
 1

Name: ______________________

Lab for ITSC 3181, Introduction to Computer Architecture, Spring 2023

Lab #04 and #05: Converting C programs to RISC-V assembly and simulate their execution
using RARS simulator. Due on 02/10 and count for 3% of the final grade percentage.

We will use RISC-V Assembler and Runtime Simulator (RARS) for this lab, which is available from
https://github.com/TheThirdOne/rars. A video for introducing how to use RARS simulator is available from
https://passlab.github.io/ITSC3181/resources/UsingRARS_ITSC3181.mp4 or from Canvas Medial Gallery.

1. Download the latest RARS jar file from

https://github.com/TheThirdOne/rars/releases/download/v1.5/rars1_5.jar on your computer. You
should then be able to launch the jar file by either double clicking it or from launcher such as using
open command in Mac OS X terminal.

2. Create and execute the hello world program following instructions from
https://github.com/TheThirdOne/rars/wiki/Creating-Hello-World. Spend some time to read and
understand each line of that page. Then in RARS, create the Hello World program, and then
assembly and run the program by clicking the sub-menu items of the Run menu. Play with the
example, menu items and the RARS interface to get familiar with the RARS tool. Check the
address, binary code, instructions and source of the assembled code, and also check the register
values and memory values (data segment part) of the program execution. After you run the
program multiple times, you should run it step-by-step, i.e. instruction by instruction, and observe
the change of values in registers and other locations. There are two sections, named .text section
and .data section, in the program. The .text section is for the code and the .data section is for the
data. There is a “main” label in the .text section and “str” label in the .data section. The two labels
are symbols representing the addresses of the memory locations where corresponding data or
code are stored in memory.

 Lab #04 and #05
Steps 2 3 4 5 6 7 (bonus) Total

Total Points 10 20 20 20 30 20 120
Your points

 2

3. Convert and execute the loop.s file from RARS repo in the test folder.
a. Download or cut-paste the raw file

(https://raw.githubusercontent.com/TheThirdOne/rars/master/test/loop.s) to use it with RARS.
Convert the loop.s program to C program that do the same as loop.s. You can execute the
C program from https://repl.it/languages/c. In the loop.s file, check
https://github.com/TheThirdOne/rars/wiki/Environment-Calls to understand the ecall. For this
one, ecall is just a “return <code>” call in C.

b. Assembly and run the loop.s program in RARS. See below screen shot. Check the
address, binary code, instructions and source of the assembled code, and also check the
register values and memory values (data segment part) of the program execution. After you
run the program multiple times, you should run step-by-step, i.e. instruction by instruction
and observe the change of values in registers and other locations. During the step-by-step
simulation in RARS, do the simulation in your mind of the corresponding C program to
understand how high-level language program are actually executed by a computer.

4. Implement a program to accumulate integer numbers from 1 to 100 using both C and RISC-V
assembly, and simulate the assembly program execution using RARS.

a. Write a main program in C from https://repl.it/languages/c to accumulate integers from 1 to
100 together using a for loop. The program should print the result (using C printf) and also
retune the value of the accumulation (return). Execute the program from the browser and
make sure it produces the expected output (5050 I believe).

b. Using the loop.s as starting point, program 1-100 integer accumulation using RISC-V
assembly. While the instructions we learned during the class should be sufficient to do the
work, you can check RARS supported instructions
(https://github.com/TheThirdOne/rars/wiki/Supported-Instructions) and use them. To print
the result and return the result, your program should make environment call PrintInt, check
https://github.com/TheThirdOne/rars/wiki/Environment-Calls.

5. Implement a program to find the average of 100 integers that are randomly generated, using both
C and RISC-V assembly, and simulate the assembly program execution using RARS.

 3

a. The C program MUST follow these steps: 1) declare an int array of 100 elements, and use
a for loop to generate 100 integers and store them in the array; 2) use another for loop to
accumulate those numbers by reading them from the array and adding up to a variable; 3)
calculate the average by dividing the accumulated sum with 100, and 3) print the average
and return the average. Your program should NOT do the number generation and
accumulation in one loop. Write C program from https://repl.it/languages/c. The functions
for generating random numbers can be found from Lab 03 1-D stencil code.

b. Converting the C program to RISC-V assembly and simulate its execution using RARS. To
use array in assembly code, your code needs to reserve space in the data section. Check
the memory.s file in RARS repo
(https://github.com/TheThirdOne/rars/blob/master/test/memory.s) for using .space to
reserve memory for an array identified by a symbol, and how to use la instruction to load
the memory address (first element of the array) to a register.

6. Implement a program to do the simple 1-D stencil of 100 integers that are randomly generated,
using both C and RISC-V assembly, and simulate the assembly program execution using RARS.

a. For C program, convert the 1-D stencil program from lab_03 to use array reference (B[i]) to
access array element instead of using pointers. The C program follows these steps: 1)
declare two arrays, each has 100 elements, 2) use a for loop to randomly generate 100
integers and store them in one array; 2) use another for loop to do the 1-D stencil and store
the result in the other array; Write a main program in C from https://repl.it/languages/c.

b. Converting the C program to RISC-V assembly and simulate the program execution using
RARS.

7. Implement a RISC-V assembly program for image convolution. Image convolution perform 3x3
filtering of each pixel of the source image and the result is written to the dest image. It is the
operation widely used for many image processing algorithms, and convolution is one of the
kernels of convolution neural network (CNN) for deep learning. The algorithm can be described
using the following C code and figure. C array are stored in row-major and make sure you
program calculates address of array elements (e.g. source[i][j]) correctly using what we studied
during the class. Implement the program using RISC-V assembly and executes it on RARS.

int M = 16, N =16;
int filter[3][3] = {-1, 0, 1, -2, 0, 2, -1, 0, 1};
int source[M][N], dest[M][N];
int i, j;
for (i=0; i<M; i++)
 for (j=0; j<N; j++)
 source [i][j] = rand(); // init data with random

 /* convolution kernel */
for (i=1; i<M-1; i++)
 for (j=1; j<N-1; j++) {
 int tmp = 0;
 for (fi=0; fi<3; fi++)
 for (fj=0; fj<3; fj++) {
 tmp += source[i+fi-1][j+fj-1]*filter[fi][fj];
 }
 dest[i][j] = tmp;

}

 4

For submission: please submit a single PDF file that shows the execution screenshot of each
program in RARS and C terminal required by this lab, and also submit all the source code
(both C and assembly code) as well.

