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ABSTRACT

The memory wall challenge — the growing disparity between CPU
speed and memory speed — has been one of the most critical and
long-standing challenges in computing. For high performance com-
puting, programming to achieve efficient execution of parallel ap-
plications often requires more tuning and optimization efforts to
improve data and memory access than for managing parallelism.
The situation is further complicated by the recent expansion of the
memory hierarchy, which is becoming deeper and more diversified
with the adoption of new memory technologies and architectures
such as 3D-stacked memory, non-volatile random-access memory
(NVRAM), and hybrid software and hardware caches.

The authors believe it is important to elevate the notion of
memory-centric programming, with relevance to the compute-
centric or data-centric programming paradigms, to utilize the un-
precedented and ever-elevating modern memory systems. Memory-
centric programming refers to the notion and techniques of exposing
hardware memory system and its hierarchy, which could include
DRAM and NUMA regions, shared and private caches, scratch pad,
3-D stacked memory, non-volatile memory, and remote memory, to
the programmer via portable programming abstractions and APIs.
These interfaces seek to improve the dialogue between program-
mers and system software, and to enable compiler optimizations,
runtime adaptation, and hardware reconguration with regard to
data movement, beyond what can be achieved using existing par-
allel programming APIs. In this paper, we provide an overview of
memory-centric programming concepts and principles for high
performance computing.

CCS CONCEPTS

+ Computing methodologies — Parallel computing method-
ologies; Concurrent computing methodologies; « Theory of com-
putation — Concurrency;

“The authors were organizers of the MCHPC’17 workshop, which was held in
conjunction with the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, 2017. The website for the workshop is
http://passlab.github.io/mchpc/mchpc2017.html.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

MCHPC’17, November 12—17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5131-7/17/11...$15.00
https://doi.org/10.1145/3145617.3158212

Ron Brightwell
Sandia National Laboratories
Albuquerque, NM
rbbrigh@sandia.gov

Xian-He Sun
Illinois Institute of Technology
Chicago, IL
sun@iit.edu

KEYWORDS

Memory-Centric Programming, Abstract Machine Model, Explicit
Data Mapping, Data Consistency

ACM Reference Format:

Yonghong Yan, Ron Brightwell, and Xian-He Sun. 2017. Principles of Memory
Centric Programming for High Performance Computing. In MCHPC’17:
Workshop on Memory-Centric Programming for HPC, November 12—17, 2017,
Denver, CO, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3145617.3158212

1 INTRODUCTION

The memory wall challenge — the growing disparity between CPU
speed and memory speed — has been one of the most critical and
long-standing challenges in computing. To combat the memory
wall, both hardware and software techniques have been extensively
developed for hiding latency and improving bandwidth utilization,
including multi-level cache architectures, memory interleaving,
software and hardware prefetching, software locality optimizations,
and vector and hardware thread parallelism. While these techniques
have been proven to be effective in containing the memory wall,
the results vary significantly between applications and architec-
tures [7, 9-12, 21]. For high performance computing, programming
to achieve efficient execution of parallel applications often requires
more tuning and optimization efforts to improve data and mem-
ory access than for managing parallelism, which often results in
creating applications that are not performance-portable.

More recently, memory systems have become another wave
of increasing complexity in computing, on top of the dramati-
cally increased parallelism and heterogeneity in hardware. New
memory technologies and architectures have been introduced into
the conventional memory hierarchy, e.g. 3D-stacked memory [17,
22], NVRAM [18], and hybrid software/hardware cache architec-
tures [16, 19]. In Table 1, we list in the last three rows the three
main memory technologies that are recently being made into com-
mercial products. These technologies and architecture advances
improve memory performance (latency, bandwidth, and power con-
sumption) and provide more options for users to optimize memory-
intensive applications for optimal performance; however, they re-
quire significant programming efforts to use them efficiently.

For HPC, the performance challenge of parallel applications is
often concerned with the tension between programmability, ef-
ficiency, and complexity when using these memory systems. A
portable parallel programming framework that addresses the exist-
ing memory wall challenge and is able to sustain the emergence of
new memory technologies and architectures for parallel processing
is still needed.
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Memory Types | Read Latency (ns) Write Latency (ns) Bandwidth (GB/s) Dynamic Power | Leak Power Density Addressability
SRAM and Cache (L1,L2 andL3) | 2-8 2-8 Low | High 10s MB byte
DRAM | 50 - 200 50 - 200 25 Medium | Medium 10s GB Block/word
Stacked DRAM (HMC and HBM) | 40 - 90 40 - 90 400 Low | Medium 10s GB Block or Page
NAND NVRAM | 100us 2-3ms 1GB/s for read and 10MB/s | Low for read; high for write | Low 100s GB Block or Page
for write
3D XPoint (Intel and Micron) | 2-3x slower than DRAM | 4-6x slower than DRAM 8-10x of DRAM

Table 1: Comparison of memory technologies (data collected from Wikipedia and publications [1, 16, 25]): Stacked DRAM
provides much higher bandwidth than DRAM. NVRAM and 3D XPoint have much higher write latency than read latency.

2 MEMORY-CENTRIC PROGRAMMING

Memory-centric programming, in contrast to compute-centric or
data-centric programming paradigms, refers to the notion and tech-
niques of exposing hardware memory system and its hierarchy,
which could include DRAM and NUMA regions, shared and private
caches, scratch pad, 3-D stacked memory, non-volatile memory
and remote memory to the programmer via portable programming
abstractions and APIs. These interfaces, such as for explicit memory
allocation, data movement, and consistency enforcement between
memories, enable explicit and fine-grained manipulation of data ob-
jects in different memories for extreme performance programming.
These interfaces seek to improve the dialogue between program-
mers and system software, and to enable compiler optimizations,
runtime adaptation, and hardware reconfiguration with regard to
data movement, beyond what can be achieved using existing par-
allel programming APIs. The interfaces should also be abstract
enough to sustain the emergence of new memory technologies and
architectures for parallel processing, and also allow for architectural
extensions for compiler to apply agreesive locality optimization.
This concept has been partially adopted in mainstream program-
ming interfaces: place in OpenMP and X10, and locale in Chapel to
represent memory regions in a system; shared modifier in CUDA
and cache modifier in OpenACC for representing GPU scratch
pad SRAM; the memkind library and the recent effort for OpenMP
memory management for supporting 3-D stacked memory (HBM or
HMC); and the PMEM library for persistent memory programming.

2.1 Comparison with Other Programming
Models

The principles behind memory-centric parallel programming that
differentiate it from compute- and data-centric programming are
the use of portable interfaces for representing the memory hierar-
chy and for directly programming a memory system, and the notion
and interface for explicit data placement, data movement, and con-
sistency enforcement between memories and memory regions. In
Figure 1, we compare the available parallel APIs and highlight the
position of memory-centric programming in the taxonomy.
Memory-centric programming uses explicit shared data accesses
and partitioning, as opposing to implicit data access of intra-node

1A similar comparison with four taxonomies (task identification, task mapping, data
distribution, and communication mapping) was presented in the Berkeley View of
Parallel Computing Landscape [6].
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Figure 1: Classifying programming models with two tax-
onomies: shared data access (implicit or explicit) and man-
aging/mapping parallelism (implicit or explicit)!

threading model such as OpenMP?2. Implicit data sharing simpli-
fies shared data access, promising better productivity than using
explicit data access, yet more performance tuning and optimization
efforts are needed for scaling beyond hundreds of cores [14, 20]. For
comparison with inter-node or hybrid programming models, such
as X10 [3], Chapel [2] and PGAS languages (HPF and UPC), the
interfaces should be designed to differentiate vertical (caching) and
horizontal (data copy) data movement in the memory hierarchy,
and permit relaxed data consistency for achieving more aggressive
latency hiding and data-computation overlapping than achievable
by using the sequential data consistency model, which is assumed
by most parallel programming models.

It is important to discuss the differences between memory-centric
and data-centric programming such as Legion [8, 24]. In a Legion
program, data and access to the data is organized using logical re-
gions, which are mapped to hardware memory locations at runtime.
Memory-centric programming provides APIs for directly mapping
data to a memory system represented, thus eliminating the logical
layer and reducing the overhead of the indirection.

3 MEMORY-CENTRIC PROGRAMMING
PRINCIPLES

We have identified four principles for creating memory-centric
parallel programming models.

20penMP has shared and private clauses for annotating whether a new copy of a
variable should be created or not for a thread. For shared-attribute data, the semantics
of OpenMP still follow implicit data access approach.
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3.1 Formal Abstract Machine Models

The foremost innovation of memory-centric programming is the
use of a formal specification for representing computer system
architecture including the memory systems across the program-
ming software stack. An abstract machine model is one such option
that provides conceptual models for hardware design, performance
modeling, and compiler implementation [4, 5, 13, 15]; however, the
model needs to be in a formal specification for parallel program-
ming. For the hardware memory hierarchy, a tree-based abstract
machine model is a natural choice. For example, our preliminary
work of the hierarchical place tree (HPT) [27] has been used as
a portable interface for programming tasks and data movement.
An HPT for a real machine represents a necessary subset of the
machine attributes that are important for parallel programming and
performance optimization according to specific requirements. To
illustrate this for a 4 CPU NUMA node (e.g. the 24-core Cray XE6),
we created three distinct HPTs shown in Figure 2:a-c. Figure 2:c
gives a flat HPT abstraction in which each core has uniform and
direct access to the main memory. Figure 2:a, in contrast, gives a
full abstraction of the memory system, including the interconnect.
Based on this view, optimizations with respect to both the node
architecture (e.g. improving locality through shared L3 cache) and
the core microarchitecture (e.g. loop tiling according to the L2/L1
cache size) may be performed. Figure 2:b presents an intermediate
view where caches and the interconnect are hidden, but not the
NUMA region. Figure 2:d shows how an existing heterogeneous
platform could be abstracted using the HPT model. In Figure 2:e,
we show a sample design of the HPT APIs for memory-centric
programming to implement hybrid tiling and parallelism for matrix
multiplication. The distribute construct describes horizontal data
distribution of the mapped arrays between sibling places.

An HPT can be parameterized differently for programmers, the
compiler, and the runtime system to expose only the aspects of the
machine that are important or relevant to each. A formal specifica-
tion and usage model will significantly help produce portable code
and improve program readability for architecture-specific optimiza-
tions. For example, memory optimization techniques for improving
cache data locality, e.g. tiling, can be formally specified in a pro-
gram using the HPT and explicit data mapping interfaces. For the
compiler and the runtime, a parameterized HPT can be used for
machine-aware compilation and data/locality-aware scheduling.

3.2 Explicit Data Operations and Memory
Association

Using imperative programming languages, data has its program or
domain view (e.g. array or scalar variable declaration). It then is as-
sociated with virtual memory, e.g. through heap memory allocation.
Physical memory association happens often upon data accesses, a
typical case of first-touch policy. Data access incur both physical
page allocation and the actual read and write, which are all part of
computation statements and implicit. The design principles for data
placement, mapping and access in memory-centric programming
are to make those operations explicit by using either new interfaces
or annotating existing operations. Source and destination memo-
ries or regions, which are represented using the abstract machine
model, should be specified in those interfaces to allow for direct
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manipulation of data objects in memory. These interfaces could
include APIs and annotations for 1) associating domain view of
data with memory storages when declaring data and moving data,
2) making data handling operations explicit by annotating it with
designed interfaces, and 3) binding computation with data that is
also known its memory location. As an example of this principle,
Figure 3 shows our work of extending OpenMP for specifying the
distribution of data and loops, and the alignment between data and
loop iterations for CPU, GPU and Intel Xeon Phi accelerators [26].
The results (as many as 3X speedup) show that when being given
those details about data and computation mapping, the runtime is
able to chunk parallel loops and partition array data so that over-
lapped processing of data copy and computation can be effectively
achieved, thus hiding the latency of data movement between CPU
and accelerator memories. Thus, we believe such an approach or
similar will be effective for programming the emerging memory
architectures including the hybrid HBM cache system in Xeon Phi,
and the page-based NVRAM software cache memory.

3.3 Relaxed Functional Semantics of Parallel
Work Units

Work units are parallel scheduling tasks that are created from the
specification of data parallelism, task parallelism, and offloading
tasks. Work units in threading programming model [23] assume
implicit data access and shared memory semantics, which limits
the compiler and runtime for assisting runtime execution for over-
lapping computation and data movement. Relaxed functional se-
mantics restrict that the interaction of a work unit with its external
environment has to be explicitly specified, even through shared
memory access. For example, a task should explicitly specifying its
intended data operations on an external array (read and/or write).
This is important for the automatic generation of task dependency
graph, and the annotated read/write information will facilitate com-
piler optimization and improve runtime adaptation.

The introduction of map, copyin, copyout clause in OpenMP
and OpenACC for accelerators are the approach for offloading
computation since accelerators are in different memory space from
host. By extending the similar semantics to programming on hybrid
shared and discrete memory space will create portable program for
both homogeneous and heterogeneous memory systems as well as
providing more information to compiler and runtime systems for
data aware scheduling and optimizations.

3.4 Relaxed Data Consistency and Coherence
Enforcement in Different Granularity

To fully acknowledge the speed gaps between different memory
technologies of modern memory systems, parallel programming
models that permit relaxed data consistency will allow for applying
more aggressive latency hiding and data-computation overlapping
techniques than that by the sequential data consistency model,
which is assumed by most parallel programming models. Also in the
explicit data mapping principles introduced before, it enforces strict
memory consistency, i.e., data movement happens at the location
where the mapping is specified. Such a consistency model limits the
amount of overlapping that can be achieved for hiding latency. To
enable bulk data prefetching and out-of-order data movement and
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void matmul(int N, REAL %A, REAL %B, REAL %C, int n) {
int i, j, k;
place_t * hpt = get_place(); /* get the current hpt subtree x/
int num = get_num_child_place(hpt); /* the number of child places */

/* leaf place, now compute sequentially x/

1
2
3
4
5 if (num == 0) {
6
7
8

Legends N matmu}_sequential(N, A, B, C, n);
(7o ] else
- NUMARegion 9 place_t * pl = get_child_place(hpt, 0); /x first child place */
L3 Cache 10 /* compute tile size based on place (cache) size */
L2 Cache 11 int tileSize = floor(sqrt(pl->size/3)); /* 3 matrices x/
12 int numTile = ceil(n/tileSize);
éi;acizhu" 13 #pragma omp parallel num_threads(num)
®@ prke, 14 map(from:C[0:n] [0:n] distribute(BLOCK(tileSize),BLOCK(tileSize))),
@  AcchgentWorker| 15 map(to:A[0:n] [0:n] distribute(ALIGN(C), BLOCK(tileSize)),n),
Cache-coherent 16 map(to:B[0:n][0:n] distribute(BLOCK(tileSize),ALIGN(C)))
S WTinterconnect 17 {
Jict Mem Link 18 place_t x hpt = get_place(); /% the child hpt of current place */
Explicit Mem Lin 19 matmul(N, A, B, C, tileSize); /* tail recursion %/

GPU Mem 20

i (e)

Figure 2: a, b, c: The HPTs for a 4-CPU NUMA machine, d: The HPT for a machine with 2 accelerators, and e: hybrid tiling with
parallelism for matrix multiplication using the initial HPT APIs

l#pragma omp parallel target data device(x) \
map (to:n, m, omega, ax, ay, b,\
£[0:n] [0:m] distribute (ALIGN(loopl),FULL)) \
map (tofrom:u[0:n] [0:m] \

distribute (ALIGN (loopl),FULL))\

'MODEL_PROFILE_AUTO
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ST

9#pragma omp parallel for target device(*) \

BLOCK

MODEL1AUTO |iia48250

SCHED_PROFILE

10 collapse(2) distribute (ALIGN(loopl))

11 for (i=0;i<n;i++) SCHED_PROFILE_AUTO

MODEL_PROFILE_AUTO  |iS55:2 s s

'MODEL_2_AUTO

matvec-2ak

12 for (j=0; j<m; j++)

MODEL_1_AUTO

13 uold[i][3] = ulil[3l1;

SCHED_DYNAMIC 40025

14 BLock

MODEL 2 /
omp halo_ (uold) MODEL_PROFILE_AUTO

16

SCHED_PROFILE_AUTO

matul6184
z
3

17#pragma omp parallel for target device(x) \

18 reduction(+:error) distribute (AUTO)

SCHED_DYNAMIC

40000 50000 0000 120000 140000 160000 180000 200000

TOTAL OFF TIME(ms)

191oopl: for (i=0;i<n;i++) { 62
20 if (1==0||i-=n-1) continue; el — NS
21 for ;3<(m=1); ++) { 3 SCHED_PROFILE_AUTO

2 resid = (ax(uold[i-11[3] + wold[i+1]1[3D\| 3 Mot AT —
23 + ay*(uold[i] [§-1] + uold[i] [+11)\ = SCHED_ GUIDED sB85.80

2 + b * uold[i1(3] - £1i113))/b; GOEPRORE 7o s tor ) eaosab NG
25 uli] [J] = uold[i][]j] - omega * resid; N MODEL_PROFILE_AUTO

26 error = error + residsresid ; H MODEL.2_AUTO

27 ) H Mook 1 AUTO

% ) SCHED. DYRANIC a2

29 // the rest code omitted ... 000

30}

Figure 3: The use of distribute and AUTO and ALIGN clauses to explicitly specify data mapping, distribution and binding with
loop distributions [26]. Left figure: Jacobi example; Right figure: performance results using different loop distribution policies.

computation, the mapping interfaces needs to have more relaxed
semantics.

Thus memory-centric programming should enable relaxed data
consistency and coherence enforcement for users to explore high
degree of computation and data movement overlapping. 1) The
model does not enforce ordering of read/write of multiple regions
mapped from the same memory segment, or of even the same phys-
ical memory segment, thus allowing overlapping read/write and
write/write to the same memory segment. 2) Memory consistency
enforcements are mostly implemented as hardware memory bar-
riers, which strictly forces the ordering of all the load and store
operations across the barrier point. The relaxed data consistency
model, if implemented using software, will allow for read-write or-
dering of specific locations, thus eliminating the overcommittment
of ordering that may limit the amount of overlapping of data move-
ment. 3) If implemented as software managed, the model should
also allow for consistency and coherence in different data size, thus
the granularity. 4) Data consistency can be applied between discrete
memory spaces, such as between CPU and GPU memory, while
memory consistency is for shared memory.

4 CONCLUSION

In this position paper, we propose memory-centric parallel pro-
gramming concepts for high performance computing, focusing on
addressing the challenges of existing and emerging memor systems
for extreme performance programming. We identified four prin-
ciples for realizing memory-centric programming interfaces and
techniques. Our intention is to elevate the notion of memory-centric
programming in mainstream programming model and compiler
research for parallel computing. We believe it lays the foundation
for addressing the memory challenges in system software.

There are still many open problems. A major one is in the se-
lection of language features considering the trade-off between pro-
graming complexity, difficulty of compiler and runtime implementa-
tions, and performance. The number of details exposed to program-
mers is the trade-off between programmability and performance.
The heuristics depend heavily on the quality of the compiler and
runtime system implementation, as well as the application. Should
the interface design follow revolutionary approach by creating new
programming languages, or evolutionary principles by extending
existingh parallel programming standard? It is a critical question
when considering migrating existing parallel applications. As for
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the data consistency model, should we choose different models
according the type of memory for which we are enforcing consis-
tency? How should software-implemented consistency and coher-
ence models work with hardware support for memory consistency?
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