
Basic C Programming

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

C Programming Basics: Outline

• A crash course in the basics of C
– Overview comparison of C and Java
– Good evening
– Preprocessor
– Command line arguments
– Arrays and structures
– Pointers and dynamic memory

• The K&R C book for lots more details
– Tons of info on web
• https://passlab.github.io/ITSC3181/res

ources/C_Programming.pdf
2

https://passlab.github.io/ITSC3181/resources/C_Programming.pdf

main Function to Enter Execution

#include <stdio.h>
int main(int argc, char* argv[])
{
/* print a greeting */
printf("Good evening!\n");
return 0;

}

$./goodevening
Good evening!
$

3

Breaking down the code

• #include <stdio.h> è java import
– Include the contents of the file stdio.h
• Case sensitive – lower case only

– No semicolon at the end of line

• int main(…)
– The OS calls this function when the program starts running.

• printf(format_string, arg1, …)
– Prints out a string, specified by the format string and the

arguments.

4

Command Line Arguments

• int main(int argc, char* argv[])
• argc

– Number of arguments (including program name)
• argv

– Array of char*s (that is, an array of ‘c’ strings)
– argv[0]: = program name
– argv[1]: = first argument
– …
– argv[argc-1]: last argument

5

Like Java, like C, and Lots of Other Languages

1. Operators same as Java è forming programming expressions and
basic statement for calculations/operations

– Arithmetic
• i = i+1; i++; i--; i *= 2;
• +, -, *, /, %,

– Relational and Logical
• <, >, <=, >=, ==, !=
• &&, ||, &, |, !

2. Syntax same as in Java è structured program statement
– if () { } else { }
– while () { }
– do { } while ();
– for(i=1; i <= 100; i++) { }
– switch () {case 1: … }
– continue; break;

6

Data Types

• Simple data types
datatype size (byte) values
char 1 -128 to 127
short 2 -32,768 to 32,767
int 4 -2,147,483,648 to 2,147,483,647
long 4 -2,147,483,648 to 2,147,483,647
float 4 3.4E+/-38 (7 digits)
double 8 1.7E+/-308 (15 digits long)

• Complex data types
– Array: int A[100];
– struct ~= class

• Declare a variable: symbol and type. E.g. int a
– Type indicate size
– Symbol: A human-understandable name for a memory location

7

Main Memory (DRAM) of a Computer

8

CPU is also called a chip. Main Memory I/O Processor
ALU

Control Unit

IR PC

MARMBR

Data Bus

Control Bus

Address Bus

Input
Output

CPU or Processor

Memory and Address

• Memory are accessed via the address of memory cells that store
data
– int a = A[i];
• Read value from a memory location whose address is represented by

A[i];
• Write value to a memory location whose address is represented by a

9

Variables çèMemory Locations

• Variable (x) is symbolic representation of a memory location/address
• Two types of access to a variable/memory location: Read or write
– = x: Right value, i.e. appears on the right side of =
• read/load the content from the memory location

– x =: Left value, i.e. appears on the left side of =
• Write a value to the memory location

10

int is a 4-byte data type.

5 10 12.5 9. 8 c d

int x = 5, y = 10;
float f = 12.5, g = 9.8;
char c = ‘c’, d = ‘d’;

4300 4304 4308 4312 4316
4317

Memory layout and addresses

11

Sizes of data types
int: 4 bytes
float: 4 bytes
char: 1 byte
double: 8 bytes
long: 8 bytes

Byte addresses

Pointers

• Pointers are variables that hold an address in memory.
• That address points to another variable.

12

float f; /* data variable */

float *f_addr; /* pointer variable: store the memory

* address of a float variable */

f_addr = &f; /* & = operator to get the address */

? ?

f f_addr

4300 4304

?

any float

any address

? 4300

f f_addr

4300 4304

Using Pointers (1)

13

Pointers made easy (2)

f_addr = 3.2; / indirection operator: assign the value
3.2 to the memory cell at address f_addr */

float g = *f_addr;/* indirection: read value at memory
address f_addr, g is now 3.2 */

f = 1.3; /* but g is still 3.2 */

f f_addr

4300 4304

3.2 4300

f f_addr

4300 4304

1.3 4300

14

A Variable from CA Point of View
• int a;
• float f;
• int * ap;
• float *fp
• char * str;
• char * argv[];
• A variable
– Name of the variable is the symbolic representation of the memory address for the first

byte of the memory location allocated for the variable
– Type: size of the memory for the variable

• char: 1 byte, int/float/long: 4 bytes; double: 8 bytes
• char *, int *, float *, double *, void *: 4 or 8 bytes depends on whether it is a 32 or 64-

bit system
– Variable reference == address reference

• On the left of =: load the value of an address, type is used to determine how many bytes
to load

• On the right of =: store a value to the address, type is used to determine how many
bytes to store

– &x = address of x
– *p = content at address p

15

C Variable and Pointer

16

& = address of
* = contents at

C Pointer and Memory

17

& = address of
* = contents at

Arrays

• Adjacent memory locations storing the same type of data
– Elements are packed in memory space
• int a[6]; means space for six integers

– Each int is 4 bytes

• a is the symbol (variable) representing the array’s base
address, which is the address of element a[0] as well.
– 0x0C

18

a[0]
a[1]

a[5]

a[2]
a[3]
a[4]

Address of Array Elements

• int a[6];

• Offset of a[i]: stride (number of bytes) between a[0] and a[i]
– i*sizeof(int)
• Byte address of a[i] (&a[i]): base + offset

– E.g. &a[2]: 0x0C + 2 * 4 = 0x14
– (char*)a is a cast of (int*) to (char*), to make sure compiler

recognizes it as a byte address so it can add up i*sizeof(int)
– In C, &a[i] is also a+i since C compiler is able to scale the

pointer arithmetic with the size of the data type of the array
• Thus

• By itself, a is also the address of the first integer
– *a and a[0] mean the same thing

&a[i]: (char*)a + i * sizeof(int)

19

&a[i]: a + i, this is pointer arithmetic, not regular arithmetic

Address of Array Elements

• int a[6];

• Offset of a[i] from a[j]: stride (number of bytes) from a[j] to
a[i]
– (i-j)*sizeof(int)

– Example, given &a[3] is 0x18, what is &a[5]

– Example, given &a[4] is 0x1c, what is &a[2]

&a[i]: (char*)&a[j] + (i-j) * sizeof(int), or
&a[j] + i-j

20

&a[2]: (char*)&a[4] + (2-4) * sizeof(int), or
&a[4] + 2-4

&a[5]: (char*)&a[3] + (5-3) * sizeof(int), or
&a[3] + 5-3

21

sizeof Arrays

• int a[6];
– sizeof(a)

= 6 × sizeof(int)
= 6 × 4 = 24 bytes

• char foo[80];
– An array of 80 characters
– sizeof(foo)

= 80 × sizeof(char)
= 80 × 1 = 80 bytes

22

Multidimensional Arrays

• Array declarations read right-to-left
• int a[10][3][2];
• “an array of ten arrays of three arrays of two ints”
• In memory

2 2 2

3

2 2 2

3

2 2 2

3

...

10
Seagram Building, Ludwig
Mies van der Rohe,1957

23

C Stores Array in Memory in Row Major

24

8 6 5 4

2 1 9 7

3 6 4 2

int A[3][4];

= (char*) A + offset (from A to A[1][2])
= (char*) A + sizeof (int) * (1 * 4 + 2)
= (char*) A + 4 * 6 = (char *)A + 24

Offset of A[1][2]
Address of element A[1][2]:

Offset of A[i][j] from A[of an array A[M][N]:
i*N + j

C Stores Array in Memory in Row Major

25

8 6 5 4

2 1 9 7

3 6 4 2

int A[3][4];

= (char*) A[0][1] + offset (from A[0][1] to A[1][2])
= (char*) A[0][1] + sizeof (int) * ((1-0) * 4 + 2-1)
= (char*) A[0][1] + 4 * 5 = (char*) A[0][1] + 20

Offset of A[1][2] from A[0][1]

Given the address of A[0][1], find the address of element A[1][2]:

C Stores Array in Memory in Row Major

26

8 6 5 4

2 1 9 7

3 6 4 2

int A[3][4];

= (char*) A[2][1] + offset (from A[2][1] to A[1][2])
= (char*) A[2][1] + sizeof (int) * ((1-2) * 4 + 2-1)
= (char*) A[2][1] + 4 * -3 = (char*) A[2][1] - 12

Offset of A[1][2] from A[2][1]

Given the address of A[2][1], find the address of element A[1][2]:

Structures

• Similar to Java class, but no methods

#include <stdio.h>

struct person {
char* name;
int age;

}; /* <== DO NOT FORGET the semicolon */
int main(int argc, char* argv[])
{

struct person bovik;
bovik.name = "Harry Bovik";
bovik.age = 25;

printf("%s is %d years old\n", bovik.name, bovik.age);
return 0;

} 27

Address of Fields of Struct Object

• Similar to array that pack struct fields together
– Complicated because of alignment

• Char: 1 byte, int: 4 bytes, double: 8 bytes

– 4-byte alignment

– 8-byte alignment (one way)

28

Extend to Array of Structs and Struct of Arrays

29

… …

… …

Multidimensional Arrays the Java Way

• Use arrays of pointers for variable-sized multidimensional
arrays
– Java’s approach for multi-dimensional array
– Need to allocate space for and initialize the arrays of pointers

int **a;

a[5][4] expands to *(*(a+5)+4)

The value

int * int

int **a

30

If-else Statements

• C code:

if (i==j) f = g+h;
else f = g-h;

• Condition check i==j?
• Arithmetic operation: g+h, g-h

31

Loop Statement

32

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

for (i=0; i<100; i++) { … }

while (i<100) { …; i++; }

• Loop execution:
– Init condition
– Loop condition check
– True path (the loop body)
– Loop back
– False path (break the loop)

Loop Statement: for loop
• C code:

for (i=0; i<100; i++) …

How many times does each each statement execute?

• i=0:
– only executes once
• i<100:
– execute 100 times
• i++:
– execute 100 times
• …:
– execute 100 times (if they don’t modify i)

33

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

Loop Statement: while loop (textbook 2.7)

• C code:
int save[100];

while (save[i] == k) i += 1;

How many times does each each statement execute?
• save[i] == k:
– check every iteration
• i+1=1:
– execute every iteration
• What is the problem of this code?

34

(save[i]
== k) ?

i += 1Exit

TrueFalse

Counting Operations of A C Program

• N = 1000

• Arithmetic and logic operation:
– i++, +, *: three operations per iteration è 3000
• Array reference

– X[i]: one array reference per iteration è 1000
• Condition check (if-else, loop)

– i < N: one check per iteration è 1000

35

float sum(int N, float X[], float a) {
int i;
float result = 0.0;
for (i = 0; i < N; ++i) {

result += a * X[i];
}
return result;

}

Counting Operations of A C Program

• Arithmetic and logic operation:
– j++, +, *, *: four operations per iteration of inner loop è 4M
– i++: one operation per outer loop iteration è 1000
• Array reference
– A[i][j], B[i][j], C[i][j], C[i][j], A[i][j]: 5 array reference per iteration of

inner loop è 5M
• Condition check (if-else, loop)
– j < N: one check per iteration of inner loop è 1M
– i<N: one check per iteration of outer loop è 1000

36

int N = 1000;
int A[N][N], B[N][N], C[N][N]
int i, j;
for (i=0; i < N; i++) {

for(j=0; j < N; j++) {
A[i][j] += B[i][j] * C[N][N] * C[N][N];

}
}

Counting Operations of A C Program

• 40% of B[N] elements are NOT zeros
– if (B[i] != 0): executed for each iteration
– True: A[i] += B[i] * C[i] + C[i]; executed 40% of total iteration
– False: A[i] += C[i]; executed 60% of total iteration

• Arithmetic and logic operation:
– i++: one operation for each iteration è 1000
– True: +, *, +: three operations of 40% of total iterations è 3*1000 * 40% = 1200
– False: +: one operation of 60% of total iterations è 1*1000 * 60% = 600
– Thus in total: 2800

• Array reference
– If (B[i] …): one per iteration è 1000
– True: A[i], B[i], C[i], C[i], A[i]: 5 of 40% of total iterations è 5*1000*40% = 2000
– False: A[i], C[i], B[i]: 3 of 60% of total iterations è 3*1000*60% = 1800
– Thus total: 4800

• Condition check (if-else, loop)
– i<N: one check per iteration è 1000
– If (B[i] …): one check per iteration è 1000
– Total: 2000 37

int N = 1000, i;
int A[N], B[N], C[i]
for (i=0; i < N; i++) {

if (B[i] != 0) A[i] += B[i] * C[i] + C[i];
else A[i] += C[i]; //Else

}

End of Introduction of C Basics

38

Additional Topics for C Programming

• C Preprocessing
• Dynamic memory
• Function parameters

– Pass by value
– Pass a pointer

39

C Preprocessor

#define FIFTEEN_TWO_THIRTEEN \
"The Class That Gives CMU Its Zip\n"

int main(int argc, char* argv[])
{
printf(FIFTEEN_TWO_THIRTEEN);
return 0;

}

40

After the preprocessor (gcc -E)

int main(int argc, char* argv)
{
printf("The Class That Gives CMU Its Zip\n");
return 0;

}

41

Conditional Compilation

#define CSCE212

int main(int argc, char* argv)
{
#ifdef CSCE212
printf("The Class That Gives CMU Its Zip\n");
#else
printf("Some other class\n");
#endif
return 0;

}

42

After the preprocessor (gcc –E)

int main(int argc, char* argv)
{
printf("The Class That Gives CMU Its Zip\n");
return 0;

}

43

Dynamic Memory

• Java manages memory for you, C does not
– C requires the programmer to explicitly allocate and deallocate

memory
– Unknown amounts of memory can be allocated dynamically

during run-time with malloc() and deallocated using
free()

44

Not like Java

• No new
• No garbage collection
• You ask for n bytes

– Not a high-level request such as
“I’d like an instance of class String”

45

malloc

• Allocates memory in the heap
– Lives between function invocations

• Functional variables disappear after a function return

• Example
– Allocate an integer

• int* iptr =
(int*) malloc(sizeof(int));

– Allocate a structure
• struct name* nameptr = (struct name*)
malloc(sizeof(struct name));

46

free

• Deallocates memory in heap.
• Pass in a pointer that was returned by malloc.
• Example

– int* iptr =
(int*) malloc(sizeof(int));

free(iptr);
• Caveat: don’t free the same memory block twice!

47

Function Parameters

• Function arguments are passed “by value”.

• What is “pass by value”?
– The called function is given a copy of the arguments.
• What does this imply?

– The called function can’t alter a variable in the caller function,
but its private copy.

• Three examples

48

Example 1: swap_1

void swap_1(int a, int b)
{
int temp;
temp = a;
a = b;
b = temp;

}

void call_swap_1() {
int x = 3;
int y = 4;
swap_1(x, y);
/* values of x and y ? */

}

Q: Let x=3, y=4,
after

swap_1(x,y);
x =? y=?

A1: x=4; y=3;

A2: x=3; y=4;

49

Example 2: swap_2

void swap_2(int *a, int *b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;

}

void call_swap_2() {
int x = 3;
int y = 4;
swap_1(&x, &y);
/* values of x and y ? */

}

Q: Let x=3, y=4,
after
swap_2(&x,&y);
x =? y=?

A1: x=3; y=4;

A2: x=4; y=3;

50

Example 3: scanf (read an input)

#include <stdio.h>

int main()
{
int x;
scanf(“%d\n”, &x);
printf(“%d\n”, x);

}

Q: Why using
pointers in scanf?

A: We need to assign
the value to x.

51

