Basic Linux commands and Compilation

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan
vyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
http://uncc.edu
https://passlab.github.io/yanyh/

Contents

® Basic Linux commands
— We will use Ubuntu Linux VM on the lab machine
— You can use the VM on your own computer and laptop as well.

* Compiling and linking

Linux Basic Commands

It is all about dealing with files and folders
Linux folder: /fhome/yanyh/....

rm (remove a filer/folder)

— Srmfoo
* |s (list files in the current folder) — $rm -rf foo
B E:ZL — Srm -i foo
_ $ls-la — Srm ---foo
— $ls -l —-sort=time * cat (print the file contents to
— Sls -l --sort=size —r terminal)
* cd (change directory to) — S cat /etc/motd
— S cd /usr/bin — S cat /proc/cpuinfo
* pwd (show current folder name) * ¢p (create a copy of a file/folder)
— >pwd — Scp foo bar
° _"' (Shgjnle fOIder) _ S cp -a foo bar
* ~user (home folder of a user) * mv(movea fi_le/folder to
— $cd ~weesan another location. Used also for
renaming)
* What will “cd ~/weesan” do? — S mv foo bar

mkdir (create a folder)
— $ mkdir foo 3

Basic Commands (cont)

* df (Disk usage) Search a command or a file
— Sdf-h/
®* which
— Sdu-sxh~/ — Swhichls
®* man (manual) e whereis
— Smanls — S whereis Is
— S man 2 mkdir e |ocate
— S man man — S locate stdio.h
— S man -k mkdir — S locate iostream
®* Manpage sections * find
— 1 User-level cmmds and apps — Sfind/ | grep stdio.h
e /bin/mkdir — S find /usr/include | grep stdio.h

— 2 System calls
* int mkdir(const char ¥, ...); Smarty

— 3 Library calls 1. [Tab] key: auto-complete the command
 int printf(const char *, ...); sequence
2. A\ key: to find previous command

3. [Ctl]+r key: to search previous command
4

Editing a File: Vim

°® 2 modes e Delete

— Input mode

— dd (delete a line)
— d10d (delete 10 lines)

ESC to back to cmd mode _ d$ (delete till end of line)

— Command mode — dG (delete till end of file)
* Cursor movement — X (current char.)
— h (left), j (down), k (up), | (right) e Paste
— M (page down)

— p (paste after)

— Abp
(page up) — P (paste before)

— A (first char.)

— S (last char.) * Undo
— G (bottom page) —u
— :1 (goto first line) e Search
Swtch to input mode —/
— a(append) e Save/Quit
— i(insert) — :w (write)
— o (insert line after _

— :q (quit)

— O (insert line before) _ :
— :wq (write and quit)

— :q! (give up changes)

C Hello World

vi hello.c #finclude <stdio.h>
Switch to editing mode: i or a /* The simplest C Program

Switching to control mode: ESC It main(int argc, char **ar

Save a file: in control mode, :w Printf("Hello World\n");
return O;

}

Copy/paste a line: yy and then p, both from the current
cursor

— 5line: 5yy and then p

To quit, in control mode, :q
To quit without saving, :q!

To delete a whole line, in control mode, : dd

Other Editors to Use

* Sublime, Emacs, etc

C Syntax and Hello World

What do the < >

mean?

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv) <

{ <
printf(“Hello world\n”);
return O;
<

Compilation Process in C

* Compilation process: gcc hello.c -o hello
— Constructing an executable image for an application
— FOUR stages

— Command:
gcc <options> <source_file.c>

* Compiler Tool
— gcc (GNU Compiler)
* man gcc (on Linux m/c)

— icc (Intel C compiler)

4 Stages of Compilation Process

gcc -E hello.c -o hello.i
hello.c =2 hello.i
gcc -S hello.i -o hello.s

gcc -c hello.s -o hello.o
gcc hello.o -0 hello

Output = Executable (a.out)
Run = ./hello (Loader)

10

4 Stages of Compilation Process

1. Preprocessing (Those with # ...)
— Expansion of Header files (#include ...)
— Substitute macros and inline functions (#define ...)

2. Compilation
— Generates assembly language
— Verification of functions usage using prototypes
— Header files: Prototypes declaration

3. Assembling

— Generates re-locatable object file (contains m/c instructions)

— nm app.o
0000000000000000 T main
U puts

— nm or objdump tool used to view object files

11

4 Stages of Compilation Process (contd..)

4. Linking
— Generates executable file (nm tool used to view exe file)
— Binds appropriate libraries
* Static Linking
* Dynamic Linking (default)

* Loading and Execution (of an executable file)
— Evaluate size of code and data segment

— Allocates address space in the user mode and transfers them
into memory

— Load dependent libraries needed by program and links them
— Invokes Process Manager = Program registration

12

Compiling a C Program

* gcc <options> program_name.c

* Options: \ Four stages into one

-Wall: Shows all warnings

-0 output_file_name: By default a.out executable file is
created when we compile our program with gcc. Instead,
we can specify the output file name using "-0" option.
-g: Include debugging information in the binary.

®* man gcc

13

