
 1

Name: ______________________

Lab for ITSC 3181, Introduction to Computer Architecture, Spring 2023

Lab #02: Basic C programming with pointer, array and memory, and number system. Due on
Wednesday 1/25 and total points: 2% of the final accumulated percentage grade.

Programming exercise for pointers, memory address of variables and array elements, pointer
arithmetic and referencing addresses using pointers. (80 points)
In this lab, you are given an incomplete C program lab02_address_1Dstencil.c, which can be
downloaded from https://passlab.github.io/ITSC3181/notes/Lab_02/lab02_address_1Dstencil.c. Your
work is to complete the program so it prints the output shown in the screenshot. There are 5 places
that you need to add code to complete the program, identified as TODO #1 to TODO #5 in the code.
Each TODO is assigned a certain amount of points you will earn if you complete it correctly. For
submision, you need to submit your completed code, screenshot that shows the command
and output of running the program. The output should be exactly the same as the screenshot
provided, though the memory address numbers could be different.
The lab02_address_1Dstencil.c file for you to start with:

 2

The screenshot below shows the correct output of the program if it is completed:

 3

1. Review the following information about C printf and memory address of variables and array
elements.

a. printf: http://www.cplusplus.com/reference/cstdio/printf/
b. Pointers, array, address of array elements: lecture slides for C Basics

(https://passlab.github.io/ITSC3181/notes/lecture02_CBasics.pdf)
2. Use https://repl.it/languages/c website to develop, compile and run your program. First, open the

file from the web browser
https://passlab.github.io/ITSC3181/notes/Lab_02/lab02_address_1Dstencil.c, go to
https://repl.it/languages/c site, and cut-paste the content of the lab02_address_1Dstencil.c file
to the editor. It is named as main.c file in website editor. Please ignore the file name. Then
compile and run the program first (gcc main.c; ./a.out) to make sure you have the correct file
to start with. See the following screenshot:

3. Edit the file and make changes for those TODOs. Each TODO are given with detailed comments
for the task. The first two TODOs are for showing variable memory addresses, variable sizes and
array element addresses. For TODO #1 (10 points), you will need add printf statements to print
out the memory address (obtained using & operator) and the size (using sizeof operator) of each
variable. For TODO #2 (20 points), you will need to add printf to print the base memory address of
the array A. After that, you will need to add a double-nested loop. In each inner loop iteration, add
printf to print the memory address of each array element obtained using &, the offset in bytes
calculated using the formula we discussed in the class, and the sum of base (cast to char* type
first) and offset. For each iteration, base+offset should be same as the address of the element you
obtain using &. After this exercise, you should know that array references, e.g. A[3][2], A[i][j], B[i]
are all address calculation operations, i.e. to calculate the address of a specific array element
based on the formula of base+offset.

4. The last three TODOs (TODO #3, #4 and #5) are for implementing a simple 1-D stencil operation
(a simplified version of the algorithm that is used for lots of image processing algorithms such as
image blurring, enhancing, etc). The 1-D stencil operation is to update each array element of B[M]
and store the results in another array B2[M] using the operation B2[i] = (B[i-1] + B[i] + B[i+1])/3
(i=1, 2, …, M-2). For the first and last element of B2 (boundary condition), we do B2[0] = B[0], and
B2[M-1] = B[M-1]. You need to implement this operation using only pointers, the “int *iterator”
variable, and array element access should use the address calculated based on the pointer
arithmetic and array element address calculation (base+offset). TODO #3 (10 points) is for
calculating the address of array element B[i] so value can be assigned to it. TODO #4 (35 points)

 4

is for the operation B2[i] = (B[i-1] + B[i] + B[i+1])/3. In this TODO, your code should reference each
needed array elements of B and B2 using pointers. Using & and [] operators to do it are not
counted as your implementation. TODO #5 (5 points) is for calculating the address of array
element B2[i] so values can be read for printing. It is important to note that when calculating
address of an element of an array, you calculate the byte address (casting to char *), but
when you assign that byte address to an “int * ptr” variable, or use that pointer as address
to read or write a value from/to that address (by using * operator), you will need to specify
the type of the pointer (e.g. int * by casting). E.g. int * ptr; ptr = (int*)((char *)A +
sizeof(int) * i); By doing that, the program knows both the address and the number of
bytes to access for each pointer variable.

5. For all the TODOs, I recommend you do one by one. When you complete one, compile and run to
see whether you have the expected output. If the output is what is expected, move on to the next
TODO.

6. Using either of the approaches for editing and develop the program, if you want to save the file for
future use, you need to find a way to copy the file to a location that you can access later on.

 5

Number Systems: Answer the following questions. Make sure to show your work. (3 points each for
total 21 points).
Do NOT use a calculator of any kind, you need to know how to solve these problems by hand.
If you need help, ask a TA.

1. What is the binary number 1101 in decimal?

2. What is the decimal number 234 in binary?

3. Convert the hexadecimal number A3D into binary.

4. Add 1010001 and 111111 in binary. Convert the answer to decimal. Verify your answer by first converting

the binary numbers into decimal, then adding.

5. What is the largest unsigned (positive) 4-bit binary number? What is the largest unsigned N-bit binary

number?

6. Convert the following decimal numbers to hexadecimal numbers.

a. 1010

b. 1410

c. 5210

d. 84510

7. How many bytes are in a KB (kilobyte)? In a MB (megabyte)? In a GB (gigabyte)?

 6

Submission:

Please include everything in one file that include the following:

• For lab02_address_1Dstencil.c, in the submission file, please paste your completed source code and

the screenshot showing its execution and output.

• For number system questions: please include in the file your answers only and number them correctly.

You do not need to include the questions themselves in the answer:

