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ABSTRACT
Experience with Intel Xeon Phi suggests that NUMA alone is inade-
quate for assignment of pages to devices in heterogeneous memory
systems. We argue that this is because NUMA is based on a single
distance metric between all domains (i.e., number of devices “in
between” the domains), while relationships between heterogeneous
domains can and should be characterized by multiple metrics (e.g.,
latency, bandwidth, capacity). We therefore propose elaborating the
concept of NUMA distance to give better and more intuitive control
of placement of pages, while retaining most of the simplicity of the
NUMA abstraction. This can be based on minor modification of
the Linux kernel, with the possibility for further development by
hardware vendors.
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1 INTRODUCTION
We are chiefly concerned with the application developers’ expe-
rience when interacting with heterogeneous memory. Of course,
this is a problem about the future, and the future is manifold, so
really we will discuss one likely configuration of complex memory:
heterogeneous NUMA, which is not coincidentally the approach
used by Intel for exposure of the MCDRAM on Xeon Phi [4].

Nonuniform memory access (NUMA) is an abstraction com-
monly deployed for multisocket machines, in which each socket
has an associated memory controller. Because of the relative dis-
tances of processors to memory controllers, access to memory is
nonuniform, but the memory itself is assumed to be homogeneous.
This introduces several subservient abstractions: the NUMA node
or domain, which contains processing and memory elements that
“go together,” for example, a processor and its closest memory con-
troller; the distance between any pair of NUMA nodes; and policies
that use distances to decide placement of allocations onto nodes.
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The traditional theory of distance is that, since memory devices
themselves are homogeneous, NUMA can be treated as though it
were a network, such that distance implies the number of hops
or the request latency between a sender and a receiver. This also
implies a simple strategy to get reasonable performance from a
multisocket NUMA machine: pin a process to a single NUMA node,
and allocate memory in such a way as to minimize distance. The
latter part is, naturally, the default memory policy on Linux.

Another assumption behind this formulation of NUMA is that
different memory devices are preferential for different processes.
That is, in the multisocket machine with homogeneous memory
devices, there is no particular trade-off at play: allocations should,
in general, always stay within their node1. This is another factor in
why a simple default policy works out well, because no optimization
is needed, as there are no competing goals.

We see cracks in this formulation when memory devices are
inhomogeneous. When a Xeon Phi is configured to expose its MC-
DRAM as an explicit NUMA node, its devices are assigned to nodes
such that processors are paired with ordinary DRAM, and MC-
DRAM resides in one or more memory-only nodes. Distances are
assigned such that local DRAM is closest, then all other DRAM
nodes have a next closest and equal distance, then local MCDRAM
is next closest, then other MCDRAM nodes have furthest and equal
distance. This may seem strange, since MCDRAM is in some re-
spects “better” than DRAM yet is considered further away, but it
makes perfect sense on closer inspection: First, MCDRAM is only
better in some respects, and second, it is a limited resource, so a
more sensible default is for allocations not to reside in MCDRAM.
This configuration turns MCDRAM into an “opt-in” device, and
NUMA is used for implementation.

This is a very reasonable thing to do in the short term, but
we see several long-term problems. First, this is unportable, as
opting an allocation in to the MCDRAM requires knowing that
this is the game being played, and also knowing the meaning of
the NUMA node ID numbers. Second, with the existing memory
policies, this works because there are only two nodes of interest (i.e.,
the local DRAM and local MCDRAM nodes). There is a memory
policy to handle this situation, in which placement on an explicit,
user-selected node is preferred, and if that cannot be accommodated,
then placement falls back to the default policy.

In our view, the real culprit here is the implicit view that one
distance metric adequately captures users’ needs toward and be-
liefs about heterogeneous memory devices. As stated above, this
view includes an assumption that memory devices are themselves
homogeneous, and the strangeness surrounding Xeon Phi reflects

1There is another, less common use: if one is more concerned about bandwidth than
latency, or one does not expect use of an allocation to be confined to one process or
processor, then spreading an allocation across NUMA node can be useful. Fittingly,
there is an interleave memory policy that handles this situation.
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a violation of that assumption. Further, it seems plausible both that
NUMA will continue to be used in this fashion, and that the num-
ber and diversity of devices exposed through NUMA will increase.
Therefore, we believe that one important step in accommodating
heterogeneous memory into the user’s experience is an extension
of the existing distance system.

2 RELATEDWORK
Other work in this area includes the Advanced Configuration and
Power Interface (ACPI), which is an open industry specification
codeveloped by Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba [1]. ACPI has coverage of power management, as well
as processor and memory topology tables. The System Resource
Affinity Table (SRAT) provides information about closeness of mem-
ory regions to processors. Additionally it has flags on whether the
memory is hot-pluggable and/or nonvolatile. The Platform Mem-
ory Topology Table (PMTT) describes the memory subsystems in
further detail, specifying relations between CPU sockets, mem-
ory controllers, and DIMMs. The memory controller information
includes read/write latencies and bandwidths, as well as optimal
access units. The System Locality Information Table (SLIT) pro-
vides distance between proximity domains. Although optional, the
SRAT is usually present, and is used by the Linux kernel to populate
the NUMA distance table. Unfortunately PMTT and SLIT are not
normally supported by vendors.

Hierarchical NUMA [6] is a recently-suggested set of extensions
to NUMA and the Linux kernel. The author proposes many masks
for memory policy, including latency, density, bandwidth, power,
and device-compute capability. Defining how these values are de-
termined can be problematic, as they depend on data size, stride,
focus on writes versus reads, and congesting traffic. Additionally,
the proposal doesn’t allow for a user-defined ordering of memory
pools.

Other related work that exposes the memory hierarchy to pro-
grammers includes hwloc [2], which focuses on the topology of the
memory hierarchy and pinning of processing elements to NUMA
domains. hwloc uses libnuma [7]. memkind [3] is a library that
supports memory allocations, using jemalloc [5] as its allocator.
memkind and numactl/libnuma both are concerned onlywithNUMA
(i.e., standard memory devices). Additionally, memkind provides
only limited ability for determining the intention behind a NUMA
node, and otherwise is a tool for managing NUMA policy and
userspace heap management.

3 CONCEPT
3.1 Memory Semantics
Most application developers want easy-to-use, high-level abstrac-
tions that are suggestive of some underlying mechanics. This is
already present in the design of NUMA, in which a node “cor-
responds to” some hardware in a generally-reasonable way, but
abstracts most of the details. When it comes to heterogeneous mem-
ory, we believe this strategy should be expressed through the usual
language of memory, e.g., bandwidth, latency, capacity. This then
results in developers thinking about allocations in terms of where

they fit within their concepts of memory, for example, “this allo-
cation is bandwidth-sensitive,” or “this allocation doesn’t demand
high performance.”

NUMA already has much of the groundwork for this kind of
approach, in the form of memory policies. On one hand, we there-
fore see the problem of heterogeneous NUMA as a problem of the
inadequacy of existing memory policies. On the other, projects
like memkind already facilitate attaching heap allocators to mem-
ory policies, so for the particular problem we’ve outlined, more
robust memory policies would finish the story began by NUMA and
memkind. Thus, the solution we outline is one in which memory
policies are enhanced with the ordinary semantics of memory.

3.2 The Need for Kernel Hacking
One objection immediately presents itself: modifying the Linux
kernel is invasive and can be difficult to deploy. Nonetheless, we
believe that kernel modifications are the best solution, because they
do the best to facilitate the “spilling” of allocations between nodes.
Our expectation is that memory devices tuned for performance will
also have limited capacity, and in that sense will be oversubscribed.

What should happen if a developer requests an allocation on
performant memory, that exceeds the available capacity of the best
device? Ideally, one wants a contiguous virtual address space that
is backed by the best collection of physical pages, i.e., the allocation
should back pages on the best device as long as it has free pages,
then pages should come from the second-best device, and so on.
This is impractical in userspace since reports of available capacity
are unreliable, not least because pages can be backed at any time so
there’s opportunity for “races” to back pages on particular devices.

Within the kernel itself, decisions about where to back pages
can be made quickly and in a serialized fashion. Furthermore, as
implied above, memory policies are implemented in the kernel, so
to the extent that memory semantics can be encoded in memory
policies, they provide a straightforward path for implementing such
modifications to the kernel. Finally, the changes required to add
more memory policies are fairly minor and isolated.

3.3 Distance and Ordering
A distance metric always implies a partial ordering, i.e., an ordering
in which elements can be indifferentiable, or, in which elements can
occupy the same position in the ordering. NUMA distance is only a
relative distance—it only implies relations between nodes—so it is
only reliable for the purpose of creating such an ordering. Indeed,
the default memory policy in Linux is one in which allocations are
placed based on the ordering implied by NUMA distance.

Thus, in spite of the title of this paper, we argue that the problem
of heterogeneous NUMA is better-treated as a problem of ordering,
rather than a problem of distances. As we will argue later, it is still
perfectly reasonable to deploy the same gambit, i.e., to develop dis-
tance metrics for the purpose of developing partial orders. However,
most of the rest of this paper will concern problems of ordering.

This ultimately brings us to our proposal: we altered the Linux
kernel to add a number of explicit NUMA node orderings and
corresponding memory policies. That is, for each NUMA node, we
define one or more orderings of NUMA nodes, and each ordering is
associated with a policy, and the policy is to place pages on nodes
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if (pol ->mode == MPOL_HBM_ORDERING) {

int nid , i, j;

struct zonelist *zl;

struct zone *z;

struct page *page;

long fp, tp;

int thiscpu = raw_smp_processor_id ();

int thisnid = cpu_to_node(thiscpu );

for(i = 0; i < MAX_NUMNODES; i++) {

nid = numa_hbm_ordering[thisnid ][i];

if(nid < 0) break;

zl = node_zonelist(nid , gfp);

z = zonelist_zone (&zl->_zonerefs [0]);

fp = zone_page_state(z, NR_FREE_PAGES );

tp = fp;

for(j = NR_ZONE_INACTIVE_ANON; j <= NR_KERNEL_STACK_KB; j++)

tp += zone_page_state(z, j);

if(fp > tp / 10) {

page = __alloc_pages(gfp , order , zl);

if(page)

return page;

}

}

}

Figure 1: Linuxkernel source code for allocating a page using an orderedmemory policy. This code lives in the alloc_pages_vma
function in mm/mempolicy.c, and must be provided (in some form) for each ordering.

according to the ordering. So if a machine has four nodes, and
node 0 has a (e.g.) high-bandwidth ordering of (2, 0, 1, 3), then an
allocation using the high-bandwidth policy will place pages on
node 2 until it is full, then on node 0 until it is full, and so forth.

NUMA distance is always specified from a source, typically the
NUMA node containing the CPU that is running a querying process,
to a destination, typically the NUMA node containing a memory
device that is a candidate for allocation. Similarly, our proposal
maps a source, a CPU running a querying process, to an ordered list
of NUMA nodes. Hence the remaining discussion will always have
this implicit relativity to it: everything is done with respect to a
source CPU, and the full collection of orderings is two-dimensional.

4 IMPLEMENTATION
4.1 Memory Policies
Memory policies are applied by two system calls: in terms of vir-
tual memory areas with mbind, and in terms of processes with
set_mempolicy. From the user’s perspective, memory policies are
a pair of enumerations, on the kernel side in include/uapi/linux/
mempolicy.h and on the user side in include/numaif.h (i.e., part
of libnuma). In the kernel, this is actually an enumeration type, and
we can add policies by adding more entries (noting that policies
should be added before MPOL_MAX), while on the user side the poli-
cies are literals named by #define. Of course, one must ensure that
the enumerations are equivalent in both files.

Several memory policies have node masks associated with them;
for example, the MPOL_PREFERRED policy must indicate which node
is preferred, which is implemented using a bit mask (with width
MAX_NUMNODES, i.e., the kernel configuration parameter for the max-
imum number of NUMA nodes). Ordering policies do not need any
data associated with particular instances of a policy, which we need
to keep in mind when creating data structures for them.

Instantiation of an ordering memory policy within the kernel
requires a couple minor changes to mm/mempolicy.c: we must by-
pass a check for a nonempty nodemask in mpol_new, and likewise,
we need to exit early from mpol_set_nodemask. Both changes re-
late to the fact that the new policies should not have nodemasks
(unlike the other nondefault policies), but cannot use the default
policy path, since the policy data structure is NULL in the default
case. Ultimately, the memory policy itself is still just a position in
an enumeration, so this will ultimately create a struct mempolicy
with its mode value set accordingly.

4.2 Orderings
As mentioned in Section 3.3, the orderings in question are two-
dimensional, being a mapping from a source NUMA node to an
ordered list of nodes. Thus, each ordering requires a matrix of
integers of size MAX_NUMNODES × MAX_NUMNODES. Each source node
has a row of the matrix, and each row is a list of nodes, with the
end of the list indicated by a sentinel value, e.g., −1.
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The actual implementation of these orderings resides in drivers/
base/node.c, which defines the core behavior of NUMA nodes.
However, we should now remark that this aspect, in our current
work, is more prototypical: we will describe here what we have
done, which may be adequate for the future problems, or if not, is
a reasonable foundation for future work.

Initialization of the orderings is done in the register_one_node
function, for now just by assigning any orderings2. Each NUMA
node then exposes each of its orderings through the kobject/sysfs
mechanism, as a read-write file in /sys/devices/system/node/
nodeN/. Being writable, this file is currently how one configures
the orderings: we implemented the write callback to parse a space-
delimited list of numbers, implicitly adding the sentinel value to the
end. Reading the file, likewise, produces a space-delimited listing,
e.g.,
$ cat /sys/devices/system/node/node3/hbm_ord
3 0 1 2
$ echo 3 2 1 0 >

/sys/devices/system/node/node3/hbm_ord
$ cat /sys/devices/system/node/node3/hbm_ord
3 2 1 0

4.3 Page Allocation
The meat of all this, now, resides in the alloc_pages_vma function
in mm/mempolicy.c, which actually provides a page when needed.
This function receives a virtual memory area structure, which itself
contains a memory policy structure. Source code is provided in
Figure 1; this prototype implementation demonstrates what we are
trying to accomplish here.

We begin by determining which NUMA node the current pro-
cess is running on, and then iterate through its row in the correct
ordering matrix. If we find a negative value (suggesting a sentinel,
i.e., the end of the ordering), we break from the loop, which will
ultimately result in the page coming from an ordinary (fallback)
allocation mechanism.

We then attempt to compute the node’s free memory, by getting
a zone data structure for it and iterating through its page counts.
The node is only used if this computation indicates it is at most
90% utilized, in which case we attempt to allocate a page from this
node. If the node is more than 90% used or the allocation fails, the
next node is tried.

4.4 Userspace
With all this in place, use of this technique is very simple. For a
complete example:

#include <numaif.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define SZ 4000000000

int main() {

2We use a default ordering in which the local node is first, then all other nodes follow
in numeric order by ID number, followed by a sentinel of −1. This is fine as a proof of
concept, but obviously is not a long-term solution.

set_mempolicy(MPOL_HBM_ORDERING ,

NULL , 0);

char *blob = malloc(SZ);

size_t i;

for(i = 0; i < SZ; i += 4096)

blob[i] = 0;

char path [100];

sprintf("cat␣/proc/%d/numa_maps",

getpid ());

system(path);

}

The most important line, of course, is set_mempolicy; the re-
maining code just touches all the pages to ensure they are physically-
backed, then prints the numa_maps to verify that the pages are
where they should be. This could also be done using mbind, though
we expect that most users will prefer dealing with set_mempolicy.

5 FUTUREWORK
Most of our future work concerns the problem of deciding the
orderings, both the number and names of orderings, and also de-
ciding how devices should be ordered on actual machines. For the
first problem, orderings in this sense are equivalent to categories,
specifically, categories of intentions for usage of memory. There
are several obvious categories—latency, bandwidth, capacity, and
normality—with some obvious caveats about how to handle accel-
erators, but this issue might be worth further exploration, in case
we missed something.

The issue of deciding on positions of devices in orderings is more
interesting, and worthier of a lengthy discussion here.

5.1 Empiricism
Keeping in mind that for our purposes distance and (partial) order
are equivalent, one might ask, why not just measure properties of
interest and construct orderings from them? That is, use something
like STREAM to estimate peak bandwidth, and order NUMA nodes
by the numbers given by that algorithm? But the flaw with this
plan is exposed by this question, as most people appreciate that
STREAM is not indicative of actual usable bandwidth. Why is that?

The broader flaw with empiricism is, generalizing from specific
experiences takes for granted that the total present conditions of
the specific experience will either be substantively similar in later
situations, or that the external contingencies of the present situation
have little bearing on the generalization. This latter position is
often invoked/hoped for in the expression “all things equal,” and
refuted by the expression “past performance is not indicative of
future results.” Hence the mixed feelings about STREAM represent
unease about the generalizability of bandwidth measurement in
high-performance computing.

Thus, we expect that walking an empirical road would lead to
unending hand-wringing about testing methodology and propriety
of generalizations. This could nonetheless be pursued, but only if
one does so with eyes wide open.
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5.2 System Architect
Another approach would be for the orderings to be part of system
configuration, such that system architects could use their expecta-
tions about the use of a system’s hardware to decide the various
orderings by hand. This assumes that system architects themselves
have a solid grasp on how application developers want to experi-
ence heterogeneous memory, but we view that as more plausible
than a general mechanical decision process (that does not, itself,
reiterate the problems of empiricism).

This would, in practice, limit the usefulness of this work to
high-performance computing, which might make these changes
trickier to deploy into themainstream Linux kernel. Of course, these
changes could be maintained as an explicit patch, to be deployed as
needed on supercomputers with on-node heterogeneous memory.
This would sidestep nearly all of the really serious problems, except
that the extra workload on system architects would require them
to consider this problem and these solutions worth the trouble.
Whether that represents a lower or higher bar is unclear.

5.3 Vendor Involvement
A third approach is for vendors to provide usable specifications
in hardware, accessible through, for example, ACPI. Indeed, some
initial investigations on our part show that the ACPI specifications
outline entries for device latency and bandwidth, but we are un-
certain about the universality of support for these kinds of data.
Nonetheless, if vendors of heterogeneous memory hardware ex-
posed their intentions for these devices through a mechanism like
ACPI, then many of these issues would be readily solved.

6 CONCLUSION
We have outlined a way forward for the user experience of hetero-
geneous memory that is exposed through the NUMA abstraction.
Our solution extends the existing concepts of NUMA distance and
memory policy to provide a simple, fast, easy-to-use mechanism for
assigning allocations to memory semantics like “high bandwidth”
and “low latency.” This approach involves modification to the Linux
kernel, but the modifications are limited in scope and extent, only
extending features that already exist. Open questions remain about
how to match devices with semantics, but we believe this work
serves as a valuable foundation for addressing those issues.
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