
Chapter 2.12: Compilation, Assembling, Linking
and Program Execution

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
http://uncc.edu
https://passlab.github.io/yanyh/

A Translation Hierarchy for C

2

Compilation Process in C

• Compilation process: gcc hello.c -o hello
– Constructing an executable image for an application
– Multiple stages
– Command:

gcc <options> <source_file.c>

• Compiler Tool
– gcc (GNU Compiler)
• man gcc (on Linux m/c)

– icc (Intel C compiler)

3

4 Stages of Compilation Process

Preprocessing
gcc -E hello.c -o hello.i
hello.c à hello.i

Compilation (after preprocessing)
gcc -S hello.i -o hello.s

Assembling (after compilation)
gcc -c hello.s -o hello.o

Linking object files
gcc hello.o -o hello

Output à Executable (a.out)
Run à ./hello (Loader)

4

4 Stages of Compilation Process

1. Preprocessing (Those with # …)
– Expansion of Header files (#include …)
– Substitute macros and inline functions (#define …)

2. Compilation
– Generates assembly language, .s file
– Verification of functions usage using prototypes
– Header files: Prototypes declaration

3. Assembling
– Generates re-locatable object file (contains m/c instructions), .o file
– nm app.o

0000000000000000 T main
U puts

– nm or objdump tool used to view object files

5

4 Stages of Compilation Process (contd..)

4. Linking
– Generates executable file (nm tool used to view exe file)
– Binds appropriate libraries
• Static Linking
• Dynamic Linking (default)

• Loading and Execution (of an executable file)
– Evaluate size of code and data segment
– Allocates address space in the user mode and transfers them

into memory
– Load dependent libraries needed by program and links them
– Invokes Process Manager à Program registration

6

Compiling a C Program

• gcc <options> program_name.c

• Options:

-Wall: Shows all warnings
-o output_file_name: By default a.out executable file is
created when we compile our program with gcc. Instead, we
can specify the output file name using "-o" option.
-g: Include debugging information in the binary.

• man gcc

Four stages into one

7

Preprocessing

• Things with #
– #include <stdio.h>
– #define REAL float
– Others
• Processes the C source files BEFORE handing it to compiler.
– `Pre`-process
– gcc –E
– cpp

8

File Inclusion

• Recall : #include <filename>
– #include <foo.h>
• System directories

– #include “foo.h”
• Current directories

– gcc –I/usr/include to specify where to search those
header files
• gcc –I/usr/include sum_full.c –o sum

• Preprocessing replaces the line “#include <foo.h>” with the
content of the file foo.h

9

Macros

• Define and replaced by preprocessing
– Every occurrence of REAL will be replaced with float before

compilation.

10

About printf in C

• printf(“format string”,vars);
• Format string?
– “This year is %d\n”
– “Your score is %d\n”
• Conversion by %
– %d : int
– %f : float, double
– %c : char
– %s : char *, string
– %e : float, double in scientific form

11

Library
Files

Object
Files

Assembly
Source

Files

C/C++ Source
and Header

Files

Tools and Steps for Program Execution

Makefile
C/C++ Source

and Header
Files

Assembly
Source

Files

Linker
Script

File

User-created files

preprocessor

compiler assembler

Make Utility

Object
Files

Shared
Object

File

Linkable
Image File

Executable
Image File

Link Map
File

Linker and LocatorLibrary
Files

Archive Utility

12

Code Can be in Assembly Language

• Assembly language either is written by a programmer or is
the output of a compiler.

13

High-Level Program, Assembly Code and Binary

14

Hand-On, sum x86_64

• A method in assembly
– .globl: a global symbol
– .type
– .cfi_startproc
– .cfi_endproc
– ret: return
• for loop
– check i<N, if true continue, else

goto end;
– loop body
– i++
– end 15

https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

https://passlab.github.io/ITSC3181/exercises/sum/sum_full_x86.s

https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c
https://passlab.github.io/ITSC3181/exercises/sum/sum_full_x86.s

Sum, RISC-V
and MIPS
• Mainly different

instructions

• for loop
– check i<N, if true,
continue, else goto end;
– loop body
– i++
– end

16

RISC-V Version MIPS Version

Sum, x86_64

• Number of instructions per loop
iteration
– Count it

17

CPU Time 𝑠

=
Instructions
Program

×
Clock cycles
Instruction

×
Seconds
Clock cycle

When to Use Assembly Language

• Advantage: Speed, size and predictable
– No compiler middle-man
– Fit for mission-critical, embedded domain, e.g. space shuttle or

car control

• Hybrid approach
– Non-critical part in high-level language
– Critical part in assembly language

• Explore special instructions
– E.g. those special-purpose instructions that can do more than

one thing

18

Drawbacks of Assembly Language

Assembly language has many (and more) disadvantages that
strongly argue against its wide-spread use.

• Machine-specific code, i.e. assembly code are not portable
– Rewrite for new or different architectures

• Harder than high level language to write large code or software
– Harder to keep a high-level software structure
– Harder to read and debug

• Most compilers are good enough to convince that you do not need
to write assembly code for general-purpose applications
– Except embedded or IoT domain

19

Assembler

• Translates file of assembly
language statements into a file of
binary machine instructions and
binary data.

• Two main steps:
– Find memory address for symbols

(e.g. functions).
– Translate each assembly

statement by combining the
numeric equivalents of opcodes,
register specifiers, and labels into
a legal instruction
• Binary

• Produce object files
20

Object File

21

#include <stdio.h>

int a[10]={0,1,2,3,4,5,6,7,8,9};
int b[10];

int main(int argc, char* argv[]){
int i;
static int k = 3;

for(i = 0; i < 10; i++) {
printf("%d\n",a[i]);
b[i] = k*a[i];

}
}

ELF Format: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Contents of Object File for the Sample C program

22

Offset Contents Comment
Header section
0 124 number of bytes of Machine code section
4 44 number of bytes of initialized data section
8 40 number of bytes of Uninitialized data section (array b[])

(not part of this object module)
12 60 number of bytes of Symbol table section
16 44 number of bytes of Relocation information section
Machine code section (124 bytes)
20 X code for the top of the for loop (36 bytes)
56 X code for call to printf() (22 bytes)
68 X code for the assignment statement (10 bytes)
88 X code for the bottom of the for loop (4 bytes)
92 X code for exiting main() (52 bytes)
Initialized data section (44 bytes)
144 0 beginning of array a[]
148 1
:
176 8
180 9 end of array a[] (40 bytes)
184 3 variable k (4 bytes)
Symbol table section (60 bytes)
188 X array a[] : offset 0 in Initialized data section (12 bytes)
200 X variable k : offset 40 in Initialized data section (10 bytes)
210 X array b[] : offset 0 in Uninitialized data section (12 bytes)
222 X main : offset 0 in Machine code section (12 bytes)
234 X printf : external, used at offset 56 of Machine code section (14 bytes)
Relocation information section (44 bytes)
248 X relocation information

Some Terms

• Object file vs Executable
– Object file is the file for binary format of machine instructions,

not linked with others, nor positioned (in memory) for execution
– Executable is binary format of object files that are linked and

positioned ready for execution.
• Symbol
– Names, e.g. global function name, variable name
• Library
– Archive or package of multiple object files

23

Inspect an ELF Object File or Executable

• Executable and Linkable Format (ELF)
– https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
• readelf and objdump command in Linux to inspect

object/executable file or disassembly
– Only objdump can do disassembly

• nm command to display symbol information

• Try sum_full.o and sum example
– sum_full.o is an object file
– sum is an executable

24

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Linking

• Linker (ld command) searches a collection of object files and
program libraries to find nonlocal routines used in a program,
combines them into a single executable file, and resolves
references between routines in different files.

25

Linking Multiple files to make executable file

• Two programs, prog1.c and prog2.c for one single task
– To make single executable file using following instructions

First, compile these two files with option "-c"
gcc -c prog1.c
gcc -c prog2.c

-c: Tells gcc to compile and assemble the code, but not link.

We get two files as output, prog1.o and prog2.o
Then, we can link these object files into single executable file
using below instruction.

gcc -o prog prog1.o prog2.o

Now, the output is prog executable file.
We can run our program using
./prog

26

Linking with other libraries

• Normally, compiler will read/link libraries from /usr/lib
directory to our program during compilation process.
– Library are precompiled object files

• To link our programs with libraries like pthreads and realtime
libraries (rt library).
– gcc <options> program_name.c -lpthread -lrt

-lpthread: Link with pthread library à libpthread.so file
-lrt: Link with rt library à librt.so file
Option here is "-l<library>"

Another option "-L<dir>" used to tell gcc compiler search for
library file in given <dir> directory.

27

Compile Multiple Files and Link to One Executable

• Split the sum_full.c into two files
– sum.c that only contains the definition of sum method
• Also the “#define REAL float” line on top

– Remove the sum definition from sum_full.c, but still keep sum
method declaration (referred too as function signature)

– Compile both together and generate sum executable

• Compile in one step: gcc sum_full.c sum.c -o sum
– The command compiles each *.c file one by one into object

files and then link the two object files into one executable
• Compile in multiple steps: compile each .c file one by one

and link together
28

Compile in One Step

29

Compile in Multiple Steps

30

Try readelf

31

Try objdump for both object file and executable

32

“objdump -D” to disassembly: convert binary
object code back to symbolic assembly code

33

nm: list symbols from
object files
• T: define a symbol
• U: undefined symbol
– Linker to link
• Address are relative

34

Static Linking

• If multiple program want to use read_timer functions
– They all include the full definition in their source code
• Duplicate: If the function changes, we need to change each file

– Separate reader_timer in a new file, compile and statically linked
with other object files to create executables
• Duplicate the same object in multiple executables.

• Dynamic linking at the runtime
– Create a dynamic library that provides reader_timer

implementation
– Tell ld to link the library at the runtime
– Runtime load and link them on the fly and execute

35

Static Library vs Shared (Dynamic) Library

• Static library needs to be duplicated in every executable
– Bigger code size, better optimized
• Shared library are loaded on the fly during the execution
– Smaller code size, performance hits of loading shared memory

• Combine both
36

Hands-On for dynamic linking

• Sum example for static and dynamic linking: from sum.c and
sum_full.c created in the last exercise,
– Create a new file read_timer.c that includes the read_timer and

read_timer_ms definition in the file
– Leave only the read_timer and read_timer_ms declaration in the

sum_full.c
• They are the interface of the two methods.

– Compile read_timer.c into a dynamic library
• The library name is my_read_timer, and the library file is

libmy_read_timer.so. You can choose any name.
– Compile sum.c and sum_full.c and link with lib my_read_timer
• gcc sum_full.c sum.c -o sum -L. -lmy_read_timer

– Use ldd command to list dependent libraries
37

Build Steps with Dynamic Library

38

-L<…>: to tell where to find the library
file, in this case, the current folder (.)
-l<...>: to tell the library file name, which
will be expanded to lib<…>.so file

Linking error: cannot find
reader_timer
implementation when linking
from sum_full.o

Linking error: do not know where
to find the libread_timer.so file.

ldd command to list the dependent libraries

39

Loading a File for Execution

• Steps:
– It reads the executable’s header to determine the

size of the text and data segments.
– It creates a new address space for the program. is

address space is large enough to hold the text and
data segments, along with a stack segment (see
Section A.5).

– It copies instructions and data from the executable
into the new address space.

– It copies arguments passed to the program onto
the stack.

– It initializes the machine registers. In general, most
registers are cleared, but the stack pointer must be
assigned the address of the rst free stack location
(see Section A.5).

– It jumps to a start-up routine that copies the
program’s arguments from the stack to registers
and calls the program’s main routine. If the main
routine returns, the start-up routine terminates
the program with the exit system call.

40

Memory Layout of A Process

• ABI

41

MIPS architecture process memory
X86 architecture process memory

ELF format of an executable

Linux Process Memory in 32-bit System (4G space)
• Code (machine instructions) à Text segment
• Static variables à Data or BSS segment
• Function variables à stack (i, A[100] and B)

– A is a variable that stores memory address, the memory for A’s 100 int elements is in the stack
– B is a memory address, it is stored in stack, but the memory B points to is in heap (100 int elements)

• Dynamic allocated memory using malloc or C++ “new” à heap (B[100)

42

#include <stdio.h>

static char *gonzo = “God’s own prototype”;
static char *userName;

int main(int argc, char* argv[]){
int i; /* stack */
int A[100]; /* stack */
int *B = (int*)malloc(sizeof(int)*100); //heap

for(i = 0; i < 100; i++) {
A[i] = i*i;
B[i] = A[i] * 20;
printf(”A[i]: %d, B[i]: %d\n",A[i], B[i]);

}
}

Stack size limit. If 8MB, “int
A[10,000,000]” won’t work.

Check the Memory Map of a Process

• Given a process ID:
– pmap <pid>
– cat /proc/<pid>/maps

43

