
Santiago 2011

PAPI: Performance API
Introduction & overview

Andrés ÁvilaAndrés Ávila
Centro de Modelación y Computación Científica

Universidad de La Frontera
aavila@ufro.cl

1

IntroductionIntroduction

2

PERFORMANCE ANALYSIS

• Use of OS timers
– Granularity:=0

– Size problem: as much as I can wait

• Use of language libraries
– Time between two lines

#include "time.h"

int main()

{

Motivation

>time ./a.out

real 8m43.858s

user 8m26.445s

sys 0m0.616s

– Time between two lines

– Hand made instrumentation

– Algorithm hint: O(n2) in ops

• Other SW tools
– Pipelining

– Optimizers

– Different OS

{

time_t start, end;

……

time(&end);

printf("Time is %.5f

\n",difftime(end,start));

time(&start);

….

time(&end);

printf("Time is %.5f

\n",difftime(end,start));

time(&start);

…..

time(&end);

}

PERFORMANCE ANALYSIS

• Processor architecture
– Very different choices

– PC

– Buses

– Memory hierarchy

– Memory wall

Hardware performance monitors

Motivation

• Hardware performance monitors
– For collecting processor information

– For monitoring threads

– Appeared in 1995(?)

– Intel Pentium Pro: two 40-bit counters for secondary cache
misses

– UltraSPARC secondary cache referencies and hits, IBM POWER 2,
MIPS R10000

• Access through low level programming

Hardware Performance Counters

• Small set of registers

• Counting events/signals

PAPI Goals

PAPI GOALS

5

•To ease accessing HWPC

•To define a standard/ portability

•To aid performance analysis, modelling and

tuning

PAPI Architecture and PAPI Architecture and

main characteristics

6

• High level routines: specific simple counters

• Low level routines: several counters as an EventSet

• Reference implementation: substrate layer

Architecture

7

• Predefined with HPC community (1999)

• Useful for tuning

• Include:

– Memory hierarchy

– Cache coherence protocol events

Standard events

– Cache coherence protocol events

– Cycle and instruction counts

– Functional units

– Pipeline status

• Focus on improving memory utilization

• Summarized in a library for C and Fortran

8

EXAMPLES MEMORY

Standard events

9

Examples cache coherence

Examples cycles and instructions

Standard events

……..

10

Memory hierarchy

• Load/store: memory addressing process

• First, check L1 cache.

– If it is present, L1 cache hit and out

– Else, L1 cache miss and goto L2 cache

How to use it

– Else, L1 cache miss and goto L2 cache

• Check L2 cache

• Check L3 cache

• Check TLB

11

Old latencies for MIPS 10000

How to use it

L1 data cache hit rate

=1- PAPI_L1_DCM/(PAPI_LD_INS+PAPI_SR_INS)

DCM: data cache miss

Hint 1: Over 0.95, good cache performance

Hint 2: large PAPI_TLB_DM data spread over many
pages

12

Other hints

• Hint 3: PAPI_TOT_INS/PAPI_TOT_CYC must be

low or stalling

• Hint 4: PAPI_LST_INS/PAPI_TOT_CYC density

of memory in the program

How to use it

of memory in the program

• Hint 5: PAPI_FP_INS/PAPI_TOT_CYC density of

floating point operations

• Hint 6: high PAPI_LD_INS/PAPI_L1_DCM is a

dense numerical program

13

• IA-32 P6 family
– Two 40-bit counters

– Either count events or measure time

– More events and greater control

– Based on perfctr linux command

• AMD Athlon
– Four 48-bit counters

Hardware counters on Linux

– Four 48-bit counters

– Either count events or measure time

– Not guaranteed to be fully accurate

• IA-64 family
– Four counters and four overflow status registers

– Events grouped by: basics, execution, memory, cycle
counting, branch events, hierarchy, system

– Focus on L3 properties

14

• Record data either by counting or sampling

modes

• Graphical interfaces

• MPI

• Scalability

Other characteristics

• Scalability

• Problems

– How to choose events?

– How to analyze data?

15

Examples andExamples and

New characteristics

16

• Hardware: performance monitor control registers
– PMC4-PMC7: counting occurences

– PMC10-11: instruction/data event addresses

– PMC12: branch trace buffer

– Focus on counting occurrences

• 300 different counters
– CPU

First example: Itanium 2 registers

– CPU

– Stalls

– TLB

– Cache hierarchy

– Memory subsystem

• Several runs to get relevant performance aspects: drill
down approach

17

• Yee_Bench Fortran 90 benchmark

• Finite difference time domain algorithm for
Maxwell equations

• Performance of serial code depending on size

• Scaling up of algorithm means memory problems

HW:

Second example: AMD Opteron

• HW:

– 2.0 GHz clock, 8Gb memory DDR 333,

– L1 64 Kb and 64-byte lenght two-way associativity

– L2 1Mb, associativity 16

• SW: compiler pgf90 5.2-4

18

Results: poor performance forN or N+1 power of

two and no padding, memory problems

Second example: AMD Opteron

19

Results: L1 cache hit rate: drops by L1 misses

Second example: AMD Opteron

20

Algorithm

Second example: AMD Opteron

• Triple nested loops: three stores and ten loads

• Four loads previously used

• L1 cache line eight 64-bit FP values

• One miss for each six new values

• L1 cache hit rate= 94.2%

21

On Intel Itanium 2: L3 cache hit rate

Data travelled in one iteration: 64*1002=0.61Mb

Second example: AMD Opteron

22

Events

Two benchmarks: papi_cacheSize and papi_cacheBlock

Third example: cache and TLB

Integer data Real data 23

• Graphic interface perfometer

• Terascale

• Automatic collection and analysis

• GPUs

• PAPI-C: multiple measurement

Some comments

• PAPI-C: multiple measurement

• User-defined events: define own user’s

measurements

• Deterministic results?

24

Using PAPI libraryUsing PAPI library

25

• high-level.c are the available counters

• Initialize: PAPI_start_counters(*events, array_length)

– *events -- an array of codes for events such as PAPI_INT_INS or a

native event code.

– array_length -- the number of items in the events array.

• Execution: floating point or total instruction rates

High level counters

int Events[NUM_EVENTS] = {PAPI_TOT_INS};

• Execution: floating point or total instruction rates

• Read, accumulate, stop:

26

• EventSets

• Initialization: PAPI_library_init(version)

• Create evet set: PAPI_create_eventset (*EventSet)

• Add event

• Start, read, add, stop

Low level counters

• Start, read, add, stop

• Reset: PAPI_reset(EventSet)

• Remove, empty, destroy, state

27

#include <papi.h>

………………..

int main()

{

EventSet = PAPI_NULL;

long_long values[1] = {(long_long) 0};

……

Instrumentation

/* 2. Create an EventSet */

if (PAPI_create_eventset(&EventSet)

!= PAPI_OK){

printf("PAPI library create error!\n");

exit(1); }

/* 3. Add Total Instructions Executed to

our EventSet */

if (PAPI_add_event(EventSet,

/* 1. Initialize the PAPI library */

retval =

PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {

printf("PAPI library init error!\n");

exit(1); }

28

if (PAPI_add_event(EventSet,

PAPI_L1_DCM) != PAPI_OK){

printf("PAPI add PAPI_L1_DCM

error!\n");

exit(1); }

/* 4. Start counting */

if (PAPI_start(EventSet) != PAPI_OK){

printf("PAPI library start error!\n");

exit(1); }

Instrumentation

/**************************/

/* COMPUTING …… */

/**************************/

/* 5. Read the counters*/

if (PAPI_read(EventSet, values) !=

PAPI_OK){

printf("PAPI library read error!\n");

exit(1); }

29

exit(1); }

data[n]= values[0];

/* 6. Stop the counters */

if (PAPI_stop(EventSet, values) !=

PAPI_OK){

printf("PAPI library stop error!\n");

exit(1); }

}

An example fromAn example from

Analysis

30

• Check performance of some BLAS routines by

MKL subroutines

31

• BLAS 1 dasum: take a double vector and returns the

sum of components as a single real

• The experiment is from 100Kb to 200Kb with 1280

steps, about 80 bytes.

• For L1DCA and L1DCM, we notice that there are

three types of results:

MKL subroutines

three types of results:

– The most common is L1DCA 43 and L1DCM 32.

– Next, there are three cases of L1DCA 44 and L1DCM 33 at

KB=100.016, 126.64 and 150

– Finally there is only one case of L1DCA 45 and L1DCM 33 at

100.08.

32

MKL subroutines

33

MKL subroutines

34

MKL subroutines

• Fitting a line,

with RMS 0.000967. Also,

35

with RMS 0.000967. Also,

with RMS 0.003052.

Intel Itanium II cache architecture:

– 16Kb L1D and 16Kb L1I

– 1Mb L2I, 256Kb L2D

– 12MB L3 per processor

MKL subroutines

36

Final wordsFinal words

37

• On-line performance data

• Several events

• Off-line Data Analysis

– No visualization

– Large datasets– Large datasets

• Increasing Hardware monitors

• Complex architectures

• Accuracy: Heisenberg principle

38

• PAPI publications

http://icl.cs.utk.edu/papi/pubs/index.html

• Personal reports

References

39

