE had a small number

of misses at the leftmost side of the histogram. However, the plot

reveals an important group of pages above the 50 L2 misses that

could be tagged as movable targets.

In summary, we believe that our large-scale results well demon-

strate PEBS’ modest overhead to online memory access tracking

and we think that a PEBS based approach to heterogeneous memory

management is worth pursuing.

5 RELATED WORK

This section discusses related studies in the domains of heteroge-

neous memory management and memory access tracking.

Available tools that help to determine efficient data placement

in heterogeneous memory systems typically require developers

to run a profile phase of their application and modify their code

accordingly. Dulloor et al. proposed techniques to identify data

objects to be placed into DRAM in a hybrid DRAM/NVM configu-

ration [5]. Peng et al. considered the same problem in the context

of MCDRAM/DRAM using the Intel Xeon Phi processor [19]. In

order to track memory accesses, these tools often rely on dynamic

instrumentation (such as PIN [16]), which imposes significant per-

formance overhead that makes it impractical for online access track-

ing.

Larysch developed a PEBS system to assess memory bandwidth

utilization of applications and reported low overheads, but the

authors did not provide a quantitative characterization of using

PEBS for this purpose [15]. Akiyama et al. evaluated PEBS overhead

on a set of enterprise computing workloads with the aim of find-

ing performance anomalies in high-throughput applications (e.g.,

Spark, RDBMS) [1]. PEBS has been also utilized to determine data

placement in emulated non-volatile memory based heterogeneous

MCHPC’18, November 11, 2018, Dallas, TX, USA

Aleix Roca Nonell, Balazs Gerofi3, Leonardo Bautista-Gomez,

Dominique Martinet2, Vicenç Beltran Querol, Yutaka Ishikawa3

systems [22]. None of these works, however, have focused on exclu-

sively studying PEBS overhead on large-scale configurations. To the

contrary, we explicitly target large-scale HPC workloads to assess

the scalability impacts of PEBS based memory access tracking.

Olson et al. reported in a very recent study that decreasing the

PEBS reset value below 128 on Linux caused the system to crash [18].

While they disclosed results only for a single node setup, we demon-

strated that our custom PEBS driver in McKernel performs reliably

and induces low overheads even when using small PEBS reset val-

ues in a large-scale deployment.

6 CONCLUSION AND FUTUREWORK

This paper has presented the design, implementation and evalua-

tion of a PEBS driver for the IHK/McKernel which aims to provide

the groundwork for an OS level heterogeneous memory manager.

We have shown the captured access patterns of two scientific ap-

plications and demonstrated the evolution of their resolution as

we change the PEBS profiling parameters. We have analyzed the

overhead impact associated with the different recording resolutions

in both timing and interrupt domains at scale up to 128k CPUs (or

2,048 computer nodes) for six scientific applications. We observed

overheads highly dependent on both the application behavior and

the recording parameters which range between 1% and 10.2%. How-

ever, we have been able to substantially reduce the overhead of

our worst-case scenario from 10.2% to 4% by adjusting the record-

ing parameters while still achieving clearly visible access patterns.

Our experience contrast with the current Linux kernel PEBS im-

plementation which is not capable of achieving very fine-grained

sample rates. We conclude that PEBS efficiency matches the basic re-

quirements to be feasible for heterogeneous memory management

but further work is necessary to quantify the additional overhead

associated with using the recorded data at runtime.

Our immediate future work is to address the challenge of prop-

erly using the recorded addresses at runtime to reorganize memory

pages on memory devices based on access patterns. We will study

the benefits of dedicating a hardware thread to periodically harvest

the CPU PEBS buffer instead of relying on interrupts that constantly

pause the execution of the user processes. We also intend to deeply

analyze the difference between the IHK/McKernel PEBS driver and

the Linux kernel driver to better quantify the observed limitations.

ACKNOWLEDGMENT

This work has been partially funded by MEXT’s program for the

Development and Improvement of Next Generation Ultra High-

Speed Computer Systems under its subsidies for operating the

Specific Advanced Large Research Facilities in Japan. This project

has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Sklodowska-

Curie grant agreement No 708566 (DURO) and agreement No 754304

(DEEP-EST).

REFERENCES
[1] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Evaluation of

Intel PEBS Overhead for Online System-Noise Analysis. In Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers
ROSS 2017 (ROSS ’17). ACM, New York, NY, USA, Article 3, 8 pages.

[2] CORAL. 2013. Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/. (Nov.
2013).

[3] Intel Corporporation. 2018. Intel 64 and IA-32 Architectures Software Developer
Manuals. https://software.intel.com/articles/intel-sdm. (2018).

[4] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. 2015. HPCG Benchmark: A
New Metric for Ranking High Performance Computing Systems. Technical Report
UT-EECS-15-736. University of Tennessee, Electrical Engineering and Computer
Science Department.

[5] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys ’16). ACM, New York, NY, USA,
Article 15, 16 pages. http://doi.acm.org/10.1145/2901318.2901344

[6] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. 2008. Characterizing
Application Sensitivity to OS Interference Using Kernel-level Noise Injection. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC ’08). IEEE
Press, Piscataway, NJ, USA, Article 19, 12 pages.

[7] Balazs Gerofi, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Yutaka Ishikawa,
and Robert W. Wisniewski. 2018 (to appear). Performance and Scalability of
Lightweight Multi-Kernel based Operating Systems. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS).

[8] Balazs Gerofi, Akio Shimada, Atsushi Hori, and Yutaka Ishikawa. 2013. Partially
Separated Page Tables for Efficient Operating System Assisted Hierarchical Mem-
ory Management on Heterogeneous Architectures. In 13th Intl. Symposium on
Cluster, Cloud and Grid Computing (CCGrid).

[9] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and Y. Ishikawa. 2016.
On the Scalability, Performance Isolation and Device Driver Transparency of the
IHK/McKernel Hybrid Lightweight Kernel. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1041ś1050.

[10] V. E. Henson and U. M. Yang. 2002. BoomerAMG: A Parallel Algebraic Multigrid
Solver and Preconditioner. https://codesign.llnl.gov/amg2013.php. Appl. Num.
Math. 41 (2002), 155ś177.

[11] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[12] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Characterizing
the Influence of System Noise on Large-Scale Applications by Simulation. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer Society,
Washington, DC, USA. https://doi.org/10.1109/SC.2010.12

[13] Joint Center for Advanced HPC (JCAHPC). 2017. Basic Specification of Oakforest-
PACS. http://jcahpc.jp/files/OFP-basic.pdf. (March 2017).

[14] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. Lawrence Livermore National Laboratory.
1ś9 pages.

[15] Florian Larysch. 2016. Fine-Grained Estimation of Memory Bandwidth Utilization.
Master Thesis. Operating Systems Group, Karlsruhe Institute of Technology
(KIT), Germany.

[16] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190ś200.

[17] Kengo Nakajima. 2003. Parallel Iterative Solvers of GeoFEM with Selective
Blocking Preconditioning for Nonlinear Contact Problems on the Earth Simulator.
In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (SC). ACM,
New York, NY, USA. https://doi.org/10.1145/1048935.1050164

[18] Matthew Benjamin Olson, Tong Zhou, Michael R. Jantz, Kshitij A. Doshi, M. Gra-
ham Lopez, and Oscar Hernandez. 2018. MemBrain: Automated Application
Guidance for Hybrid Memory Systems. In IEEE International Conference on Net-
working, Architecture, and Storage (NAS’ 18). (to appear).

[19] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. 2017. RTHMS: A Tool for Data Placement on Hybrid Memory
System. In Proceedings of the 2017 ACM SIGPLAN International Symposium on
Memory Management (ISMM 2017). ACM, New York, NY, USA, 82ś91.

[20] Steve Plimpton. 1995. Fast Parallel Algorithms for Short-range Molecular Dy-
namics. (March 1995), 19 pages. https://doi.org/10.1006/jcph.1995.1039

[21] Taku Shimosawa, Balazs Gerofi, Masamichi Takagi, Gou Nakamura, Tomoki
Shirasawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori, and Yutaka Ishikawa. 2014.
Interface for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs
targeting High Performance Computing on Manycore Architectures. In 21th Intl.
Conference on High Performance Computing (HiPC).

[22] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data Manage-
menton Non-volatile Memory-based Heterogeneous Main Memory. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 58, 14 pages.

Exploring Allocation Policies in Disaggregated Non-Volatile

Memories

Vamsee Reddy Kommareddy
University of Central Florida

Orlando, Florida, USA

vamseereddy8@knights.ucf.edu

Amro Awad
University of Central Florida

Orlando, Florida, USA

amro.awad@ucf.edu

Clayton Hughes
Sandia National Labs

New Mexico, USA

chughes@sandia.gov

Simon David Hammond
Sandia National Labs

New Mexico, USA

sdhammo@sandia.gov

ABSTRACT

Many modern applications have memory footprints that are
increasingly large, driving system memory capacities higher
and higher. However, due to the diversity of applications that
run on High-Performance Computing (HPC) systems, the
memory utilization can fluctuate widely from one application
to another, which results in underutilization issues when
there are many jobs with small memory footprints. Since
memory chips are collocated with the compute nodes, this
necessitates the need for message passing APIs to be able to
share information between nodes.

To address some of these issues, vendors are exploring
disaggregated memory-centric systems. In this type of orga-
nization, there are discrete nodes, reserved solely for memory,
which are shared across many compute nodes. Due to their
capacity, low-power, and non-volatility, Non-Volatile Mem-
ories (NVMs) are ideal candidates for these memory nodes.
Moreover, larger memory capacities open the door to different
programming models (more shared memory style approaches)
which are now being added to the C++ and Fortran language
specifications. This paper proposes a simulation model for
studying disaggregated memory architectures using a publicly
available simulator, SST Simulator, and investigates various
memory allocation policies.

CCS CONCEPTS

• Computer systems organization → Heterogeneous
(hybrid) systems;

KEYWORDS

Disaggregated memory system, non-volatile memory, memory-
centric computing

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor, or affiliate of the United States government.
As such, the United States government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do
so, for government purposes only.

MCHPC’18, November 11, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6113-2/18/11. . . $15.00
https://doi.org/10.1145/3286475.3286480

ACM Reference Format:

Vamsee Reddy Kommareddy, Amro Awad, Clayton Hughes, and Si-
mon David Hammond. 2018. Exploring Allocation Policies in Dis-

aggregated Non-Volatile Memories. In MCHPC’18: Workshop on
Memory Centric High Performance Computing (MCHPC’18), No-

vember 11, 2018, Dallas, TX, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3286475.3286480

1 INTRODUCTION

With the arrival of the big data era, the need for fast process-
ing and access to shared memory structures have never been
as crucial as they are today. A wide range of applications, such
as high-performance database applications, graph analytics
and big data applications, frequently share data between
nodes. Communication between compute typically requires
expensive system calls and the invocation of message passing
interfaces, e.g., OpenMPI. Unfortunately, given the poten-
tially huge amount of data shared between computing nodes,
explicit communication between nodes can burden scalability
and efficiency. Additionally, a recent study shows that about
80% of the jobs on HPC systems overestimate their memory
requirements [2]; thus, HPC systems underutilize memory
slots by dedicating them to specific jobs. Similarly, HPC ar-
chitects tend to design the memory capacity per-node based
on the most memory demanding applications, which also
leads to underutilizing memory slots on computing nodes. In
both cases, the memory consumes idle power (refresh power
for DRAM) even if not used.

In addition to the underutilization and sharing overheads
of the systems that couple memory with computing nodes,
upgrading memory can be challenging. To take advantage of
the fast-evolving memories and adapt to the new requirements
of applications, system memory should have the ability to be
flexibly augmented with evolving memory technologies. In
systems that deploy petabytes of storage, it is important to
be able to flexibly extend the data stores and ensure their
robustness.

To mitigate the scalability challenges of coupled memory
systems, a new design direction is evolving as a result of
memory-driven applications, disaggregated memory systems

[12, 23]. As shown in Figure 1, disaggregated memory de-
couples memory from computing nodes (FPGAs, GPUs or
SoCs), e.g., The Machine project by HP Labs [13]. In such

https://doi.org/10.1145/3286475.3286480
https://doi.org/10.1145/3286475.3286480

MCHPC’18, November 11, 2018, Dallas, TX, USA Vamsee Reddy Kommareddy et al.

Interconnecting
Network

Memory

Disaggregated
memory

Disaggregated
storage

C C C

C CC

C

C

FPGA
FPGA
FPGA

GPU
GPU
GPU

Disaggregated
specialized hardware

Memory
Memory

Nodes

C C C

C CC

C

C

C C C

C CC

C

C

Figure 1: Disaggregated Memory System

systems, the applications can use traditional shared memory
interfaces to operate on shared data by utilizing the large
shared memory space. Most importantly, the shared memory
space can be accessed by traditional load/store operations in-
stead of explicitly communicating between computing nodes.
Moreover, each node can request as much memory as it needs
from the shared space while the rest can be utilized by other
nodes. In addition these benefits, upgrading memory requires
only replacing the memory blade [21], i.e., the place where all
memories are placed. While disaggregated memory systems
are a promising direction for designing future computing
systems, a lot of factors need to be examined and researched
to properly evaluate and understand disaggregated memory
systems.

Processors require extremely fast access to memory. Ac-
cessing remote memory through a network increases the delay
in accessing the memory and will impact application perfor-
mance. Furthermore, contention on the centralized memory
occurs when multiple nodes are issuing requests to the system
memory. Instead of full memory disaggregation, it is better to
retain a portion of the memory on the node where it can be
managed locally and treated as fast temporary memory [12].
As mentioned earlier, modern applications deal with large
amount of data that can exceed the size of the local memory.
Accordingly, new memory allocation and page migration poli-
cies are warranted on such systems. Furthermore, the cost
of unmapping and mapping pages while managing memory
should be considered carefully when designing disaggregated
memory systems.

To facilitate research efforts in disaggregated memory sys-
tems, we propose a disaggregated memory emulation envi-
ronment that can take into consideration many important
system-level aspects. The Structural Simulation Toolkit (SST)
[24] has been proven to be one of the most reliable simulators
for large-scale systems due to the scalability and modular
design of its components. This makes SST the perfect candi-
date for simulating disaggregated memory systems at scale.
One of the current limitations of SST is the lack of a central-
ized memory management entity that correctly models page
faults and requests for physical frames from the simulated
machine. Such a limitation becomes more relevant when there
are a large number of shared resources (pools). A centralized
memory management entity for disaggregated memory, Opal

Node 0 Node 1 Node 2 Node 3
Local
Memory

Local
Memory

Local
Memory

Local
Memory

Router Router Router Router

NVM

External Shared Memory

NVM NVM

Very fast interconnect (e.g.,
GenZ-based, CCIX-based)

Fast but power-consuming
memory (e.g., DRAM)

External World
Link

Dense, power-efficient and
persistent memory

Figure 2: An example of a disaggregated memory
system. The system has several nodes (SoCs) where
each node may have its own internal memory but
share external memory.

[20], was developed that can be used to investigate memory
allocation policies, page placement, page migration, the im-
pact of TLB shootdown, and other important aspects that
are related to managing disaggregated memory systems. In
this paper, we will describe Opal and the different use cases
and studies that can leverage our framework.

Previous research on disaggregated memory was conducted
on real systems and trace-driven simulators [25, 28]. Trace-
driven simulations oversimplify the impact of system-level
operations and the out-of-order nature of processing cores
and memory systems. They are rarely scalable beyond couple
of cores even with very simplified memory and processor mod-
els. Moreover, it is difficult to model disaggregated memory
as it requires multiple nodes to be simulated at the same
time. Real-system prototyping takes a significant amount of
time and limits the conclusions to the available hardware and
software stack, which reduces the flexibility of design explo-
ration. In contrast, our model is a discrete-event simulation
model that is modular and easy to customize.

The rest of the paper is organized as follows. Section 2
presents the background. Section 3 and Section 4 discusses the
design and evaluation of our implementation. We conclude
the paper in Section 5.

2 BACKGROUND

Many major vendors are considering system designs that
utilize disaggregated memory, which can be accessed by a
large number of processing nodes. Figure 2 depicts an example
of a disaggregated memory system. As shown in Figure 2,
the nodes must access an off-chip network to access the
external memory. Although local updates to external memory
locations can be made visible to all other nodes, scaling the
coherence protocols are challenging. While using directories
could help, there are still inherent design and performance
complexities that can arise. One direction that the vendors
will likely adopt is to rely on software to flush updates on
local caches to the shared memory and make it visible to
other nodes; one can think of it as having a mutex around
the shared data, and not releasing it until all the updates

Exploring Allocation Policies in Disaggregated Non-Volatile Memories MCHPC’18, November 11, 2018, Dallas, TX, USA

have been flushed to the external memory. Once the lock
is released, the other nodes need to make sure they are
reading the data from the external memory rather than their
internal caches. One way to do that is to use clflush

1 after
any reads or updates, which guarantees any copies of that
memory are invalidated in the cache hierarchy. Another case
is where the memory is partitioned between nodes. In this
case, each node broadcasts all of its updates and flushes, after
which an aggregator node can read the updated values from
the external memory. In much simpler cases, such as a file
containing a large social network graph where no updates
are expected to that graph (read-only), there is no need for
special handling of accesses to the graph.

Because off-node memory accesses are expensive, page mi-
gration will become a frequent operation on heterogenous
and disaggregated memory systems [5, 22]. During page swap-
ping, physical addresses assigned to the virtual addresses can
change, hence page table entry (PTE) update is required. The
core initiating a PTE update needs to send Inter-Processor
Interrupt (IPI) to other cores to force them to invalidate any
copies from the updated PTE on their Translation Looka-
side Buffers (TLBs). This process is called TLB shootdown

[26]. To reduce the costs of such an interruption, several
TLB shootdown optimization algorithms have been proposed
[3, 5] Before these systems can be deployed, it will be impor-
tant to analyze the impact the page migration will have on
disaggregated memories.

Bandwidth and speed of the memory are the main param-
eters that decide the reliability and performance of memory-
intensive applications. Disaggregated memory systems can
provide better bandwidth by scaling the number of channels
to shared memory but this often comes at the expense of
latency. For instance, blade servers [21] were proposed with
memory blades that use fast shared communication networks
and contain racks of memory modules.

To the best of our knowledge there is currently no simu-
lation platform that can properly simulate and model dis-
aggregated memory systems. Several disaggregated memory
performance emulators have been developed [4, 11, 16], which
divide physical memory to evaluate the remote memory. For
these tests, remote memory latency is emulated through a
device driver. Unfortunately, relying on real-system emula-
tion restricts the conclusions and design space exploration
to a narrow space that is constrained by the real-system
configurations.

3 DESIGN

The Structural Simulation Toolkit (SST) is an architectural
simulator that is known for its scalability and reliability
due to its modular design and parallel nature. Implement-
ing a disaggregated memory system design in SST opens up
opportunities to explore and examine many challenges. Dis-
aggregated memory systems require global memory managers
to handle the system shared memory, initiate and broadcast

1Instruction which helps in flushing the cache contents of a process
from the userspace.

TLB shootdown requests, implement page migration and
allow for sharing memory between nodes. To model these
aspects of the system, we propose Opal, a centralized mem-
ory manager that is implemented as a part of SST to help
researchers in studying the functionalities, bottlenecks and
optimizations for managing disaggregated memory systems.
For the rest of this section, we describe the Opal compo-
nent and how it can be utilized to investigate disaggregated
memory systems.

3.1 Opal

Opal can be thought of as the Operating System (OS) mem-
ory manager and, in the case of a disaggregated memory
system, the system memory allocator/manager. In conven-
tional systems with a single level memory, once a process
tries to access a virtual address, a translation is triggered to
map the virtual address to a physical address. If a translation
is not found, and the hardware realizes that either there is
no mapping to that virtual address or the access permissions
would be violated, it triggers a page fault that is handled
by the OS. The page fault handler maps the virtual page
to a physical page that is chosen from a list of free frames
(physical pages). Once a physical page is selected, its address
is inserted in the page table along with the corresponding
access permissions. Any successive accesses to that virtual
address will result in a translation process that concludes
with obtaining the physical address of the selected page. Since
SST aims for fast simulation of HPC systems, it does not
model the OS aspects of this sequence of events. However,
the memory allocation process will have a major impact on
performance for heterogeneous memory systems and disag-
gregated memory, simply because of the many allocation
policies that an OS can select from. Moreover, allocation
policies are not well understood on disaggregated memory
systems, making it important to investigate them to discover
the best algorithm or heuristics to be employed for both
performance and energy efficiency. Opal is proposed to fill
this role; facilitating fast investigation and exploration of al-
location policies in heterogeneous and disaggregated memory
systems.

Each component in SST typically represents a subsystem
in a real system. SST models a wide range of components
such as cores, MMU units, memory hierarchy, routers, and
different memory models like DRAM and NVM. Components
are ticked according to the component clock frequency set up
during configuration. Links are used to communicate between
components. Each link can be configured with a latency. We
used the Ariel, Samba [6], Messier [7] and Merlin components
in SST to simulate CPU cores, MMU unit, NVM memory
and network respectively to implement disaggregated memory
system design with the help of Opal component.

As shown in Figure 3, Opal and external memory are
maintained remotely and each node is connected to Opal and
external memory through external links. Processing cores and
memory management units are connected to global memory
manager, Opal. In our design, we maintained an internal

MCHPC’18, November 11, 2018, Dallas, TX, USA Vamsee Reddy Kommareddy et al.

router that helps in communicating between cache and mem-
ory components. Likewise, an external router is maintained
to connect the internal router with external memory through
a network bridge that has its latency modelled after GenZ
[14]. This way, communication between nodes and external
memory takes place though internal and external routers. To
make it realistic, links to external memory is configured with
high latency and links to internal memory is configured with
low latency.

Processing cores are connected to Opal to pass hints about
memory allocations. For instance, calls to malloc or mmap do
not immediately allocate physical pages, but are allocated
at the time of mapping, during page fault. Opal can use
hints sent from cores to decide where to allocate the phys-
ical page. This is similar to libNUMA malloc hints, which
will be recorded and used later by the kernel at the time of
on-demand paging. CPU cores can trigger TLB shootdown
events to all the other cores, including cores on other nodes.
It is cumbersome to create links between each core to send
events like TLB shootdown. Hence, we facilitate a commu-
nication medium between nodes through Opal. CPU cores
communicate with Opal, sending TLB shootdowns events,
using a core to Opal link.

The hardware MMU units have links to Opal, so that once
a TLB miss and page table walk conclude with a page fault
request (unmapped virtual address), a request for physical
frame allocation is sent to Opal. Allocation requests come
from the page table walker when the accessed virtual page has
never been mapped, which resembles the minor page fault and
on-demand paging on the first access to virtual pages in real
systems. Opal searches for any hints associated with the page
fault. If the hints are available, memory is allocated according
to the hints from a specific memory region, if not, Opal checks
for free frames according to the allocation policies, described
in Section 3.3, and allocates a frame to the corresponding
memory request. Apart from this, during TLB shootdown,
Opal sends invalid addresses to all the MMU’s through the
MMU unit to Opal link and the MMU unit responds with an
acknowledge event to Opal after invalidating the addresses.

Hence, Opal must be connected to both a MMU unit, such
as Samba, for receiving page fault requests and a process-
ing element, such as Ariel. To allow this, Ariel cores and
Samba units should connect to their respective ports in Opal,
coreLink n and mmuLink n. For example, coreLink 0 port
of Opal can be connected to opal link 0 port of Ariel core and
mmuLink 0 port of Opal can be connected to ptw to opal0
port of Samba.

Before diving into the details of Opal, we will start with
discussing different ways of managing disaggregated memory
systems:

3.1.1 Exposing External Memory Directly to Local Nodes.
In this approach a local node OS (or Virtual Machine) sees
both the local memory and external memory, however, it
needs to request physical frames from a central memory man-
ager to be able to access external memory legitimately. To
enforce access permission, and to achieve isolation between

Local
Memory

External Shared Memory

Router

MMU Units (Samba)

Cores
(Ariel)

Cache Hierarchy

Node (SoC)

Local
Memory

MMU Units (Samba)

Cores
(Ariel)

Cache Hierarchy

Node (SoC)

Opal

GenZ Network
Bridge

External Network External Network

GenZ Network
Bridge

Internal Network Internal Network

Option 1

Option 2
System Translation Unit

(STU)

Figure 3: A simulated system that uses Opal for cen-
tralized memory management.

data belonging to different nodes/users, the system must
provide a mechanism to validate the mappings and the va-
lidity of physical addresses being accessed by each node. To
better understand the challenges of this scheme, Figure 3 de-
picts different options to implement access control on shared
resources in such management scheme.

As shown in the Figure 3, Option 1 would be to check
if the requesting node is eligible to access the requested
address at the memory module level. This implementation
requires a bookkeeping mechanism at the memory module
level (or in the memory blade) to check the permission of
every access. If the access is valid, then the request will be
forwarded to the memory, otherwise either a random data
is returned or an error packet (access violation) is sent back
to the requesting core. Since the external memory is shared
between nodes, the system memory manager must have a
consistent view of allocated pages and their owning nodes.
One way to implement this is through a device driver (part
of the local nodes’ OS) that can be used to communicate,
either through the network or predefined memory regions,
with the external memory manager. Option 2 is similar but
instead of relegating the permission check to the memory
module, the router will have mechanisms to check if the
accessed physical addresses are granted to the requesting
node. In both the options, nodes will not be able to have
a direct access or modifications for such permission tables,
only the system memory manager will have such access.
Such guarantee can be implemented by encrypting requests
with some integrity and freshness verification mechanisms.
There are many benefits of these schemes, such as: page table
walking process is not modified and it is much faster than
virtualized environments (4 steps vs. 26 steps). Also, node-
level memory manager optimizations and page migrations are
feasible (unlike virtualized environments). But the operating
system must be patched with a device driver to communicate
with external memory manager and the centralized memory
manager becomes a bottleneck if not scalable.

3.1.2 Virtualizing External Memory. In this approach, each
node has the illusion that it owns all of the system memory.
In fact, in this scheme, the OS doesn’t need to be aware

Exploring Allocation Policies in Disaggregated Non-Volatile Memories MCHPC’18, November 11, 2018, Dallas, TX, USA

Node 0

Node 1

Node 2

Node 3

Local Memory
(DRAM)

Router

Shared
memory
pool 0
(NVM)

External Shared Memory
Shared
memory
pool 2
(NVM)

Shared
memory
pool 1
(NVM)

Shared
memory
pool 3
(NVM)

16MB (DRAM)
(000000-FFFFFF)

16MB (DRAM)
(000000-FFFFFF)

16MB (DRAM)
(000000-FFFFFF)

16MB (DRAM)
(000000-FFFFFF)

4GB (NVM)
(001000000-
100FFFFFF)

4GB (NVM)
(101000000-
200FFFFFF)

4GB (NVM)
(201000000-
300FFFFFF)

4GB (NVM)
(301000000-
400FFFFFF)

Local Memory
(DRAM)

Local Memory
(DRAM)

Local Memory
(DRAM)

Figure 4: Example configuration

of the current state of the actual system physical memory.
Figure 3 depicts the virtualized system memory scheme.

As shown in the Figure 3, the system translation unit
(STU) must be added to support translation from the node

physical address to the system physical address. The STU
can be implemented as an ASIC-based or FPGA-based unit
that takes a physical address from the node and translate
it into the corresponding system physical address. In case
the address has never been accessed, an on-demand request
mechanism is initiated by the STU to request system physical
page. The STU might need to do a full system page table walk
to obtain the node to system translation. Most importantly,
the STU can be updated only through the system memory
manager. This scheme is better if OS does not need to be
changed. But the STU will need to walk the system level
page table in addition to walking the node’s page table at the
node level. Also, there is no guarantee of where the system
physical pages that back up the node physical pages exist.

3.2 Opal Configuration

Opal should be configured with component-specific, node-
specific and shared memory-specific information as shown
in Table 1. Component -specific information includes clock
frequency, maximum instructions per cycle, etc. Node spe-
cific information includes number of nodes, number of cores
per node, clock frequency per node, per node network la-
tency to access Opal component, node memory allocation
policy as explained in section 3.3 and local memory informa-
tion. Shared memory-specific information includes number
of memory pools that shared memory is divided into and
the respective memory pool parameters. Both per-node local
memory and per-shared memory pool parameters are related
to memory and they are explained separately in Table 2.
Each of these parameters should be appended with memory
related parameters as shown in Table 1. Table 2 describes
the memory pool-specific parameters. Each memory pool,
whether shared or local, needs a starting address, pool size,
frame or page size, and memory technology.

We show a basic configuration used to test a disaggregated
memory system with Opal in Figure 4. The respective pa-
rameters can be found online [1]. According to the example
configuration, the clock frequency of Opal is 2GHz (”clock” :

Table 1: Opal Parameters

Parameter Description

clock frequency of Opal component

max inst maximum instructions processed
in a cycle.

num nodes number of nodes.

node i cores number of cores per node.

node i clock frequency of each node.

node i latency latency to access Opal component
per node.

node i allocation policymemory allocation policy per
node.

node i memory. local memory-specific information
per node. These come under mem-
ory parameters and are shown in
Table 2

shared mempools number of shared memory pools
to maintain shared memory.

shared mem.mempool i.global memory-specific informa-
tion per shared memory pool.
These come under memory param-
eters and are shown in Table 2

Table 2: Memory Pool Parameters

Parameter Description

start starting address of the memory pool.

size size of the memory pool in KB’s.

frame size frame size of each frame in memory pool in
KB’s. This is equivalent to page size.

mem tech memory pool technology (0 : DRAM, 1 :
NVM).

”2GHz”). In every cycle Opal can serve up to 32 requests
(”max inst” : 32). The system has 4 nodes (”num nodes” : 4)
with a private memory each and shared global memory is
divided into 4 memory pools (”shared mempools” : 4). Each
node has 8 cores (”node0.cores” : 8) with a clock frequency
of 2GHz (”node0.clock” : ”2GHz”) per core. The private
memory uses DRAM (”node0.memory.mem tech” : 0) tech-
nology with a size of 16MB (”node0.memory.size” : 16384),
a starting address of 0 (”node0.memory.start” : 0), and a
frame size or page size of 4KB (”node0.memory.frame size” :
4). The total global or shared memory is 16GB, which is di-
vided into 4 memory pools each of 4GB (”shared mem.memp

ool0.size” : 4194304). The starting address of shared mem-
ory pool 0 is 001000000 (”shared mem.mempool0.start” :
001000000) which is equivalent to local memory(16MB) + 1;
the starting address of memory pool 1 is 101000000 (”shared
mem.mempool1.start” : 101000000), which is equal to the
starting address of shared memory pool 0 + shared mem-
ory pool 0 size. Figure 4 shows the starting address of each
memory pool, from which the size of each memory pool can

MCHPC’18, November 11, 2018, Dallas, TX, USA Vamsee Reddy Kommareddy et al.

be deduced. Each shared memory pool is of NVM type
(”shared mem.mempool0.mem type” : 1) with a frame size
of 4KB (”shared mem.mempool0.frame size” : 4). Mem-
ory allocation policy used for all the nodes is alternate mem-
ory allocation policy (”node0.allocation policy” : 1) which is
explained in the Section 3.3. The network latency to commu-
nicate with Opal is 2 micro seconds (”node3.latency” : 2000).

3.3 Memory Allocation Policies

Multiple memory allocation policies are implemented in our
design, which are described below.

3.3.1 Local Memory First Policy: Local memory is given
more priority than shared memory, that is, memory is searched
in local memory and if local memory is full then shared mem-
ory is searched for memory. If shared memory is spread into
different memory pools, then a shared memory pool is chosen
randomly among different memory pools until some space is
found. If none of the memory pools are available, that is total
memory is full, then an error message is thrown. This memory
allocation policy can be chosen by setting ”allocation policy”
parameter of a node to 0.

3.3.2 Alternate Memory Allocation Policy: For every two
memory requests, one frame is allocated from local memory
and the other from shared memory. For example, if two shared
memory pools are maintained, then the 1st time memory is
allocated from local memory, memory for the 2nd request
is assigned from shared memory pool 1, memory for the
3rd request is assigned from local memory, memory for the
4th request is assigned from shared memory pool 2 and so
on. This memory allocation policy can be chosen by setting
”allocation policy” parameter of a node to 1.

3.3.3 Round Robin Memory Allocation Policy: Memory
frames are scheduled to be allocated from shared and lo-
cal memory based on the total number of memory pools,
which includes local memory pool of a node and total shared
memory pools in a round robin fashion. If two shared mem-
ory pools are maintained, then for the 1st memory request,
memory is allocated from local memory, for the 2nd mem-
ory request, memory is allocated from shared memory pool
1, for the 3rd memory request, memory is allocated from
shared memory pool 2, for the 4th memory request, memory
is allocated from local memory and so on. This memory al-
location policy can be chosen by setting ”allocation policy”
parameter of a node to 2.

3.3.4 Proportional Memory Allocation Policy: The propor-
tion at which memory frames are allocated from shared and
local memory is based on the fraction of local memory size
to total shared memory size. For example, if the local mem-
ory size is 2GB and shared memory size is of 16GB, then,
for the 1st memory allocation request, memory is allocated
from local memory while the next 8 memory requests are
allocated from shared memory in sequential order. For the
next memory request, which is 10th memory request, memory
is allocated from local memory and so forth. This memory

allocation policy can be chosen by setting ”allocation policy”
parameter of a node to 3.

3.4 Communication Between Nodes

Opal also allows nodes to communicate directly with one
another by sending hints with same fileID to Opal using
Ariel ariel m map mlm and ariel mlm malloc calls. Opal
checks if the received fileID is registered with any memory.
If it is, then the specific page index is sent to the requesting
node. If the fileID is not registered with any memory page,
then memory is allocated based on the requested size. The
allocated memory region is now registered with the requester
fileID. Nodes can share information just by writing infor-
mation to the specific pages. This reduces costly OpenMPI
calls to share information between nodes.

4 EVALUATION

We validated our design by calculating the performance of the
system in-terms of instructions per cycle (IPC). We vary the
number of nodes, number of shared memory pools and mem-
ory allocation policies. The average number of instructions
per cycle is taken into consideration. Simulation parame-
ters and applications that we used along with application
parameters are shown in Tables 3 and 4 respectively.

Table 3: Simulation Parameters

Element Parameters

CPU 8 Out-of-Order cores, 2GHz, 2 issues/cycles,
32 max. outstanding requests

L1 private, 64B blocks, 32KB, LRU

L2 private, 64B blocks, 256KB, LRU

L3 shared, 64B blocks ,16MB, LRU

Local memory 2GB, DDR4-based DRAM

Global mem-
ory

16GB, NVM-based DIMM (PCM), 128 max.
outstanding requests, 16 banks
300ns Read Latency, 1000ns Write Latency

External net-
work latency

20ns[10]

Table 4: Applciations

Application Value

XSBench [27] -s large -t 8

Lulesh [19] -s 120

SimpleMoC [17] -t 8 -s

Pennant [15] leblancbig.pnt

miniFE [18] -nx 140 -ny 140 -nz 140

NAS:IS [8, 9] class C

Table 3 depicts simulation parameters for our experiments.
According to this, each node has 8 cores and each core can
serve up to 2 instructions per cycle. The clock frequency of
the cores is 2GHz. Each core is configured to service up to 100
million instructions. Three levels of cache are used, L1, L2,

Exploring Allocation Policies in Disaggregated Non-Volatile Memories MCHPC’18, November 11, 2018, Dallas, TX, USA

and L3, with sizes of 32KB, 256KB and 16MB respectively
and each are of non-inclusive type. Local memory size is 2GB
and is of DRAM type. External memory is of NVM type with
16GB size. Network latency is critical in disaggregated mem-
ory system. For the external network latency, we use 20ns
which has been modelled after the GenZ network latency.

Since our focus is on HPC applications we evaluated our
design using 6 HPC mini applications. XSBench [27], a mini-
app representing a key computational kernel of the Monte
Carlo neutronics application, OpenMC. Lulesh [19], a mini-
app for hydrodynamics. Pennant [15] is an unstructured mesh
physics mini-app designed for advanced architecture research.
SimpleMOC [17], mini-app is to demonstrate the performance
characteristics and viability of the Method of Characteristics
(MOC) for 3D neutron transport calculations in the context
of full scale light water reactor simulation. NASA IS [8, 9]
mimic the computation and data movement characteristics of
large scale computational fluid dynamics (CFD) applications.
IS is an integer sort kernel which performs a sorting operation.
MiniFE [18] is a proxy application for unstructured implicit
finite element codes. Applications and their parameters are
shown in Table 4. We decided upon these specific applications
as these are memory intensive.

4.1 Memory Allocation Policies

If more memory is allocated from shared memory, the perfor-
mance of the system worsens as the delay in accessing shared
memory is high. Memory allocation policies, explained in
section 3.3, control allocation of local and shared memory.
Contention at shared memory is one of the key factors that
contributes to the performance in disaggregated memory sys-
tems. The more the contention at the memory, the more will
be the delay in accessing memory. Contention at memory is
higher if more nodes are accessing memory at a given time.
Accordingly, we observed the following traits for each memory
allocation policy.

4.1.1 Local Memory First (LMF) Policy: According to local
memory first allocation policy, memory is allocated in private
memory first and if there is no space in private memory then
memory is allocated from global memory. The benchmark ap-
plications that we used occupy a maximum of approximately
500MB of memory to generate 100 million instructions. Be-
cause each node has its private memory of 2GB, all of the
memory pages should be allocated form local memory and
the performance of the nodes should be same as there is no
contention at local memory due to other nodes. Our results
in Figure 5(a) reflect this. Irrespective of the number of nodes
and number of shared memory pools the performance of each
node, i.e., number of instructions per cycle is equal. We show
this to understand the memory intensity of the benchmarks.
According to Figure 5(a), the IPC of XSBench and MiniFE
is around 0.6. Lulesh, Pennant and NAS:IS have an IPC of
around 1.1. Wherein the IPC of SimpleMoC is 1.6. From this
it can be understood that XSBench and MiniFE are more
memory intensive, SimpleMoC is less memory intensive, and

Lulesh and Pennant are moderately memory intensive among
the set of benchmarks that we experimented with.

4.1.2 Alternate (ALT) Policy: In this memory allocation
policy, for every other page fault, a page is allocated from the
shared memory. Accordingly, almost half of the pages are from
the shared memory, i.e., among 500MB of memory that the
applications use, 230MB of memory is from shared memory.
From Figure 5(a) the IPC of Lulesh is 1.1 while Figure 5(b)
shows an IPC of 0.2. The performance decreases by 81%
when shared memory is used. It further decreases if there are
a greater number of nodes accessing the shared memory. For
the same benchmark, the IPC is 0.05 when 4 nodes share the
external memory. As the number of nodes making use of the
shared memory increases, contention at the shared memory
increases and the individual node performance decreases.
Contention can be reduced by dividing the shared memory
into number of memory pools and hence the performance of
the system increases. From Figure 5(b) it can be seen that
for Pennant, the IPC is 0.12 and 0.34 with 1 node when
shared memory is maintained in 1 shared memory pool and 4
shared memory pools respectively. With 4 nodes, the IPC is
0.1 when shared memory is maintained in 4 shared memory
pools, which is almost equivalent to the performance of the
system with 1 node when shared memory is maintained in
only 1 shared memory pool.

4.1.3 Round Robin (RR) Policy: Memory is allocated based
on the number of shared and local memory pools. The more
the number of shared memory pools, the more memory ad-
dresses are allocated from the shared memory and the per-
formance decreases. Figure 5 shows that, for the 4 node
SimpleMoC benchmark with 4 shared memory pools, the
IPC is 0.15 for the RR policy and 0.25 for the ALT pol-
icy. This is due to more memory is allocated from shared
memory in the RR memory allocation policy with 4 shared
memory pools. When shared memory is maintained only in 1
memory pool, RR memory allocation policy is same as ALT
memory allocation policy. From Figure 5(c) it can also be
observed that, for some applications, when shared memory is
maintained in more shared memory pools, the performance
decreases due to more memory being allocated from shared
memory. For instance, the IPC of XSBench drops from 0.28
to 0.23 when shared memory is divided into 4 shared memory
pools compared to when shared memory is maintained in 1
shared memory pool.

4.1.4 Proportional (PROP) Policy: Memory allocation in
based on the proportion of local and shared memory. From
the configuration that we used, 16GB of shared memory
and 2GB local memory, the proportion at which shared and
local memory are allocated is 8:1, i.e., for every 9 memory
allocations 8 memory allocations are from shared memory and
1 memory allocation is from local memory. According to this,
more memory is allocated from shared memory in comparison
with RR and ALT allocation policies. From Figure 5(d) it
can be clearly observed that, for miniFE, the IPC is 0.06
with 1 node and when shared memory is maintained in only

MCHPC’18, November 11, 2018, Dallas, TX, USA Vamsee Reddy Kommareddy et al.

 0

 0.5

 1

 1.5

 2

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

a. LMF policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

b. ALT policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

c. RR policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

N
1

N
2

N
4

XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS XSBench miniFE SimpleMoC Lulesh Pennant NAS:IS

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

d. PROP policy

SM1
SM2
SM4

Figure 5: Performance in instructions per cycle of disaggregated memory system with different memory
allocation policies. N indicates number of nodes. SM indicates number of shared memory pools. LMF , ALT ,
RR and PROP indicate local memory first, alternate memory, round robin and proportional memory allocation
policies.

1 shared memory pool. This is less than the IPC of ALT
memory allocation policy and RR memory allocation policy
which is around 0.11 each, from Figures 5(b) and 5(c). As the
nodes increased from 1 to 4, the IPC of the system further
decreased from 0.06 to 0.02. When shared memory is divided
into 4 shared memory pools the IPC of the system increased
to 0.06.

We observe that dividing shared memory into more shared
memory pools does not always improve the performance of
the system. The performance depends on the application
characteristics as well2. From Figure 5 it can be seen that for
NAS:IS benchmark, for several memory allocation policies,
the IPC, when shared memory is maintained in 2 shared
memory pools, is more when compared with IPC of the system
when shared memory is maintained in 4 shared memory pools
with 1 node in the system. We suspect that NAS:IS is latency
sensitive and performs better when local memory is used even
though it has limited memory-level parallelism. When shared
memory is divided into 2 shared memory pools, this can lead
to increase in number of memory accesses serviced by global
memory as in round-robin allocation policy, however, this can

2Accordingly our future work involves developing application aware
memory allocation policies

also improve the bandwidth and memory-level parallelism.
Meanwhile, increasing the number of pools to 4 can lead to
performance degradation as the increase in memory access
latency due to accessing global memory is no longer amortized
by the increase in bandwidth.

5 CONCLUSION

Disaggregated memory is a promising memory architecture to
take advantage of modern memory technologies, for sharing
data, and to efficiently utilize memory. While it may be a
useful system design, before fully adopting this architecture,
there are a lot of challenging design parameters that must be
fully understood such as speed, memory management policies,
virtual to physical address translation, page migration, and
quality of service. To this end, we proposed a new disag-
gregated memory emulator model to examine and explore
various aspects related to disaggregated memory architecture.
Specifically, we implemented a centralized memory manager
in SST which has capability to manage memory in disaggre-
gated memory systems as well as in general systems. Our
future work involves implementing and exploring various page
migration methodologies and enforcing QoS in disaggregated
NVM memory systems.

Exploring Allocation Policies in Disaggregated Non-Volatile Memories MCHPC’18, November 11, 2018, Dallas, TX, USA

ACKNOWLEDGMENTS

This work has been funded through Sandia National Labora-
tories (Contract Number 1844457) Sandia National Labora-
tories is a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

REFERENCES
[1] [n. d.]. https://github.com/VamseeReddyK/Opal example/blob/

master/example configuration.txt
[2] 2015. Adaptive Resource Optimizer For Optimal High Perfor-

mance Compute Resource Utilization. Synopsys Inc, silicon to
software, Mountain View, 1–5.

[3] Nadav Amit. 2017. Optimizing the TLB shootdown algorithm
with page access tracking. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC). 27–39.

[4] Krste Asanovic and David Patterson. 2014. Firebox: A hardware
building block for 2020 warehouse-scale computers. In USENIX
FAST, Vol. 13.

[5] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin,
and Gabriel H Loh. 2017. Avoiding TLB Shootdowns Through
Self-Invalidating TLB Entries. In 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT),
2017. IEEE, 273–287.

[6] A Awad, SD Hammond, GR Voskuilen, and RJ Hoekstra. 2017.
Samba: A Detailed Memory Management Unit (MMU) for the
SST Simulation Framework. Technical Report. Technical Re-
port SAND2017-0002, Sandia National Laboratories, Albuquerque,
NM.

[7] Amro Awad, Gwendolyn Renae Voskuilen, Arun F Rodrigues,
Simon David Hammond, Robert J Hoekstra, and Clayton Hughes.
2017. Messier: A Detailed NVM-Based DIMM Model for the
SST Simulation Framework. Technical Report. Technical Re-
port. Sandia National Laboratories (SNL-NM), Albuquerque, NM
(United States).

[8] David H Bailey. 2011. Nas parallel benchmarks. In Encyclopedia
of Parallel Computing. Springer, 1254–1259.

[9] David H Bailey, Eric Barszcz, John T Barton, David S Brown-
ing, Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O
Frederickson, Thomas A Lasinski, Rob S Schreiber, et al. 1991.
The NAS parallel benchmarks. The International Journal of
Supercomputing Applications 5, 3 (1991), 63–73.

[10] Shekhar Borkar. 2006. Networks for multi-core chips–a contro-
versial view. In Workshop on on-and off-chip interconnection
networks for multicore systems (OCIN), Stanford.

[11] Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vu-
tukuru, and Purushottam Kulkarni. 2017. DiME: A Performance
Emulator for Disaggregated Memory Architectures. In Proceedings
of the 8th Asia-Pacific Workshop on Systems. ACM, 15.

[12] Daniel Turull Chakri Padala and Vinay Yadav. 2017. Time
for memory disaggregation? Ericsson Research Blog. On-
line]. https://www.ericsson.com/research-blog/time-memory-
disaggregation/ (may 2017).

[13] Dan Comperchio and Jason Stevens. 2014. Emerging Computing
Technologies: Hewlett-Packard’s ”The Machine” Project. In HP
Discover 2014 conference held in Las Vegas June 10-12. Willdan
Energy Solutions, 1–4.

[14] Gen-Z Consortium et al. 2017. Gen-Z–A New Approach to Data
Access.

[15] Charles R Ferenbaugh. 2015. PENNANT: an unstructured mesh
mini-app for advanced architecture research. Concurrency and
Computation: Practice and Experience 27, 17 (2015), 4555–4572.

[16] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowd-
hury, and Kang G Shin. 2017. Efficient Memory Disaggregation
with Infiniswap.. In NSDI. 649–667.

[17] Geoffrey Gunow, John Tramm, Benoit Forget, Kord Smith, and
Tim He. 2015. Simplemoc-a performance abstraction for 3d moc.
(2015).

[18] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M
Willenbring, H Carter Edwards, Alan Williams, Mahesh Rajan,
Eric R Keiter, Heidi K Thornquist, and Robert W Numrich. 2009.
Improving performance via mini-applications. Sandia National

Laboratories, Tech. Rep. SAND2009-5574 3 (2009).
[19] Ian Karlin, Jeff Keasler, and JR Neely. 2013. Lulesh 2.0 updates

and changes. Technical Report. Lawrence Livermore National
Laboratory (LLNL), Livermore, CA.

[20] Vamsee Kommareddy, A Awad, C Hughes, and SD Hammond.
2018. Opal: A Centralized Memory Manager for Investigat-
ing Disaggregated Memory Systems. Technical Report. Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States).

[21] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ran-
ganathan, Steven K Reinhardt, and Thomas F Wenisch. 2009.
Disaggregated memory for expansion and sharing in blade servers.
In ACM SIGARCH Computer Architecture News, Vol. 37. ACM,
267–278.

[22] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John
Slice, Mike Ignatowski, and Gabriel H Loh. 2015. Heterogeneous
memory architectures: A HW/SW approach for mixing die-stacked
and off-package memories. In 21st International Symposium on
High Performance Computer Architecture (HPCA), 2015. IEEE,
126–136.

[23] Hugo Meyer, Jose Carlos Sancho, Josue V Quiroga, Ferad Zyulk-
yarov, Damian Roca, and Mario Nemirovsky. 2017. Disaggregated
computing. an evaluation of current trends for datacentres. Pro-
cedia Computer Science 108 (2017), 685–694.

[24] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad
Kersey, Ron Oldfield, Marlo Weston, Rolf Risen, Jeanine Cook,
Paul Rosenfeld, E CooperBalls, et al. 2011. The structural sim-
ulation toolkit. ACM SIGMETRICS Performance Evaluation
Review 38, 4 (2011), 37–42.

[25] Stcphcn W Sherman and JC Browne. 1973. Trace driven modeling:
Review and overview. In Proceedings of the 1st symposium on
Simulation of computer systems. IEEE Press, 200–207.

[26] Patricia J. Teller. 1990. Translation-lookaside buffer consistency.
Computer 23, 6 (1990), 26–36.

[27] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin
Schulz. 2014. XSBench-the development and verification of a
performance abstraction for Monte Carlo reactor analysis. The
Role of Reactor Physics toward a Sustainable Future (PHYSOR)
(2014).

[28] Richard A Uhlig and Trevor N Mudge. 1997. Trace-driven memory
simulation: A survey. ACM Computing Surveys (CSUR) 29, 2
(1997), 128–170.

https://github.com/VamseeReddyK/Opal_example/blob/master/example_configuration.txt
https://github.com/VamseeReddyK/Opal_example/blob/master/example_configuration.txt

HeterogeneousMemory and Arena-Based Heap Allocation

SeanWilliams
NewMexico Consortium

swilliams@newmexicoconsortium.org

Latchesar Ionkov
Los Alamos National Laboratory

lionkov@lanl.gov

Michael Lang
Los Alamos National Laboratory

mlang@lanl.gov

Jason Lee
Los Alamos National Laboratory

jasonlee@lanl.gov

ABSTRACT

NonuniformMemory Access (NUMA) will likely continue to be the

chief abstraction used to expose heterogeneous memory. One major

problemwith usingNUMA in thisway is, the assignment ofmemory

to devices, mediated by the hardware and Linux OS, is only resolved

to page granularity. �at is, pages, not allocations, are explicitly

assigned to memory devices. �is is particularly troublesome if

one wants to migrate data between devices: since only pages can be

migrated, other data allocated on the same pages will be migrated

as well, and it isn’t easy to tell what data will be swept along to

the target device. We propose a solution to this problem based on

repurposing arena-based heap management to keep locality among

related data structures that are used together, and discuss our work

on such a heap manager.

ACMReference format:

SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee. 2018. Het-

erogeneous Memory and Arena-Based Heap Allocation. In Proceedings of

MCHPC’18: Workshop on Memory Centric High Performance Computing, Dal-

las, TX, USA, November 11, 2018 (MCHPC’18), 5 pages.

DOI: 10.1145/3286475.3286568

1 INTRODUCTION

�ere have been some steps recently to incorporate heterogeneous

memory into high-performance computing. Most prominently, the

now-defunct Intel Knights Landing [4] included integrated higher-

bandwidth memory. Likewise, Nvidia is working to unify CPU

and GPU memory with its NVLink[8] fabric and include higher-

bandwidth memory, and Intel and others are bringing non-volatile

memory to DIMM slots in order to have a higher-capacity, lower-

performance option that is integrated into the memory address

space.

�e Intel Knights Landing exposes its high-bandwidth memory

to the user as a NUMA node as do the IBM CORAL [7] systems.

�is makes perfect sense, since NUMA is a preexisting facility for

bridging the gap between physical and virtualmemory—in principle,

virtual memory removes the need to care about physical devices.

�us, we expect that NUMA will continue to be used as the first-

order abstraction for heterogeneous memory. In the past NUMA

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

MCHPC’18, Dallas, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-6113-2/18/11. . . $15.00
DOI: 10.1145/3286475.3286568

distance has just been representative of the ”hop” distance between

a CPU and a memory node. With high-bandwidth memory the

NUMA distance is being used as a way to differentiate types of

heterogeneous memory. Nevertheless, both multisocket machines

(the traditionalNUMAuse case) andheterogeneousmemory reassert

the importance of knowing and specifying a physical home for a

page of memory.

In Linux, users can interact with NUMA-informed placement via

memorypolicies. �e chief policies are, a�ach this page to the closest

NUMA node; try to a�ach this page to a specific node, and if it’s full,

a�ach to the closest node; and a�ach this page to a specific node,

and fail if it’s full. �is situation opens up many both practical and

theoretical problems of varying importance and tractability—there’s

a large conceptual gap between these simple policies and the actual

use cases of heterogeneous memory. �is paper is about one of the

simpler, more practical ones: that all these policies operate at page

granularity.

�e canonical bridge between pages and data structures is the

heap manager, which dices up pages in such a way as to balance

efficient utilization ofmemorywith the performance of the allocator.

But part of the point of heterogeneous memory is the fundamental

trade-off between speed and capacity, so one would expect optimal

use of such memory systems to involve a lot of churn. On the other

hand, since memory can only be moved between NUMA nodes in

page-sized chunks, an obvious problem arises: what’s good for the

data structure may not be good for the page. If a page contains both

“hot” and “cool” data (i.e., data that would benefit from residing in

high-performance memory, along with data that wouldn’t), then

it’s never clear what the right choice is: should the page be on a

high-performance device, wasting some of this precious resource, or

should it be on a normal-performance device, to makemore efficient

use of limited space?

�ere’s a potential answer in the concept of arenas, in which a

heapmanagermaintainsmultiple heaps. �iswas traditionally done

to reduce lock contention: heaps require substantial bookkeeping,

and the associated data structures can need updatingwhen servicing

malloc and free calls. Having one or more heaps per thread can

reduce or eliminate contention for each heap’s bookkeeping data.

Amajor drawback to the current situation, where pages are tied to

NUMAnodes, is that it can be hard to assess the value of transferring

a page to or from a high-performance memory device. Our proposal

is that, rather than using arenas for the purpose of reducing lock

contention, arenas be used to group data structures that should

“travel together.” Under this proposal, the assessment is not, “is

it a good idea to transfer this data structure”? but, “is it a good

idea to transfer this whole arena”? �e remainder of this paper

MCHPC’18, November 11, 2018, Dallas, TX, USA SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee

will be devoted to discussing various aspects, and pros and cons,

of this approach. Additionally, we provide some use cases for our

implementation and results from experiments.

2 APPROACH

2.1 Homogeneity

NUMA was designed for multisocket machines, so it is based on

an assumption that the only difference between memory devices is

latency. �us, the default NUMA policy, in which allocations are

preferentially located on the memory node nearest the allocating

processor, makes perfect sense. �is point is even baked into the

name, nonuniformmemory access: the assumption is that memory

devices are homogeneous, and only their access is different.

With heterogeneous memory, it is typically the case that both the

characteristics (e.g., performance) and the access of memory devices

will be different. �is makes it difficult to determine what the right

allocation policy is and, whether there actually is a right allocation

policy. Heterogeneity makes the problem of allocation placement

far more difficult than the merely nonuniform-access situation.

In essence, we can reduce this problem to three components: map-

ping allocations to pages, mapping pages to policies, and mapping

policies to devices.

2.2 Allocations→ Pages: Arenas

At the operating system level, memory is only available to page

granularity, via the mmap system call. As a consequence, memory can

only be a�ached to devices (i.e., NUMA nodes) at page granularity.

Of course, most data structure sizes are not multiples of a page size

(4 KiB, 2 MiB, etc.), so we use heap managers (i.e., malloc) to pack

data onto pages in a reasonably efficient way. But this is another

situation where a traditional assumption of homogeneity becomes

pernicious.

But what relationship should be established between pages, al-

locations, and devices? Intel’s memkind [3] library allows one to

create heaps associatedwith particular “kinds” ofmemory, e.g., high-

bandwidth. �e basic idea of memkind, that it’s necessary to address

the problem of matching allocations to heterogeneous pages using

an arena-based heap allocator, is sound.

Whatrole shouldarenasserve insolving thisproblem? Inmemkind,

the intention seems to be that arenas enumerate the kinds of mem-

ory, so that one has a default arena, a high-bandwidth arena, a

high-capacity arena, and so on.

As will be discussed in Section 2.3, we believe that the ability

to move allocations between devices is an important capability.

How does one move allocations? �e memcpy function puts the

allocation at a new address, so preexisting pointers to the alloca-

tion will continue to point to its old address. On the other hand,

the migrate pages system call preserves pointers, but as the name

suggests, it only operates on whole pages.

�is has the obvious consequence that, if one migrates an allo-

cation, migrate pagesmoves all pages containing that allocation.

Since the exact behavior of malloc is hard to predict, this could cause

arbitrarily bad datamovement to occur: Imagine a data structurewas

involved in an intensive computation and was on high-performance

memory, but that computation is over. In principle, these data should

be moved back to normal memory. But it is unclear what else occu-

pies that page and if there is other data on it that are still needed in

high-performance memory.

�e key dynamic here is, since data must be migrated in page-

sized chunks, that arenas should be deployed based on assumptions

about the coherence of data structures. If the programmer believes

data structures A and B are typically operated on together, then they

should be placed on the same page. If data structure C has nothing

to do with A or B, then C should not be placed on a page with them.

What this means in practice is, the proposed API allows one to

define any number of arenas, and select which arena any particular

data structure is placed on. When onewants tomigrate data to a new

device, one migrates its entire arena. �is has the effect of ensuring

that migration occurs only with data structures that should migrate

together, and excluding data structures that should not be swept

along for the ride.

2.3 Pages→ Policies: Modeling

�e big problem of the previous section is, how does one decide

when to move an arena, and to which device? �is opens up a vast

configuration space, which some “hero programmers” may use for

obsessive optimization, but most people won’t want to bother. One

could imagine treating memory placement as a sort of numerical

optimization problem, i.e., one could imagine constructing a model

of where each allocation should reside as a function of time.

Consider the form of such a model: f (A,t ,I)= (···), whereA is the

set of allocations the programwill make, t is time (i.e., the number of

instructions previously executed), and I is an input deck. What is the

cardinality ofA for a particular program? In other words, howmany

allocations does a particular programmake? We could simplify this

question even further to, howmany allocations are made by a call

to mallocwithin a loop or recursive function? �e answer to that

question iswell known; unfortunately, the answer is⊥, i.e., the value

of undecidable computation. �us, the cardinality of A, the set of

allocations made by a program, cannot be known in general, so this

modeling exercise would seem to be off to a rough start.

If we instead pose ourmodel in terms of arenas, then this problem

goes away: the number of arenas is explicitly chosen by the program-

mer, so the cardinality of the set of arenas is not dependent on any

particular run of the program, much less on all possible runs. Under

this arrangement, therefore, we can indeed pose a model of memory

placement by allowing the programmer to give the problem known

bounds.

Notably, this present work only addresses the decidability ofA,

which makes it possible to pose models. Whether those models will

be any good likely hinges on the decidability of f overall, which is a

tall order. We can certainly bound this problem by using knowledge

of our HPC applications. By categorizing HPC applications we can

come upwith a set of ad-hocmethods thatwill improve performance

of HPC applications in most cases.

2.4 Policies→Devices: Orderings

Intel’s memkind allows one to allocate memory on “kinds” of devices,

and one kind is high-bandwidth memory. How do its authors decide

what constitutes a high-bandwidth NUMA node? Let us begin with

a different question: what is NUMA distance?

HeterogeneousMemory and Arena-Based Heap Allocation MCHPC’18, November 11, 2018, Dallas, TX, USA

Remember that NUMAwas developed for homogeneousmemory

that has heterogeneous access. NUMA distance is, not surprisingly,

a relative measure of latency. Among other things, this assumes ho-

mogeneous capacity, so it always makes sense to choose the lowest-

latency memory—there are no trade-offs here.1

High-bandwidth memory does represent a trade-off: we can de-

duce this from the fact that one has even bothered to differentiate

them, i.e., to make normal memory in addition to high-bandwidth

memory. If high-bandwidth memory were strictly be�er, then sys-

tem designers would do away with normal memory. �e ordinary

trade-off is capacity, so the designers were faced with a conundrum:

if high-bandwidth memory is given a low NUMA distance, then

allocations will default to it, and bandwidth-insensitive data will fill

it up. Specialmemory requires special allocation, so high-bandwidth

memory is given a high NUMA distance.

�is means, in order to allocate high-bandwidth memory, one

needs to know it’s there. Which gets us back around to memkind:

how does it know that a systemhas high-bandwidthmemory? If you

dig into the library, youwill eventually find an inline assembly block

with cpuid, followed by some bitwise operations onmagic numbers.

�ese identify whether the CPU family is Intel Knights Landing, and

if it is, then high-bandwidth allocations are bound to the NUMA

node with the magic distance of 31. Other architectures are not

supported—though in Intel’s defense, heterogeneous memory is still

pre�y exotic.

�is discussion was intended to motivate the following one: how

do we decide the properties of memory devices? Memory policy is

the current hammer, and NUMA is the current nail, so the question

for today is, how could we categorize NUMA nodes? �is doesn’t

quite capture the reality of the situation, since we don’t exactly need

categories, but we need orderings. �at is, if we want memory on

a high-bandwidth device, well, there could be several devices with

different bandwidths, some of which are high and some of which

are not. �e be�er question, therefore, is, how do we construct a

bandwidth ranking of devices?

�e first answer that will jump into most people’s heads is em-

piricism. Bandwidth is measurable, so take measurements. �is

approach is problematic, as the central tenet of empirical approaches

is that “incidental” observations are representative of a general phe-

nomenon. �ismakes testingmethodology an important issue, since

(e.g.) bandwidth measurements are only meaningful if the testing

protocol is representative of the conditions underwhich thememory

will be used, size of access and stride of memory comes into play.

A more compelling answer would be to extend NUMA and/or

ACPI to include standardized results (e.g., fromwell-conducted tests)

of various memory metrics for the different NUMA nodes. Such a

standard iswell outside the scopeof thispaper, though it is something

we would be interested in working on, given enough interest and

collaborators.

A final, simple approach would be to require administrators of

high-performance computers to maintain a configuration file listing

standardized characteristics of the NUMA nodes. �is is tractable

(in principle) because the population of heterogeneous-memory

high-performance computers in the world will likely remain small,

1In fact, there is one trade-off: one can theoretically get higher bandwidth and higher
latency by interleaving memory across all NUMA nodes. �is is the intention behind
the “interleave” kernel policy, but it isn’t used much in practice.

and such a configuration only needs to be wri�en at initial setup

and following major upgrades. It would then also be up to the

system administration to oversee a testing protocol, or else to rely

on specifications or similar material from the hardware vendors.

In any case, this section remains speculative because of the simple

fact that heterogeneous memory is itself largely speculative at this

time. All we can do, therefore, is speculate about what the future

may hold.

2.5 SharedMemory Arenas

�e heap memory managers, as implemented at the moment, allow

for memorywaste due to fragmentation. Although themodern heap

managers can be configured to aggressively return free pages to

the operating system, the task is further complicated by the more

complexdata structures themanagers use. In addition to themultiple

arenas they create, the memory is further split into bins that try to

group data of the same size, and extents that belong to the same bin.

Incomputerswithuniformmemory,while fragmentation iswaste-

ful, the problem can usually be fixed by installing more DRAM. For

high performance memory, like HBM, the size is usually fixed and

memory waste becomes a bigger issue.

In the general case of computer use, the memory waste is consid-

ered a normal result of a hard optimization problem. Each process

has its own resources and the processes generally don’t trust each

other. In theHPC environment the biggestmemory users on a server

usually belong to the same job, and while theymight run as separate

processes (for example, the normal case for MPI applications), they

implicitly trust each other. �is trust can be used for be�er memory

utilization by creating a shared memory heap manager that can be

used across multiple processes.

�e proposedAPIwith its arenas fitwell with the implementation

of a shared memory heap manager. �e developer can choose which

data to be in private arenas, handled by the local heap manager, and

which to be shared with other processes from the same job.

In addition to the benefits of using sharedmemoryheapmanagers,

there are also some drawbacks. Sharing arenas might cause worse

memory allocation performance due to lock contention. Data from

multiple processes will be interspersed in the same arena, which

will require careful handling of data movement. Bugs like buffer

overflows can be harder to detect, as the bug could originate from a

different process than the one it appears in.

3 IMPLEMENTATION

3.1 Arena Implementation

�e arena API is implemented as part of the SICM [6] project. Cur-

rently it restricts an arenamemory to belong to a single NUMAnode.

�emain functions of the API are:

sicm_arena sicm_arena_create(size_t maxsize,

sicm_device *dev)

int sicm_arena_set_device(sicm_arena sa,

sicm_device *dev)

void *sicm_arena_alloc(sicm_arena sa, size_t sz)

void *sicm_realloc(void *ptr, size_t sz)

void sicm_free(void *ptr)

sicm_arena sicm_arena_lookup(void *ptr)

MCHPC’18, November 11, 2018, Dallas, TX, USA SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee

Upon arena creation, it is assigned to the specified sicm_device.

If requested, the arena can be moved to another device by using the

sicm_arena_set_device function. A maximum size of the arena

can be specified. If the user tries to allocate more memory than that

size, sicm_arena_allocwill return NULL pointer.

�e arenas functionality is implemented as an extension to the

jemalloc [5] arenas. �e SICM library provides custom hooks to

jemalloc that ensure the arena’s extents use pages from the appropri-

ate NUMAmemory. �ey also keep track of the extents so the pages

can be migrated to another node if requested. �e page migration is

implemented by using the mbind Linux system call. If not all extents

for an arena can be migrated, sicm_arena_set_device returns an

error.

3.2 Integration with ExistingMiddleware

�e interface described in the preceding text is targeted for HPC

runtimes and libraries. Advanced programmers could use it directly

with in applications we see enabling access to heterogeneous mem-

ory for common runtimes such as OpenMP, MPI and Global Arrays,

Legion, Charm++, etc. We have initial implementations for MPI,

Global Arrays and are evaluating functionality for OpenMP.

Global Arrays[1] is an ideal candidate for integration with our

API, having been wri�en with both NUMA and shared memory

in mind. What it does not have is the ability to actively choose

memory devices or create arenas to use for its allocations. Our API

will allow for Global Arrays to do so, which in turn will allow for

be�er performance through be�er placement of data. Currently,

Global Arrays has been modified so that its calls to shm_open are

redirected to SICM. No selection of memory device is done beyond

selecting the first device. �e shared memory arenas used for Global

Arrays depend on the pthreads support for shared memory mutexes.

Data placement in the context of MPI communications is of para-

mount importance to achieve high performance: high-performance

data transfers over the network is only efficient if the data can be

placed correctly in the memory hierarchy and ultimately efficiently

accessible by MPI ranks or threads that need it. Unfortunately, the

MPI standard andMPI implementations do not provide any mean or

interface for the placement of data in complex memory hierarchies.

In addition, the community agrees that it is beneficial to provide

mechanisms to application developers so that they can express the

intent related to the data transfer in order to be�er select where to

store the data once the MPI operation completes.

Based on these constraints, we extended OpenMPI to allow users

to allocate memory by providing hints while using the existing

MPI_Mem_alloc function. Our extension consists in the implemen-

tation of a newmpool component in the OPAL layer that interfaces

with SICM.

Practically, application developers can express hints through the

info structure that is passed in when using MPI_Mem_alloc. �ese

hints can then be used to allocatememory arenas using SICM. At the

moment, such hints includes specifying the need for high bandwidth

memories or standard main memory but can easily be extended to

other types of memory and others types of requirements from users.

Finally, this approach has the huge benefit from not requiring any

modifications to the MPI standards or OpenMPI interfaces, while

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 5 10 15 20 25

T
im

e
 t

o
 M

o
v
e
 (

1
0

N
 s

e
c
o
n
d
s
)

Arena Size (2N bytes)

 DRAM->DRAM (P9 SICM)
 DRAM->HBM (KNL SICM)
 HBM->DRAM (KNL SICM)

 DRAM->HBM (P9 SICM)
 HBM->DRAM (P9 SICM)

 DRAM->HBM (P9 memmove)
 HBM->DRAM (P9 memmove)

Figure 1: Time ToMoveMemory Between Devices

still giving control over memory allocation and data placement to

users.

4 EXPERIMENTAL STUDY

4.1 MovingMemory Between Devices

Figure 1 shows comparison of the time to move an arena between

different devices, depending on the size of the arena. We ran the ex-

periments on two architectures that support heterogeneousmemory.

�e IBM CORAL Power 9 machines have six active NUMA nodes,

four with DRAM and two with the high bandwidth memory located

on theNvidiaGPU.�eKnight’s Landingmachines have twoNUMA

nodes, one with DRAM and one with high bandwidth memory. We

testedmoving arenas from onememory type to another. �eDRAM-

to-DRAM values show the movement from one DRAMNUMA node

to another. Because the KNLmachines have only one DRAM node,

there is no DRAM-to-DRAM plot for it. Each datapoint represents

the average time taken to move an arena with size 2N bytes. For

comparison, we also show the time it takes to move the data with

memmove.

�e results show that data migration is expensive. Moving 0.5 GB

of data takes approximately a second. �erefore, arena migration to

high performance memory makes sense only if the computational

kernel that is using it runs long enough to amortize the cost of

migration. Arena migration is much slower than moving the data

with memmove. �e main basis for the slowdown is migration uses

the Linux kernel to transport the data to pages of different memory

device while preserving the same addresses, while memmove doesn’t.

�e initial analysis of thekernel shows that the code for themigration

is not optimized for the task, and palpable future work would be to

improve the speed of the arena migration.

4.2 VPIC

In order to quantify the usefulness of our API in real world appli-

cations, we compared using our API with using malloc(3) and

numactl(8) in VPIC[2], a particle-in-cell simulation code for mod-

eling kinetic plasmas in one, two, or three spatial dimensions.

Figure 2 shows the results of running VPIC with malloc(3) run-

ning normally, under the influence of numactl(8) --preferred,

and replaced with our API.�e rank count of 64 was chosen to be

HeterogeneousMemory and Arena-Based Heap Allocation MCHPC’18, November 11, 2018, Dallas, TX, USA

Figure 2: VPIC runtimes with different t stop values, using

malloc(3), numactl(8), and SICM. (64 ranks, nppc=25)

Figure 3: VPIC runtimes with different number Of ranks, us-

ing malloc(3), numactl(8), and SICM (with spilling).

small enough to run quickly, while large enough to represent a real

problem. �e value nppc was set to 25 in order to allow for the

entirety of VPIC allocations to reside in high bandwidth memory.

Using malloc(3) normally results in the longest runtimes of each

run of VPIC. Using numactl(8) and our API results in lower run-

times. However, our SICMAPI results in runtimes that are slightly

faster than with numactl(8).

Figure 3 shows the results of running VPIC with provided fixed

input decks. In these runs, the VPIC allocationswere not always able

to fit into high bandwidth memory, so a simple spilling function was

added into VPIC to use DRAM arenas once high bandwidth memory

was exhausted (once DRAMwas chosen to be used, high bandwidth

memory was not used again during a run). �e results show that our

API has higher overhead than both malloc(3) and numactl(8) when

spilling is required.

5 CONCLUSION

Heterogeneity always presents a serious problem for computer scien-

tists’ preference for elegance, and heterogeneousmemory is shaping

up to be no different. Broadly speaking, we see the problem of het-

erogeneous memory as consisting of three major parts: controlling

how allocations end up on pages, deciding how pages end up under

policies, and specifying how policies correspond to actual devices.

�e first problem, pu�ing allocations on pages, we addressed

through a redefining the meaning of allocator arenas. Under this

scheme, we assume that data will move between devices as the pro-

gram runs, andwegive programmers a tool to handle the unintended

consequences of page migration. We then argued that this view of

arenas also dampens some of the undecidability of the problem of

modeling the behavior of computer programs. Finally, we discussed

the problems of interpreting memory policies, and presented a few

solutions.

We described initial use of the SICMAPI, and showed preliminary

results for micro-benchmarks and an application, VPIC.

Together, we believe this represents a complete “middleware”

package for heterogeneous memory, so that we will be poised to

tackle its issuesonceamajorheterogeneous-memorysupercomputer

is built.

As future work, we are planning to extend the API to support

arenas on multiple NUMA nodes, as well as a way to specify that

an arena can be placed on any available memory, because its data

is not in active use at the moment. Also, an asynchronous version

of the arena migration will help improving the overall performance

of the applications. An important task to look into is improving the

performance of the mbind Linux implementation and closing the

performance gap between memmove and the system call.

6 ACKNOWLEDGEMENT

�e Simplified Interface to Complex Memory (SICM) is supported

by the Exascale Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science and the

National Nuclear Security Administration.

REFERENCES
[1] 2018. Global Arrays. (2018). h�ps://github.com/GlobalArrays/ga
[2] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J. Kerbyson. 2008.

0.374 Pflop/s Trillion-particle Kinetic Modeling of Laser Plasma Interaction on
Roadrunner. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC ’08). IEEE Press, Piscataway, NJ, USA, Article 63, 11 pages. h�p://dl.acm.org/
citation.cfm?id=1413370.1413435

[3] Christopher Cantalupo, Vishwanath Venkatesan, Jeff Hammond, Krzysztof
Czurlyo, and SimonDavidHammond. 2015.memkind: AnExtensibleHeapMemory
Manager for Heterogeneous Memory Platforms and Mixed Memory Policies. Techni-
cal Report. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United
States).

[4] George Chrysos. 2014. Intel® Xeon Phi coprocessor-the architecture. Intel
Whitepaper 176 (2014).

[5] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
In Proc. of the BSDCan Conference, O�awa, Canada.

[6] LANL. 2018. SICM – Simplified Interface to Complex Memory. (2018). h�ps:
//github.com/lanl/SICM

[7] LLNL. 2018. CORAL/Sierra System. (2018). h�ps://asc.llnl.gov/coral-info
[8] NVidia. 2018. NVidia NVLink High-Speed Interconnect. (2018). h�ps://www.

nvidia.com/en-us/data-center/nvlink/

https://github.com/GlobalArrays/ga
http://dl.acm.org/citation.cfm?id=1413370.1413435
http://dl.acm.org/citation.cfm?id=1413370.1413435
https://github.com/lanl/SICM
https://github.com/lanl/SICM
https://asc.llnl.gov/coral-info
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

	Abstract
	1 Introduction
	2 Overview of Intel Memory Drive Technology
	3 Methodology
	3.1 Hardware and software configuration
	3.2 Data size representation

	4 Description of Benchmarks
	4.1 Synthetic benchmarks
	4.2 Scientific kernels
	4.3 Scientific applications

	5 Results
	5.1 Synthetic benchmarks
	5.2 Scientific kernels
	5.3 Scientific applications
	5.4 Analysis of IMDT performance
	5.5 Summary

	6 Discussion
	7 Conclusions and future work
	8 Acknowledgements
	References
	Abstract
	1 Introduction
	2 Previous Work
	3 RISC-V Scalable Addressing
	3.1 Application Targets
	3.2 xBGAS Machine Organization
	3.3 xBGAS Addressing
	3.4 xBGAS ISA Extension

	4 Runtime Infrastructure
	4.1 Simulation Environment
	4.2 xBGAS Runtime

	5 Conclusions
	6 Future Work
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Problem Definition and Background
	3 NVC: A Tool for Studying Application Recomputability
	4 Recomputability Evaluation
	4.1 Execution Platform and Simulation Configurations.
	4.2 Benchmark Background.
	4.3 Recomputability Summary.
	4.4 Recomputability at Different Execution Phases
	4.5 Recomputability with Different Numbers of Threads
	4.6 Analysis based on Data Inconsistent Rate
	4.7 Discussions and Future Work

	5 Related Work
	6 Conclusions
	References
	Abstract
	1 Introduction
	2 Compiler Transformations
	2.1 Node/Loop Fusion
	2.2 Edge Flipping
	2.3 Use of Remote Updates

	3 Experiments
	3.1 Experimental Setup
	3.2 Conductance algorithm
	3.3 Single Source Shortest Path using Bellman-Ford's Algorithm (SSSP-BF)
	3.4 Triangle Counting Algorithm

	4 Related Work
	5 Conclusions and Future work
	6 Acknowledgments
	References
	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Opal
	3.2 Opal Configuration
	3.3 Memory Allocation Policies
	3.4 Communication Between Nodes

	4 Evaluation
	4.1 Memory Allocation Policies

	5 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Approach
	2.1 Homogeneity
	2.2 Allocations Pages: Arenas
	2.3 Pages Policies: Modeling
	2.4 Policies Devices: Orderings
	2.5 Shared Memory Arenas

	3 Implementation
	3.1 Arena Implementation
	3.2 Integration with Existing Middleware

	4 Experimental Study
	4.1 Moving Memory Between Devices
	4.2 VPIC

	5 Conclusion
	6 Acknowledgement
	References

