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FLOPs: floating point operations, e.g. add/sub/mul/div per second

5.6 Virtual Memory

20 - 100 flops per word transferred
Recently, 200 flops per word transferred
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The Big Picture: Where are We Now?
OxOFFE1230: add x1, x2, x3
jJ 0xOFFE1234: Iw|sw x1, 32(x2)

" 0x0FFE1238: beq x1, x2, offset
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Overview || coa

Datapath

®* Programmers want memory system

Processor -

Input

Output

— Speed: To supply data on time for computation

— Capacity: To be large enough to hold everything needed

* However, fast memory technology is more expensive per

bit than slower memory

* Solution: organize memory system into a hierarchy

— Entire addressable memory space available in largest, slowest

memory =»capacity, store “always” in large memory

— Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the

processor =»speed, access “always” from fast memory




Memory Hierarchy

L] Current —
Speed Processor Size Cost ($/bit) technology
Fastest Memory Smallest Highest SRAM
Memory DRAM
Slowest Memory Biggest Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.

* Memories of different technologies are organized in a hierarchy
— The closer to the CPU, the faster and smaller of the memory
— The farther from the CPU, the slower and larger of the memory

— Data movement from far level to close level are via blocks
* 64 bytes from DRAM to cache, and 4KB from disk to DRAM (paging)



Why Memory Hierarchy Works?
The Principle of Locality

Programs access a small proportion of their address space at any time
* Temporal locality - Time

— Items accessed recently are likely to be accessed again soon
— e.g., instructions in a loop, induction variables

* Spatial locality — Space
— Items near those accessed recently are likely to be accessed soon
— E.g., sequential instruction access, array data

e Data

sum = 0;

for (1=0; i<n; 1i++)
sum += a[i];

— Reference sum each iteration: Temporal Locality return sum;

— Reference array elements in succession: Spatial
Locality

e Instructions
— Reference instructions in sequence: Spatial Locality

—Cycle through loop repeatedly: Temporal Locality



The Principle of Locality: Explained using
Borrowing and Reading Books to Study a Topic

* Spatial locality: one reads pages/books and those nearby
pages or related books at the same time

* Temporal locality: one reads the same pages or books
multiple times

* |f we need lots of books, we need to borrow from the
library, put on our bookshelf and on our study desk.
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Books are Data, Study is the Program,

Desk/Bookshelf/Library are Memory Hierarchy
®* You are the CPU




Memory Hierarchy: Explained with Desk,
Bookshelf and Library

You, as a processor study and read books
of a topic (a program)

Books that are used often are on your
desk; fast access, small # of books

Your bookshelf can hold more books, less
often used than those on the desk. you
need to stand up to grab a book and you
often grab more than one books a time

Library has more books, but you do not go
often since it is far. Each time you go, you
borrow a bag of books.

* Except, compared with memory hierarchy
— Upper level do not have copies of the books

Speed

Fastest

Slowest

Processor
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Memory
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Taking Advantage of Locality

Memory hierarchy
Store everything on disk (library)

Copy recently accessed (and nearby) **
items from disk to smaller DRAM -
memory (bookshelf)

— Main memory

Copy more recently accessed (and
nearby) items from DRAM to Soves

Processor

Memory

Memory

Memory

Current
Size Cost ($/bit) technology

Smallest Highest SRAM

DRAM

Biggest Lowest Magnetic disk

smaller SRAM memory (desk)
— Cache memory attached to CPU

10



Memory Hierarchy Levels

* Block (aka line): unit of copying

— May be multiple words, just like we move
multiple books a time

* |f accessed data is present in upper

level

[] — Hit: access satisfied by upper level
e Hit ratio: hits/accesses

. .
Data is transferred If accessed data is absent

Y — Miss: block copied from lower level

* Time taken: miss penalty

* Miss ratio: misses/accesses

N =1 — hit ratio

— Then accessed data supplied from upper
level

Processor

A




Memory Hierarchy

Current
Speed Processor Size Cost ($/bit) technology
Fastest Memory Smallest Highest
Memory
Slowest Memory Biggest Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.
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Memory Technology

* CPU speedup, e.g. 2GHz =0.5ns per cycle
— Pipelined CPU CPI =1

Current
Speed Processor Size Cost ($/bit) technology

Static RAM (SRAM): Cache
Fastest Memory Smallest Highest 0.5ns — 2.5ns, SZOOO - $5000 per GB

Memory Dynamic RAM (DRAM)
50ns — 70ns, $20 — $75 per GB

Slowest Memory Biggest Lowest Magnetic disk M a g 1] etic d is k

5ms — 20ms, $0.20 — $2 per GB

* |deal memory
— Access time of SRAM
— Capacity and cost/GB of disk

13



Random-Access Memory (RAM)

* Key features
— RAM is packaged as a chip.
— Basic storage unit is a cell (one bit per cell).

WL

— Multiple RAM chips form a memory.

M,
Ms | F_“

Mg

Q

}'

|_

M,

* Static RAM (SRAM) *
— Each cell stores bit with a six-transistor circuit.

— Retains value indefinitely, as long as it is kept powered.
— Relatively insensitive to disturbances such as electrical noise.

— Faster and more expensive than DRAM.

BL

14



DRAM Technology

* Data stored as a charge in a capacitor Address line
— Single transistor used to access the —[—
Charge . P ” Transistor
— Dynamic: need to be “refreshed
regularly, every 10-100 ms. f;"’);acgifor
— Sensitive to disturbances.
— Slower and cheaper than SRAM.
bit line Ground

15



DRAM in Real is Main Memory, off-chip

* |n reality,
— Several DRAM chips are bundled into Memory Modules

* SIMMS - Single Inline Memory Module CPU is The chip. _
* DIMMS - Dual Inline Memory Module |

* DDR- Dual data Read
— Reads twice every clock cycle

* Quad Pump: Simultaneous R/ W

-~

PCI Slot (x5)

CMOS
Backup
Battery

CPU Fan & "\ ¢
Heatsink
Mounting
Points

Connectors For
Inteqrated Peripherals

16



SRAM in Real is Cache in the CPU, on-chip

CPU is The chip. Cache is Cash
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Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large, not
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Memory Technology

* CPU speedup, e.g. 2GHz =0.5ns per cycle

— Pipelined CPU CPI =1

Current
Speed Processor Size Cost ($/bit) technology

Static RAM (SRAM)

Fastest Memory Smallest Highest SRAM 0.5ns — 2.5“5, $2000 - SSOOO per GB
Memory prav  Dynamic RAM (DRAM)
Slowest Memory Biggest Lowest Magnetic disk Magnetic dlSk
5ms — 20ms, $0.20 — $2 per GB

* |deal memory
— Access time of SRAM
— Capacity and cost/GB of disk

19



Disk Storage

* Nonvolatile, rotating magnetic storage

cylinder

sector

20



Flash Storage

* Nonvolatile semiconductor storage
— 100% — 1000% faster than disk
— Smaller, lower power, more robust
— But more S/GB (between disk and DRAM)

21



Flash Types

* NOR flash: bit cell like a NOR gate

— Random read/write access
— Used for instruction memory in embedded systems

* NAND flash: bit cell like a NAND gate
— Denser (bits/area), but block-at-a-time access
— Cheaper per GB
— Used for USB keys, media storage, ...

* Flash bits wears out after 1000’s of accesses
— Not suitable for direct RAM or disk replacement
— Wear leveling: remap data to less used blocks

22



History: Further Back

Ideally one would desire an indefinitely large memory capacity
such that any particular ... word would be immediately
available. ... We are ... forced to recognize the possibility of
constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less quickly
accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an Electronic

Computing Instrument, 1946

23



Chapter 5: Large and Fast: Exploiting Memory
Hierarchy

®* Lecture
— 5.1 Introduction
— 5.2 Memory Technologies

J@ Lecture
— 5.3 The Basics of Caches

* Lecture
— 5.4 Measuring and Improving Cache Performance
—— 55 DesepdalbleflemernHarsrdy

* Lecture
— 5.6 Virtual Memory

— L L-Cormrmrenramewerlctor Memer-Hierarehy
* Lecture 26

Eo U Finite-State Machi - Lo Simole Cacl

— 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5 14 GoineF . Cache Blocki | Matrix Multiol
— 5.16 Concluding Remarks
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Cache Memory

* Cache memory
— The level of the memory hierarchy closest to the CPU, our desk
— Green Boxes: Cache, on-chip, SRAM, fast, small, expensive

i with heatsink) Scuthbridge &
AGP Slo! 2

PCI Slot (x5)

oooooooo

Read ALUSrc ALU operation
Read e 4
PC 48 address register 1 Read / | MemWrite
| | Read data 1
egister 2 i
Instruction oot Reg read| | AN AW AR, Read [N et S s, N2t
Write 2 4
Instructi ™ registe data 2
memory
.| Write
— data
RegWrite
16 [ gign. | 2
extend

""""" Blue Boxes Covered in 5.7
| Lecture: Main memory,
off-chip, DRAM, slower,

Processor p= | .
Input arge not expensive
Control
: WIS
- =l P
: |
AR R PR g TN ] 25



Cache Memory and Main Memory

* Memory access:
— Instruction Fetch
— Data memory access: LW |SW

OxO0FFE1230: add x1, x2, x3
0xO0FFE1234: Iw|sw x1, 32(x2)
O0x0FFE1238: beq x1, x2, offset

Processor

Control

Datapath

* Instruction Fetch and LW |SW use off-chip main memor

address (DRAM) to read or write a word

— Instruction/Data is fetched from off-chip memory to on-chip

cache first, and then to register

— CPU calculates (arithmetic and logic operation) using data in

register only

26



Load/Store Instructions

— X2, and X]_(for SW Only) OxO0FFE1234: IWISW X1, 32(X2)
address using 12-bit signed [—
OffS Et — | Address Rde:;g I
_ 32 +x2 - 32 64
— ALU operation is + | Write - memery
* Load: Read memory and
update register a. Data memory unit b. Immediate generation unit

— x1 € MEM(32+x2)
— MemRead signal is on

* Store: Write register value
to memory
— x1 > MEM(32+x2) memory addresses

— MemWrite is on

Memory addresses for I1F and
for the calculated address of
Load/Store are off-chip

27



Cache is Transparent to Programmers

* A program does not need to know the existence of cache

* |nstruction Fetch and LW/SW: read/write data from memory
— Main memory address is used for IF/LW/SW, not cache mem

A
.jgggss ogser ! reaa| |
Read data 1
Block Transfer oo (1 2
Instruction register data 2
, ey
Word Transfer f\A-’W iy
M/\ — RegWrite
16 Sign 32
-
CPU Cache §) Main memory
Fast Slow
Processor =
(a) Single cache comeolt |l Bl | EEASSEESEE
. 43 Cache
Datapath | |- o % B s
P - Output : |

The BIG Question: How cache is used for IF/LW/SW, i.e. how
hardware knows the cache memory address to access a word
addressed by main memory address in IF/LW/SW instructions

28



Block Transfer

Cache Memory Vg~

| > | |
CPU ] Main memory
* Memory access: IF/LW/SW Fue Sow

— |f data is in cache, IF/LW/SW (@) Single cache
from cache
— If data is not in the cache, IF/LW/SW from main memory

* Given accesses X, ..., X _1, X,

- . Ox0FFE1230: add x1, x2, x3

X, X, O0xO0FFE1234: Iw|sw x1, 32(x2)
Xn-2 Xn-2 OxO0FFE1238: beq x1, x2, offset
o o = How do we know if

: - the data is present?

X % = Where do we look?

a. Before the reference to X,  b. After the reference to X,,

29



Cache Organization: Direct Mapped Cache

* Location determined by address
— Main memory addresses 00001, 01001 in the example

* Direct mapped: only one choice

— (Memory address) modulo (#Blocks in cache)

Cache = #Blocks is a power of 2
SSESSSEC = 8 in this example, need 3 bit to
address a block
= Use low-order address bits
= The last three bits
s E.g.just check the last three bits
= 00001 is in block 00001 % 8 = 001
01001 is in block 01001 % 8 = 001

00001 00101 01001 01101 10001 10101 11001 11101 30
Memory



Tags and Valid Bits

®* Much less cache blocks than main memory since cache is small
— Multiple memory blocks end up in the same cache block

* How do we know which/whether a particular main memory

block is stored in a cache location?

— Store block/memory address, in addition to the data Cache
— But only need the high-order bits, called the tag, E.g.8855885%

* For 00001 block, 00 (tag) is stored in the cache
* For 01001 block, 01(tag) is stored in the ca

* What if there is no data in a location?

— Valid bit: 1 = present, 0 = not present
— Initially O

00001 00101 01001 01101 10001

Memory



Cache Example

* 8-blocks, 1 word/block, direct mapped

* |nitial state
— Only green box are the cache
— Index is the block address, not
part of the cache

00001 00101 01001 01101 10001 10101 11001
Memory

Index V Tag Data

000
001
010
011

100
101
110
111

Z |1 Z2|Z2|Z2|Z2|Z2|Z2|Z

32




Cache Example

* A sequence of main memory access
— Load and store instruction

* Given a word address, we can easily calculate the block
address and tag bits

Decimal address Binary address
of reference of reference

Assigned cache block

(where found or placed)

10110, 110, mod 8) = 110
26 11010two 010,,, mod 8) = 010 =
22 10110, 110, mod 8) = 1 10, |
26 11010, 010,,, mod 8) = 010
16 10000, 000,,, mod 8) = 000,
3 00011, 011 mod 8) = 011
16 10000,, 000,,, mod 8) = 000
18 10010, 010,,, mod 8) = 010, . |
16 10000, 000,,, mod 8) = 000, u




Cache Example

Decimal addr | Binary addr Hit/miss | Cache block

22 10 110 Miss 110
E.g. Ld x1, 22(x0) U
Index Tag Data
000 Megn[10110]
001

ecimal ad(Binary address
of referen of reference

V

N

N

22 10110, 010 N
11010,

;z 10110, 01 1 N

26 11010, 1 OO N
16 10000,

s | oooti,, | 101 |N
16 10000,

18 10010,,, 10 |Y Mem[10110]

16 10000,

111 N




Cache Example

Decimal addr | Binary addr Hit/miss | Cache block

26 11 010 Miss 010
Index |V Tag Data
000 § N
of referen of reference

22 10110, 010 | Y Mem[11010]
- 11010,
;2 101101;0 01 1 N
26 11010, 1 OO N
16 10000,
3 00011, 101 | N
16 10000,
18 | 10010, 110 |Y Mem([10110]
16 10000, 1 1 1 N




Cache Example

Decimal addr | Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010 Q
Index V Tag Data 10 110
000 N
Memf§10110]
of referen of reference
» | w10 | 010 Y Mem[11010]
11010,
52 10110, 011 N
26 11010, | 1 OO N
16 10000, ,
3 00011, 101 N
16 1000 -
s | 000 | 110 [Y Mem[10110]
16 10000
111 N

36



Cache Example

Decimal addr | Binary addr Hit/miss | Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000
Index |V Tag Data
000 | Y Mem[10000]
of referen of reference
2 | o0, | 010 |Y Mem[11010] (26)
26 11010,
22 10110, _ 011 |Y Mem[00011]
6 11010, _
?G IDOO(‘),;» 1 OO N
3 00011,
1-‘6 IOOOO,: 1 01 N
18 10010,,,, 110 |Y Mem[10110]
16 10000,
111 | N




Cache Example

Decimal addr | Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Replace Mem[11 010] (26)
f

Mem[10000]

ecimal ad(Binary address /
of referen of reference

— Mem[10010] (18)]
26 11010{\"o

- 10110, . Mem[00011]

26 11010,

16 10000,

3 00011,

16 10000,

18 | 10010, Mem[10110]

16 | 10000,




Block Transfer

Word Transfer f\k/\

Byte-address Memory Access ~

CPU Cache Main memory

* 32 blocks, 4 bytes/block (1 word/blk) ) Single e
— 2 bits for addressing a byte within a block, byte offset
— 5 bits for addressing a block of the cache, block address

To what block number does byte-address 1200 map?
Use binary address to find out the solution:
1200,,=...01001 01100 00,

block index byte offset

31 76 21 0
Tag Index |Offset
25 bits 5 bits 2 bits

Bytes at addresses 1200, 1201, 1203, 1203 are all in the same block
— 01001 01100 00,
— 01001 01100 01,
— 01001 01100 10,
— 01001 01100 11,

01001 01100 00 can be considered as the block address of any of the
four bytes

39



Hit

Tag

63 62

Address Subdivision

Address (showing bit positions)

S 131211

....210

Byte
offset

d 52
N

Index

1021
1022
1023

10

Ox0FFE1230: add x1, x2, x3
Ox0FFE1234: Iw|sw x1, 32(x2)
0x0FFE1238: beq x1, x2, offset

Data

A

64-bit address
Each block has 4 bytes

->2 bits for byte offset
1024 (22”10 blocks)

= 10 bits for block address
64-2-10 = 52 bits tag

40



Pseudo Code for Simulating Directed-Mapped
Cache Read Access (lb instruction)

#typedef struct cacheLine {

int v;

int tag;

char Datablock[4]; //each datablock is 4 bytes, the address is byte address
} cacheline_t;
cachelLine t cache [1024]; //cache has 1024 blocks

int memory[1024x1024]; //memory has 1024*1024 blocks

char loadByte(long int address) { //directed mapped cache
int cachelndex = address[2:11]; //2-11 bit of the 32-bit address, which is the index
cacheLine_t cline = cache[cachelndex];
If (cline.v && cline.tag == address[12:63]) { //cache hit
return cline.Datablock[address[0:1]];
} else { //miss
/[fetch data from memory and update cache line
cline.dataBlock = fetchABlockMemory(memory, address); //e.g. memory[address]
cline.v =1; cline.tag = address[12:63];
return cline.Datablock[address[0:1]];

41



Larger Block Size

* 64 blocks, 16 bytes/block (4 words/blk)

Word Transfer

Block Transfer

CPU

— 4 bits for addressing a byte within a block, byte offset
— 6 bits for addressing a block of the cache, block address

To what block number does byte-address 1200 map?

Use binary address to find out the solution:

Cache

Main memory

Slow

(a) Single cache

120010 =1 001011 00002 block index byte offset
31 10 9 4 3 0
Tag Index | Offset
22 bits 6 bits 4 bits

Bytes at addresses 1200 to 1215 are all in the same block

01 001011 0000,
01 001011 0001,
01 001011 0010,

01 001011 1111,

01 001011 0000 can be considered as the block address of any of the
16 bytes at 1200 to 1215

42



Caching Exploits Both Types of Locality by
Preloading and Keeping Data in Faster Memory

* Exploit temporal locality by keeping the contents of
recently accessed locations in the cache.

* Exploit spatial locality by fetching blocks of data around

recently accessed locations.  cahemenoy Main merory
double A[N]; .
sum = 0 . Processor . % "'n,I
for (i=0; i<N; i++) word

sum += A [1] ’ block block
return sum;, the same address
64-byte block size, A[i] is an 8-byte double = a copy of information
A block (cache line) can hold 8 elements of A. from main memory

Referencing to A[0] ( or A[1], ..., A[7]) will cause the memory system to bring
A[0:7] to the cache =

Future reference to A[1:7] are all hits in cache = faster access than reading fronl13
memory



Block Size Considerations

Block Transfer

CPU

Word Transfer f\*/\
Cache
Fast Slow

(a) Single cache

Main memory

Miss
rate

* Larger blocks should reduce miss rate
— Due to spatial locality

* Butin a fixed-sized cache
— Larger blocks = fewer of them

— Larger blocks = pollution
* Larger miss penalty

10%

5%

0%

. / 16K
‘\ | 6ax
h\ b
. : : * 256K
16 32 64 128 256

Block size

* More competition = increased miss rate

— Can override benefit of reduced miss rate
— Early restart and critical-word-first can help

44



Cache Memory Size Calculation

* A cache line: Valid bit + Tag + Data index [V__[Tag | Data

ooo |N

* Directed Mapped Cache, 16KiB for data, four words blocks, 64-bit
address
— 16KiB is 4096 (212) words (214 bytes), Each block is 4 (22) words = 16
bytes (2%)
* Thus there are 214/24 =1024 (219) blocks

* 4 bit for byte offset within a block
— 2 bit for word offset within a block, 2 bit for byte offset within a word

* Thus # tag bits: 64 -10—-4 =50
e 1 bit for valid

— Total bits for the cache 16KiB + 219" 51 =179 Kibits = 22.4 KiB for
16KiB cache

e Total SRAM needed is 1.4 times of SRAM for data
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Terminology for Memory Hierarchy

* Hit: Data appears in cache
— Hit Rate: the fraction of memory access found in the cache.
— Hit Time: Time to access the cache

* Miss: data needs to be retrieve from a block in memory

— Miss Rate =1 - (Hit Rate), i.e. # misses / # memory access
— Miss Penalty: Time to replace a block in cache

* Hit Time << Miss Penalty (100x cycles)

1clk 300 clks

= Miss % * Miss penalty .
Hit Time atH
Memory
(DRAM)




1 clk

Ca Ch e M isses ’s Miss % * Miss penalty

Hit Time Main
Memory

(DRAM)

* On cache hit, CPU proceeds normally

®* On cache miss
— Stall the CPU pipeline in MEM stage

IF ID EX Mem stall stall stall ... stall Mem Wr
IF ID EX stall stall stall ... stall stall Ex Wr

— Fetch block from next level of hierarchy
— Instruction cache miss

* Restart instruction fetch
— Data cache miss

 Complete data access
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Example: Intrinsity FastMATH

Address (showing bit positions)
31 .. 141365010 256 blocks X 16 words/block

, 418 d8 44 Byte Data
I-‘Illt Tag offset Word
Index Bieek offset
18 bits; 512 bits
V Tag Data
A
256
® ? entries
!
J18 \32 \32 \32
(=
~
Mux
(Cmox )
J4.32
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Example: Intrinsity FastMATH

* Embedded MIPS processor
— 12-stage pipeline
— Instruction and data access on each cycle
* Split cache: separate I-cache and D-cache
— Each 16KB: 256 blocks x 16 words/block
— D-cache: write-through or write-back

e SPEC2000 miss rates

What are the low
— |- . 0
:)Ci;:;? é Oliél o miss rate indicating?
- = . . (o)
— Weighted average: 3.2% @

Very good principle locality and memory system works well
with the principle.
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Main Memory Supporting Caches

1clk
R s

e
P A-1sa1

<

Miss % * Miss penalty

Hit Time

* Use DRAMs for main memory

— Fixed width (e.g., 1 word)

— Connected by fixed-width clocked bus

* Bus clock is typically slower than CPU clock

* Example cache block read

— 1 bus cycle for address transfer

— 15 bus cycles per DRAM access

— 1 bus cycle per data transfer

* For 4-word block, 1-word-wide DRAM
— Miss penalty =1 + 4%15 + 4%1 = 65 bus cycles
— Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

>

Main
Memory
(DRAM)
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, 0xOFFE1230: add x1, X2, X3
Write-Through 0xOFFE1234: Iw|sw x1, 32(x2)
0xO0FFE1238: beq x1, x2, offset

< »| Cache |&———
Processor DRAM

L — —

Write Buffer

* On data-write hit, could just update the block in cache
— But then cache and memory would be inconsistent

* Write through: also update memory

* But makes writes take longer

— e.g., if base CPl =1, 10% of instructions are stores, write to memory
takes 100 cycles

e Effective CPI=1+0.1%100=11

* Solution: write buffer
— Holds data waiting to be written to memory

— CPU continues immediately
* Only stalls on write if write buffer is already full
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Write-Back

* Alternative: On data-write hit, just update the block in cache
— Keep track of whether each block is dirty

* When a dirty block is replaced
— Write it back to memory
— Can use a write buffer to allow replacing block to be read first

Writeback Writethrough
CPU core CPU core
Cache Cache
X= 300 X= 300
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Write Allocation: What should happen on a write
miss?

* Alternatives for write-through

— Allocate on miss: fetch the block

— Write around: don’t fetch the block

* Since programs often write a whole block before reading it (e.g.,
initialization)

* For write-back

— Usually fetch the block

Write Policy

Hit:
- wr?+c—ﬂrou5}\
- write-back
Add ress 4
Miss: k| J
- write albaate 2 4 i TR

— No-write allocate
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Chapter 5: Large and Fast: Exploiting Memory
Hierarchy

®* Lecture
— 5.1 Introduction
— 5.2 Memory Technologies

®* Lecture
— 5.3 The Basics of Caches

I Lecture
— 5.4 Measuring and Improving Cache Performance

— 5.5 Dependable Memory Hierarchy

* Lecture
— 5.6 Virtual Memory

— L L-Cormrmrenramewerlctor Memer-Hierarehy
* Lecture 26

Eo U Finite-State Machi - Lo Simole Cacl

— 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5 14 GoineF . Cache Blocki | Matrix Multiol
— 5.16 Concluding Remarks
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Measuring Cache Performance

* CPU performance factors

. Instructions Time
— Instruction count CPU Time = | g
_ _ Program Cycle
* Determined by ISA and compiler
— CPI and Cycle time 1ok [F 300 oks
. |}l >
* Determined by CPU hardware T Miss % * Miss penalty Main
CPU Cache Access Latencies in Clock Cycles e
Main memory 167

L3 Cache Full Random access I 33

L3 Cache In Page Random access [ 18 Block Transfer

L3 Cache sequential access M 14 Word Transfer r\l/\
L2 Cache Full Random access M 11

L2 Cache In Page Random access M 11 ‘ .
Cache || Main memory
L2 Cache sequential access M 11 Fast .

L1 Cache In Full Random access M4

L1 Cache In Page Random access W4 (a) Single cache

L1 Cache sequential access M4

0 50 100 150 200
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CPU Performance with Memory Factor

CPU Cache Access Latencies in Clock Cycles

* Components of CPU time

167

.
— Program execution cycles ivatveii sy
* Includes cache hit time ot
— Memory stall cycles _ e e

* Mainly from cache misses oo =
e ¢

* Memory Stall Cycles: the number of cycles during
which the processor is stalled waiting for a memory
access.

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time

CPU Time = Instructions Cycle.s . Time
Program |JInstruction] Cycle )




Memory Stall Cycles per Instruction

CPU Time Instructiong Cycle.s JTime
Program | Instruction [Cycle

CPU execution time = (CPU clock cycles {Memory stall cycles|x Clock cycle time

M tall clock cycl
CPU time =IC x (CPIG,“,,Cm-jOn X Clock cycle time
Instruction

* CPl and Memory stall cycles/instruction are averages

57



Memory Stall Cycles

* Memory Stall Cycles: the number of cycles during which the
processor is stalled waiting for a memory access.
— Depends on both the number of misses and the cost per miss, i.e. the
miss penalty:

Memory stall cycles = Number of misses x Miss penalty

=ICx Misses x Miss Penalty

Instrution
Memory accesses

=ICx x Miss rate x Miss Penalty

Instrution

Cache mem ory Main memory

1clk 300 clks
- =

P address B
rocessor Lot 4
.—;‘/—\T "\. - Miss % * Miss penalty .
Hit Time Main

word 7T \ Memory

TES)
P A s g

(DRAM)
block block

the same address
58
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Miss Rate: Miss per Memory Reference

Miss Rate = # Misses / # Memory reference

* Memory access include both instruction access and data access
— Each instruction needs to be read from memory: one I-mem access

— LW/SW are memory access instructions: one D-mem access (in
addition to one I-mem access)

— Count # memory accesses: Each iteration, 14 instructions in total, 9
Id/lw/sw =» 1449 or 9*%2+5 = 23 memory accesses

* 9 are data-mem accesses

int sum(int N, int a, int *xX) {
int 1i;
int result = 0;

return result;
¥




Cache Performance

o G CPU time =IC x <CPI(,/XeCuﬁon + Memory stall Cl_OCk cycles> X Clock cycle time
iven Instruction
— |-cache miss rate = 2% e I
— D-cache miss rate = 4% il — >
— Miss penalty = 100 cycles HitTime — iss T Hiss penalty ok
— Base CPI (ideal cache) =2 P

— Load & stores are 36% of instructions

* Stall cycles per instruction (Misses/Instruction * Miss Penalty)

— |-mem: 1* 0.02 ¥ 100 = 2 (each instruction has one I-cache/mem
access)

— D-mem: 0.36 % 0.04 x 100 = 1.44 (only load/store has D-cache access)

* ActualCPl=2+2+1.44=5.44
— Ideal CPU is (5.44/2 =2.72) times faster
— 2+1.44 cycles/instruction on memory stalls =» 3.44/5.44 = 63%

* Miss penalty (100 cycles) is the killing factor
— DRAM speed
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Average Memory Access Time (AMAT)

Tck | = 20 cycles
H 5?‘;
il ice 9L * Mi
Hit Time Miss % * Miss penalty Main
Memory
(DRAM)

Average Memory Access Time (AMAT)
= Hit Time + Miss Rate * Miss Penalty

* Miss penalty: Time to fetch a block from lower memory level
— Access time: function of latency
— Transfer time: function of bandwith b/w levels
* Transfer one “cache block/line” at a time

°* Example:

— CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss
rate = 5%

— AMAT =1+0.05% 20=2ns
e 2 cycles per instruction
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Three Important Equations for Cache Performance

Average Memory Access Time (AMAT)
= Hit Time + Miss Rate * Miss Penalty

Memory stall clock cycles

CPU time = IC X (CPIexecuﬁon + > X Clock cycle time

Instruction

Memory stall cycles = Number of misses x Miss penalty

=ICx Misses x Miss Penalty

Instrution
Memory accesses

=[Cx

' x Miss rate x Miss Penalty
Instrution
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Performance Summary

When CPU performance increased
— Miss penalty becomes more significant

Decreasing base CPI
— Greater proportion of time spent on memory stalls

Increasing clock rate
— Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance
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Associative Caches

* Fully associative
— Allow a given block to go in any cache entry

Requires all entries to be searched at once
Comparator per entry (expensive)

®* n-way set associative

Each set contains n entries

Block number determines which set

e (Block number) modulo (#Sets in cache)
Search all entries in a given set at once

n comparators (less expensive)
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Set Associative Cache

* N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel

* Example: Two-way set associative cache
— Cache Index selects a “set” from the cache;
— The two tags in the set are compared to the input in parallel;
— Data is selected based on the tag result.

Valid

Cache Index
Cache Tag Cache Data Cache Data Cache Tag  Valid
Cache Block 0 Cache Block 0

—(OR
Hit 1 Cache Block
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4-Way Set Associative Cache

Address
3130---12111098---3210

422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® ® ® ® ® ® ®
253
254
255
d22 {32
. 4 . 4 [~
(= (= (= (=

:Z-toJ muItipIex@

Hit Data 66



Associative Cache Example

Direct mapped

Block# 01234567

Data
1
T
ag 5
Search T

Set associative

Set# O
Data
1
Ta
9 2
Search T T

Data

Tag

s TITTTTT

Fully associative

1
2
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Spectrum of Associativity

®* For a cache with 8 entries

One-way set associative
(direct mapped)

Block Tag Data

0
] Two-way set associative
5 Set Tag Data Tag Data
3 0
1
4
2
5
5 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data
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Associativity Example

* Compare 4-block caches

— Direct mapped, 2-way set associative,
fully associative

— Block access sequence: 0, 8, 0, 6, 8

* Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2
0 0 miss Mem[0]
8 0 miss Mem([8]
0 0 miss Mem([0]
6 2 miss Mem][0] Mem[6]
8 0 miss Mem[8] Mem|[6]
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Associativity Example

® 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss Mem[0]
8 0 miss Mem][0] Mem|[8]
0 0 hit Mem[0] Mem|[8]
6 0 miss Mem[O0] Mem([6]
8 0 miss Mem[8] Mem[6]

= Fully associative

Block Hit/miss Cache content after access
address
0 miss Mem[0]
8 miss Mem][0] Mem|[8]
0 hit Mem|[0] Mem[8]
6 miss Mem][0] Mem|[8] Mem|[6]
8 hit Mem][0] Mem[8] Mem|[6]
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How Much Associativity

* Increased associativity decreases miss rate
— But with diminishing returns

* Simulation of a system with 64KB D-cache, 16-word blocks,
SPEC2000; Miss rate:
— 1-way: 10.3%
— 2-way: 8.6%
— 4-way: 8.3%
— 8-way: 8.1%



Replacement Policy

Direct mapped: no choice

Set associative
— Prefer non-valid entry, if there is one
— Otherwise, choose among entries in the set

Least-recently used (LRU)
— Choose the one unused for the longest time

* Simple for 2-way, manageable for 4-way, too hard beyond that

Random

— Gives approximately the same performance as LRU for high
associativity
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* Primary cache attached to CPU

— Small, but fast

* Level-2 cache services misses from primary cache
— Larger, slower, but still faster than main memory

* Main memory services L-2 cache misses
* Some high-end systems include L-3 cache

Multilevel Caches

Cache Memory System

~

CpPU

lLevel 1

-

[-Cache
168

l.evel 2

D-Cache
I6 KB

L]

IMB

Main Memory

Write
Buffer

1GB
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Multilevel Caches

More info for multilevel cache

Tak | =| 10clks |Second | 20 clks 800 clks
ﬁ g— lr. Level [ Third f
: Cache Level : Main
L1 L2 Cache Memory
(DRAM)
................................................................... | B .
On-die
L1 L2 L3
C C C Memory
CPU a a a bus
Memory
Registers C c C
h h h
e e o
Register Level 1 Level 2 Level 3 Memory
reference Cache Cache Cache reference
reference reference reference
Size: 4000 bytes 64 KB 256 KB 16-64 MB 32-256 GB
Speed: 200 ps 1ns 3-10 ns 10-20 ns 50-100 ns
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(s8aD) sasng e3eq uowwod

Sky Lake - Microarchitectures — Intel

https://en.wikichip.org/wiki/intel/microarchitectures/skylake (server)

Front E nd Instruction .
cacheTag| L1 Instruction Cache
MOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch
Predictor ’ Instruction Fetch & PreDecode ‘
(BPU) (16 B window)
MOP MOP MOP MOP MOP  MOP
Instruction Queue
| (50, 2x25 entries)
MOP  MOP  MOP  MOP  MOP
MicroCode 5-Way Decode
II{OM (éomp{:ex DS]rn;zle DSimr:![e DSirn%Ie DSirn;zle
(MS ROM) ecoder. ecoder ecoder ecoder ecoder Stack
1-4 poPs por HopP nop HoP .
Engine
4 pOPs (SE)
5 pHOP:
Decoded Stream Buffer (DSB) i
(UOP Cache) 6 UOPs

(1.5k HOPs; 8-Way)
(64 B window)

MUX

Allocation Queue (IDQ) (128, 2x64 UOPs) ‘

] ] 2, HOP pOP pOP pOP pMpOP  HOP Branch Order Buffer
Register Alias Table (RAT) ‘\'4‘10 (BOB) (48-entry)
»

Rename / Allocate / Retirement

INT ALU
INT MUL

Execution Engine

Load
FP. Move Elimination 5 Ones Idioms Zeroing Idioms
{ ReOrder Buffer (224 entries) I | | g l ‘
5 uop uop uop uop pop pop pop pop
=
4
Scheduler
Integer Physical Register File . N . Vector Physical Register File
5 (180 Registers) Unified Reservation Station (RS) (168 Registers)
| Store] (97 entries)
[Poto | T[Port1 | [Port 5 ] [Port6 | [Port2 | [Port3 | [Port4 | [(Port7 |
HOP HOP HOP HOP HOP HOP HOP HOP

INT DIV

[ NTAL [ AGU ][ AGU |[StoreData][ AGU ]

Store Buffer & Forwarding
(56 entries)

64B/eycle

Load Buffer
(72 entries)

64B/cycle

32KiB 8-Way

L1 Data Cache M

-]
o
\E
g
fal,
o
=
=
sl =20
ES WO
2 R o
0 3 A
3 ;
B =3
Q
<
o
-
\E
[s)
<
fal,
o

6aB/cycle

Line Fill Buffers (LFB)
(10 entries)

Memory Subsystem

Memory Hierarchy

Some major organizational changes were done to the cache hierarchy in Skylake server config
hierarchy for Skylake's server and HEDT processors has been rebalanced. Note that the L3 is n
the L3 cache was moved into the private L2 cache.
= Cache
= L0 pOP cache:
= 1,536 yOPs/core, 8-way set associative
= 32 sets, 6-p0P line size
= statically divided between threads, inclusive with L1l
= L1l Cache:
= 32 KiB/core, 8-way set associative
= 64 sets, 64 B line size
= competitively shared by the threads/core
= L1D Cache:
= 32 KiB/core, 8-way set associative
= 64 sets, 64 B line size
= competitively shared by threads/core
= 4 cycles for fastest load-to-use (simple pointer accesses)
= 5cycles for complex addresses
= 128 B/cycle load bandwidth
= 64 B/cycle store bandwidth
= Write-back policy

= L2 Cache:
64B/cycle = 1 MiB/core, 16-way set associative
/ ToL3 = 64 B line size
= Inclusive

= 64 B/cycle bandwidth to L1$
= Write-back policy
= 14 cycles latency
= L3 Cache:
= 1.375 MiB/core, 11-way set associative, shared across all cores
= Note that a few models have non-default cache sizes due to disabled cores
= 2,048 sets, 64 B line size
= Non-inclusive victim cache
= Write-back policy
= 50-70 cycles latency
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Multilevel Cache Example

* Given
— CPU base CPI =1, clock rate = 4GHz
— Miss rate/instruction = 2%
— Main memory access time = 100ns
* With just primary cache
— Miss penalty = 100ns/0.25ns = 400 cycles
— Effective CPI=1+0.02 x400=9
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Example (cont.)

Now add L-2 cache

— Access time = 5ns
— Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
— Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
— Extra penalty = 500 cycles

CPI=1+0.02%20+0.005%x400=3.4
Performance ratio =9/3.4=2.6
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Multilevel Cache Considerations

* Primary cache
— Focus on minimal hit time

* |-2 cache
— Focus on low miss rate to avoid main memory access
— Hit time has less overall impact

* Results
— L-1 cache usually smaller than a single cache
— L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

* Qut-of-order CPUs can execute instructions during cache miss
— Pending store stays in load/store unit
— Dependent instructions wait in reservation stations
* Independent instructions continue

* Effect of miss depends on program data flow
— Much harder to analyse
— Use system simulation
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Interactions with Software

1200

* Misses depend on
memory access patterns |
— Algorithm behavior e e e

— Compiler optimization for
memory access

Clock cycles/item

4 8 16 32 64 128 256 512 1024 2048 4096
b. Size (K items to sort)

4 8 16 32 64 128 256 512 1024 2048 4096 80
Size (K items to sort )



Software Optimization via Blocking

B Goal: maximize accesses to data before it is replaced

B Consider inner loops of DGEMM:

for (int j = 0; J < n; ++7)
{
double cij = C[i+3*n];
for( int k = 0; k < n; k++ )
cij] += Ali+tk*n] * Blk+3*n];

Clit3*n] = c1i73;



DGEMM Access Pattern

* C, A, and B arrays

older accesses

new dacCesses

o »~ W DN
o »~ W DN
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Cache Blocked DGEMM

1 #define BLOCKSIZE 32

2 void do block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)

4 A

5 for (int i = si; 1 < si+BLOCKSIZE; ++1)

6 for (int j = sj; j < sj+BLOCKSIZE; ++7j)

7 {

8 double cij = C[i+j*n];/* cij = C[i][3] */

9 for( int k = sk; k < sk+BLOCKSIZE; k++ )

10 cij += Ali+k*n] * B[k+j*n];/* cij+=A[1i][k]*B[k][]j] */
11 Cl[i+j*n] = cij;/* C[i]I[J] = cij */

12}

13 }

14 void dgemm (int n, double* A, double* B, double* C)
15 {

16 for ( int sj = 0; sj < n; sj += BLOCKSIZE )

17 for ( int si = 0; si < n; si += BLOCKSIZE )

18 for ( int sk = 0; sk < n; sk += BLOCKSIZE )

19 do block(n, si, sj, sk, A, B, C);

20 }



Blocked DGEMM Access Pattern

N N !

0 0

2
3
4
5

@ 32x32 @ 160x160 O 480x480 O 960x960

GFLOPS

Unoptimized Blocked
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Chapter 5: Large and Fast: Exploiting Memory
Hierarchy

®* Lecture
— 5.1 Introduction
— 5.2 Memory Technologies

®* Lecture
— 5.3 The Basics of Caches

* Lecture
— 5.4 Measuring and Improving Cache Performance

— 5.5 Dependable Memory Hierarchy

I Lecture
— 5.6 Virtual Memory

— L L-Cormrmrenramewerlctor Memer-Hierarehy
* Lecture 26

Eo U Finite-State Machi - Lo Simole Cacl

— 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5 14 GoineF . Cache Blocki | Matrix Multiol
— 5.16 Concluding Remarks
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Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large not expensiv

PCSrc
Northbridge (with heatsink)

AGP Slo

= X2
DRAM Memory B‘ ‘- X &
20-p|n ATX Power A R ‘(x
Jonnector o8 -
N 3 TN
; i >

Southbridge g
B A PCI Slot

e 1 i

Connectors For
Inteqrated Peripherals

Read
register 1 Read
Read data 1
register 2

Regist
Write egisters Ro,q

Instruction register data 2
memory

Read
address

Heatsink
Mounting
Points

Instruction

Write
data

RegWrite

Write ~ Data

I data memory

viemRead

16

Processor

Control

MERIICHTY . £3 C 1
o [ el A s——

ip

i

Datapath

..........

---------- i NS Y 36




Memory System of A Bare Machine

Physical

Address | |nst.

D
" Cache ecode

Physical
Address

>

> +

Data
Cache

L

<

|

Memory Controller

Physical Address

I Physical Address

Main Memory (DRAM)

0x0FFE1230: add $t1, $t2, $t3
0x0FFE1234: Iw|sw $t1, 32($t2)
0xOFFE1238: beq $t1, $t2, offset

* In a bare machine, the only kind of address is a
physical address
— The address of a memory byte

Physical Address

ook

OXFFFFFFFF

0x00000008
0x00000007
0x00000006
0x00000005

s 0x00000004
©  0x00000003

0x00000002
0x00000001
0x00000000

1000 0000

0100 1001

1100 1100

0110 1110

0110 1110

0000 0000

0110 1011

0101 0001

1100 1001

0100 1111

Main Memory

87




Virtual Memory

* Programs share main memory

— Each gets a private virtual address space holding its
frequently used code and data

— Protected from other programs

* CPU and OS translate virtual addresses to physical
addresses
— VM “block” is called a page
— VM translation “miss” is called a page fault

* Use main memory as a “cache” for secondary (disk)
storage

— Managed jointly by CPU hardware and the operating system
(OS)
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Virtual Memory to Physical Memory Mapping

Example
Virtual address space _ Virtual address space
for Notepad.exe  Physical memory for MyApp.exe
00000000000 pages 00000000000
33CEO000

7793950000 63A20000 7F793950000
TF793951000 7F793951000

vl AFDAQOQCOO
7F793952000

—~—»{ B2BAS000

\’ BC650000
TFFFFFFFFFF 7FFFFFFFFFF 29




Virtual Memory: Motivations and Benefits

* Protection: to allow efficient and safe sharing of memory among
multiple programs
— Conventional multi-programming, time-sharing OS
— Today for the memory needed by multiple virtual machines for cloud
computing
* Virtualization: to remove the programming burdens of a small,
limited amount of main memory.

— 4G memory space of 32-bit OS/machine even with << 4GB physical
memory, e.g. 256 MB

e Each sees 0x00000000 — OxFFFFFFFF memory

* Relocation: simplifies loading the program for execution.
— allows the same program to run in any location in physical memory.

* |tis called Virtual Memory, thus NOT REAL or PHYSICAL memory
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Address Translation

Ox0FFE1230: add x1, x2, x3
Ox0FFE1234: Iw|sw x1, 32(x2)
— 4K (2"?) byes per page 0XOFFE1238: beq x1, X2, offset
— 12 bits to address a byte within a page

* Fixed-size pages (e.g., 4K)

* Address translation: to map the upper [47:12] bits of the
virtual address, i.e. virtual page numbe_r, to a physical page
number [39.12] Virtual address

A7 A6 45 44 43 «vvvvveeevvnnnnnnnn.. 1514131211 1098 ---vvvvve-- 3210

Virtual page number Page offset
Virtual addresses Physical addresses

% ( Translation )
a 393837 +-cevenn- Jrooeeeeen 1514131211109 8 SRR SRR 3210
Disk addresses Physical page number Page offset

Physical address

0l
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Ox0FFE1230: add x1, x2, x3

. OXOFFE1234: lesw x1, 32(x2) 4746454443 -covvvvrreneenies 15141312111098 «--ovvvvee 3210
Example' 0xOFFE1238: beq x1, x2, offset

—

The physical address of 0OxOFFE1230

Virtual page number Page offset

893837 crveeirenreeeines 15141312 111098 +efrreees 3210

Physical page number Page offset

Physical address

* A computer with 2%° (1024 Gbytes = 1 Tibytes) physical memory

— Each process (the execution of a program) can access 248 (4 TiB) bytes
of address space, thus a virtual address has 48 bits

* For 4K-byte (212) of pages, a process can have 23° virtual pages
— For 1 TiGbyte of physical memory, which is 2%° Bytes = 228 pages
* Thus a physical page number should have 28 bits

* Address translation
— No need to translate the lower 12 bit (230) since it is for addressing a
byte within a page, i.e. 0xO0000FFE1230
— Only need to translate 0xO0000FFE1 (virtual page number) to
physical page number in 28 bits, e.g. 0x2F16AB4

— Thus the physical address is: 0x2F16AB4230 92



Translation Using a Page Table

Page table register

Ox00000FFE1230

Virtual address

47 46 45 44 43 «ceeiieiiiiiiiiiinnann. 15 14 13 12 11 10 9 8-++---- 3210
Virtual page number Page offset
OO00OOFFE1 36 112
Valid Physical page number

Ox2F16AB4230

230

* 2F16AB4

228 entries
Page table

428
If O then page is not
present in memory 2F16AB4
39 38 37 -cvcreeereranntranneiaanananns 15 14 13 12 11 10 9 8 }----- 3210
Physical page number Page offset

Physical address



Page Tables for Address Translation

* A page table is a (DRAM) memory area that stores mapping

information between virtual page number to physical page

number

— Array of page table entries, indexed by virtual page number
— Page table register in CPU has the address of the page table in
physical memory
* |f page is present in memory
— PTE stores the physical page number
— Plus other status bits (referenced, dirty, ...

* |f page is not present

31

Page Table Entry

11 9

Physical Page Address

Avail.

)

GGGGGGGG

A - Accessed

PPPPPPPPP

CCCCCCCCCCC

led

isor

— PTE can refer to location in swap space on disk
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Paging: Private Address Space per Process (User)

R 0OS
Page Table —
7 4
User 2 A;/// >
////////// Page Table h
page Table i
®* Each user (process) has a page table

* A page table contains an entry for each user page
— Each entry stores the physical page address and other
info .

5



Where Should Page Tables Reside?

* Space required by the page tables (PT) is proportional

to the address space, number of users,

= Too large to keep in registers or SRAM cache in

full

Block Transfer

* Idea: Keep PTs in the main memory | @

(a) Single cache

* A page table register is used to store the address of

the page table
* Each user has her own page table
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Mapping Pages to Storage

* Demand paging

— Valid bit to indicate whether a page is in physical mem or not

Virtual page
number

Page table
Physical page or
Valid disk address

i

\

Y

3

Physical memory

\
(

A\

=[O = =[O =t [ =2 [ O] b | b | b | =t

12|
A\

Disk storage
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Linear Page Table Example (4K pages)

* 48-bit addres
* 4K-size page
* 4-byte PTE

Page table register

S

Virtual address
47 46 45 44 43 --cccevvieiiiiiiiiinn, 1514 13 12 11 10 9 8------- 3210
Virtual page number Page offset
436 412
Valid Physical page number
o ([ }

— | 228 entries

Page table

| 428
If O then page is not
present in memory
39 38 37 -cvcreeereranntranneiaanananns 15 14 13 12 11 10 9 8 }----- 3210
Physical page number Page offset

Physical address 98



Linear Page Table

* With 48-bit virtual addresses, 4-KB pages & 4-byte PTEs,

and 40-bit physical address

— 23%PTEs (48-12)

— 4 TiB of swap needed to back up full virtual address space, in real, no need
that much

® Larger pages?
— Internal fragmentation (Not all memory in page is used)
— Larger page fault penalty (more time to read from disk)

* What about the full 64-bit virtual address space???

— How many page table entries (PTEs)?
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Page Fault and Page Fault Penalty

* Page Fault: when fetching a byte whose page is not in memory

Virtual addre: Physical a

— Memory miss e
Block Transfer P a e Tran S ff:f T%E
|d Xlo, OX3 540(X5) Word Transfer ~AA g 1 — -
\ l ~ e e
' CPU Cache Main memory < g Disk adc
Virtual address - S“’“' —

() Single cache

* On page fault, the page must be fetched from disk to memory
— Takes millions of clock cycles

— Handled by OS code, a process is swapped and context switched to
another process

e Different from cash miss, in which CPU stall to wait for memory
access to be fulfilled.
* Try to minimize page fault rate
— Fully associative placement
— Smart replacement algorithms
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Page Fault Handler

* Use faulting virtual address to find PTE
* Locate page on disk

* Choose page to replace
— |If dirty, write to disk first

* Read page into memory and update page table

* Make process runnable again
— Restart from faulting instruction

Virtual addresses Physical addresses

=

LI

Disk addresses
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Replacement and Writes

* To reduce page fault rate, prefer least-recently used (LRU)
replacement
— Reference bit (aka use bit) in PTE set to 1 on access to page
— Periodically cleared to 0 by OS
— A page with reference bit = 0 has not been used recently
— Work with principle of locality

Virtual page
number

Page table

Physical page or Physical memory

* Disk writes take millions of cycles Valid_disk addross

— Block at once, not individual locati 1 —

[ ° ° [] 1 .\
— Write through is impractical I
— Use write-back —

. L o L 7 |
— Dirty bit in PTE set when ! L Disk storage
page is written I —
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Page Table in Main Memory
O0x0FFE1230: add x1, x2, x3
O0x0FFE1234: Iw|sw x1, 32(x2)
0xO0FFE1238: beq x1, x2, offset

* One memory address needs:

— One reference to access the page table for the physical page
number and

— Then another reference to access the data word
— =» doubles the number of memory references/accesses!

Page table register ‘

Virtual address

47 46 45 44 43 -oveiiiiiiiiiiins 1514 13 12 11 10 9 8-+ 3210
Virtual page number Page offset Block Transfer
36 \12 ’
N . >
Valid Physical page number er f\-k/-\
Fast : Slow

Page table

(a) Single cache

If 0 then page is not
present in memory

39 38 B7-rrrrrrriiiiiiiii, 1514 1312 11 10 9 832 1 0

Physical page number Page offset 1 0 3

Phvsical address



Fast Translation Using a TLB

TLB are cache (in SRAM) for page tables

* Address translation requires extra memory references
— One to access the PTE
— Then the actual memory access

* But access to page tables has good locality
— So use a fast cache of PTEs within the CPU
— Called a Translation Look-aside Buffer (TLB)

— Typical: 16512 PTEs, 0.5-1 cycle for hit, 10-100 cycles for miss,
0.01%—1% miss rate

— Misses could be handled by hardware or software
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Fast Translation Using a TLB

TLB
Virtual page Physical page
number \@lidDirty Ref Tag address
| |
1/0]1 b
1111 . Physical memo
SRAM (Cache) T[] ° Y i
1]0]1 ~ _
0[0]0
1]0([1 .~
Page table
Physical page
Valid Dirty Ref or disk address
/
101 —
1(0]0 o« .
TToTo — Disk storage
i S
DRAM (M R —— L |
m 1/0]1
(Mem) 1]0]1 o« / -
0[0[0 | |
1]1[1 « ~ / M |
111 « / ~_
0/0]0 o~
1]1[1 J

FIGURE 5.29 The TLB acts as a cache of the page table for the entries that mafp 3o
physical pages only. The TLB contains a subset of the virtual-to-physical page mappings that are in the



TLB Misses

* |f page isin memory
— Load the PTE from memory and retry
— Could be handled in hardware
e Can get complex for more complicated page table structures
— Or in software
* Raise a special exception, with optimized handler

* |f page is not in memory (page fault)
— OS handles fetching the page and updating the page table
— Then restart the faulting instruction
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TLB Miss Handler

* TLB miss indicates
— Page present, but PTE not in TLB
— Page not present
* Must recognize TLB miss before destination register
overwritten
— Raise exception

* Handler copies PTE from memory to TLB
— Then restarts instruction
— |f page not present, page fault will occur
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TLB and Cache Interaction:
From VA to Byte via TLB and L-1 Cache

Virtual address

T T * If cache tag uses physical
= e address
Valid Dirty Tag Physical page number
LB 0= — Need to translate before
TLB hit - %_ ' cache lookup
o= * Alternative: use virtual
Physical page number I Page offset add ress tag
Physical address t gphysmal  Cache ina Block Byte C li i d
sical address ta I ache index offset offset  — Omp |Cat|0ns ue to
J18 Js AIRE ..
) aliasing
. e Different virtual addresses
) N Data H
Vel g 2 for shared physical address
Cache
fj =)
Cache hit
J32

Data



From VA to Data via TLB and Cache

TLB miss
exception

Virtual address

TLB access

TLB hit?

Cache miss stall
while read block

No

Try to read data
from cache

Cache hit?

Yes

Physical address

Write protection
exception

Yes

Deliver data
to the CPU

Yes

Write access
bit on?

Speed

Fastest

Slowest

Processor Size
Smallest
Memory
Memory Biggest

Current
Cost ($/bit) technology
Highest SRAM
DRAM
Lowest Magnetic dis|

k

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.

Cache miss stall
while read block

Try to write data
to cache

Cache hit?

Yes

Virtual address

............................. 1413121110 9------3210

Virtual page number

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

Valid Dirty Tag Physical page number
TLB =
TLB hit <—e 3
o
o
20
Physical page number ‘ Page offset
K At : Block Byte
Physical address tag ‘ Cache index ‘ offset offset
,Igs 2
8
12 Data
Valid Tag
Cache
=
Cache hit
32
Data
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VM: On-Demand Paging and Swap:
Protection, Virtualization and Relocation

Virtual addresses Physical addresses

—

* Protection: with multiple virtual address spaces, errors are
confined to one address space

— Between programs (processes)

* Virtualization via on-demand paging: move only frequently used
pages to VM
— Principle of locality

* Relocation: pages on disk can be loaded to any free physical
pages

* Fixed-size pages (e.g., 4K)

ld x10, 0x3540(x5)
\ l

|
Virtual address

LI

Disk addresses
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VM: Address Translation & Protection

Virtual address

A7 A6 A5 44 43 «oovvveeeeennnnnnnnn. 1514131211 1098 ++vvvvveees 3210

Virtual page number Page offset

Kernel/User Mode

\/

Read/Write/Exe

\ Protection ( Translation )
Check
393837 oceeenn- Jroeeeeeee 1514131211109 8 KU SECER 3210
Exce ption? Physical page number Page offset

Physical address

* Every instruction and data access needs address translation and
protection checks
— Within a program: writes to EXE or Read-only segment are violations

* Agood VM design needs to be fast (~ one cycle) and space

efficient
111



Summary

* Virtual Memory:
— Protection, Virtualization and Relocation

* Paging:
— Page table, address translation
— In main memory

°* TLB:
— Cache for page tables
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Chapter 5: Large and Fast: Exploiting Memory
Hierarchy

®* Lecture
— 5.1 Introduction
— 5.2 Memory Technologies

®* Lecture
— 5.3 The Basics of Caches

* Lecture
— 5.4 Measuring and Improving Cache Performance
— 5.5 Dencndable MermmopHicrarehy
* Lecture
— 5.6 Virtual Memory
J@™ — 5.8 ACommon Framework for Memory Hierarchy

®* Lecture 26

Eo U Finite-State Machi - La SimoleCacl

— 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5 14 GoineF . Cache Blocki | Matrix Multiol
— 5.16 Concluding Remarks
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The Memory Hierarchy

1. Common principles apply at all

levels of the memory hierarchy
— Based on notions of caching and locality

* At each level in the hierarchy

* Loading frequently used item and its surrounding in fast mem

Block placement
Finding a block

Replacement on a miss
Write policy

CPU

Word Transfer

~AA

Block Transfer

~AA

Fast

Cache

Slow

Main memory

Virtual addresses

Physical addresses

o
.%
—
>
._,><
.\
o _—

_—

Page Transfer

Disk addresses

(a) Single cache
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4 Questions for Each Level

Q1: Where can a block be placed in the upper level?
— Block placement

Q2: How is a block found if it is in the upper level?
— Block identification

Q3: Which block should be replaced on a miss?
— Block replacement

Q4: What happens on a write?
— Write strategy

Block Transfer Page Transfer

|
Word Transfer f\A/'\ [ \ 0
f\k/\ v

CPU ‘| Cache ] Main memory
Fast Slow

115



Q1: Where Can a Block be Placed in The Upper

Level?

Block Placement

Direct Mapped, Fully Associative, Set Associative
* Direct mapped: (Block number) mod (Number of blocks in cache)

» Set associative: (Block number) mod (Number of sets in cache)
— # of set < # of blocks
— n-way: n blocks in a set
— 1-way = direct mapped

* Fully associative: # of set=1

Direct mapped: data block 12 can go Set associative: data block 12 can Fully associative: data block
only into block 4 (12 mod 8) go anywhere in set 0 (12 mod 4) 12 can go anywhere
Blockno. 0 12 34 567 Blockno. 0 12 34 567 Blockno. 0 12 34 567

Set0 Setl Set2 Set3

Block-frame address

Blockno. 0 12 3456789 12 31
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Q2: Block Identification

* Tag on each block
— No need to check index or block offset

* Increasing associativity shrinks index, expands tag

Block Address Block
Tag Index Offset
N J \. J
Y Y

Set Select  Data Select

Cache size = Associativity x 2ndex_size y Joffest size
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Finding a Block

Associativity

Location method

Tag comparisons

Direct mapped

Index

1

n-way set Set index, then search | n

associative entries within the set

Fully associative Search all entries #entries
Full lookup table 0

* Hardware caches

— Reduce comparisons to reduce cost

* Virtual memory

— Full table lookup makes full associativity feasible
— Benefit in reduced miss rate
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Q3: Which block should be replaced on a miss?

* Easy for Direct Mapped

* Set Associative or Fully Associative
— Random
— LRU (Least Recently Used)
— First in, first out (FIFO)

Associativity

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4
64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3
256 KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Figure B.4 Data cache misses per 1000 instructions comparing least recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (appluy, arig
equake, lucas, and swim). We will use this computer and these benchmarks in most figures in this appendix.



Replacement

* Choice of entry to replace on a miss
— Least recently used (LRU)
 Complex and costly hardware for high associativity
— Random
* Close to LRU, easier to implement

* Virtual memory
— LRU approximation with hardware support
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Q4: What Happens on a Write?

Write-Through Write-Back
1. Write data only
Data written to to the cache
Policy cache block, also |2, Update lower
written to lower- level when a
level memory block falls out of
the cache
Debug Easy Hard
Do read misses produce writes? No Yes
Do repeated writes make it to Yes No
lower level?

Additional option -- let writes to an un-cached address allocate a new
cache line (““‘write-allocate™).
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Write Policy

* Write-through
— Update both upper and lower levels
— Simplifies replacement, but may require write buffer

* Write-back
— Update upper level only
— Update lower level when block is replaced
— Need to keep more state
* Virtual memory
— Only write-back is feasible, given disk write latency
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Write Buffers for Write-Through Caches

Processor

Write Buffer

°* Q. Why a write buffer ?
— A. So CPU doesn’t stall

°* Q. Why a buffer, why not just one register ?
— A. Bursts of writes are common.

DRAM

* Q. Are Read After Write (RAW) hazards an issue for write buffer?

— A. Yes! Drain buffer before next read, or send read 15t after check

write buffers.
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Sources of Misses

* Compulsory misses (aka cold start misses)
— First access to a block

* (Capacity misses
— Due to finite cache size
— A replaced block is later accessed again

* Conflict misses (aka collision misses)
— In a non-fully associative cache

— Due to competition for entries in a set

— Would not occur in a fully associative cache of the same total
Size
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Cache Design Trade-offs

Average Memory Access Time (AMAT)

1clk

20 cycles

fr—
Hit Time

agan)
P A1

Average Memory Access Time (AMAT)

Miss % * Miss penalty

Main
Memory
(DRAM)

= Hit Time + Miss Rate * Miss Penalty

Design change

Effect on miss
rate

Negative performance effect

Increase cache
size

Decrease

capacity misses

May increase access time

Increase Decrease conflict | May increase access time

associativity misses

Increase block Decrease Increases miss penalty. For very

size compulsory large block size, may increase
misses miss rate due to pollution.

12
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Multilevel On-Chip Caches

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

Configurable 16 to 64 KiB each
for instructions/data

32 KiB each for instructions/data per
core

L1 cache associativity

Two-way (l), four-way (D) set
associative

Four-way (I), eight-way (D) set
associative

L1 replacement

Random

Approximated LRU

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, variable allocation
policies (default is Write-allocate)

Write-back, No-write-allocate

L1 hit time (load-use)

L2 cache organization

Two clock cycles

Unified (instruction and data)

Four clock cycles, pipelined

Unified (instruction and data) per core

L2 cache size

128 KiB to 2 MiB

256 KiB (0.25 MiB)

L2 cache associativity

16-way set associative

8-way set associative

L2 replacement

Approximated LRU

Approximated LRU

L2 block size

64 bytes

64 bytes

L2 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L2 hit time

L3 cache
organization

12 clock cycles

10 clock cycles

Unified (instruction and data)

L3 cache size

8 MiB, shared

L3 cache
associativity

16-way set associative

L3 replacement

Approximated LRU

L3 block size

64 bytes

L3 write policy

Write-back, Write-allocate

L3 hit time

35 clock cycles




2-Level TLB Organization
Characteristic | ARMCortex-A53 | IntelCorei7

Virtual address | 48 bits 48 bits

Physical address | 40 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB | Variable: 4 KiB, 2/4 MiB

TLB organization | 1 TLB for instructions and 1 TLB 1 TLB for instructions and 1 TLB for
for data per core data per core

Both micro TLBs are fully associative, |Both L1 TLBs are four-way set
with 10 entries, round robin associative, LRU replacement
replacement

64-entry, four-way set-associative TLBs

L1 I-TLB has 128 entries for small
TLB misses handled in hardware pages, seven per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware




Supporting Multiple Issue

* Both have multi-banked caches that allow multiple accesses
per cycle assuming no bank conflicts

* Core i7 cache optimizations
— Return requested word first
— Non-blocking cache

* Hit under miss
* Miss under miss
— Data prefetching
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Concluding Remarks

* Fast memories are small, large memories are slow
— We really want fast, large memories ®
— Caching gives this illusion ©

* Principle of locality
— Programs use a small part of their memory space frequently

* Memory hierarchy

— L1 cache <> L2 cache <> ... <> DRAM memory
<> disk

* Memory system design is critical for multiprocessors
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Vector/Matrix and Array in C

* C has row-major storage for multiple dimensional arra

— A[2,2] is followed by A[2,3]
* 3-dimensional array
— B[3]

100]

100

int A[4][4]

0123

0|11]2

4 |5|6

/'

3
7
T

8 |9

1u

W =0

12113 14 |15

|

e Stepping through columns in one row:

for (i=0; i<4; i++) sum += A[0][i];
accesses successive elements

e Stepping through rows in one column:

for (i=0; i<4; i++) sum += A[i][0];
Stride-4 access

O =Moo LN Oh ~ 0D
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Locality Example

* Claim: Being able to look at code and get qualitative sense
of its locality is key skill for professional programmer

* Question: Does this function have good locality?

int sumarrayrows (int a[M] [N]) {
int i, j, sum = 0;

for (1 = 0; 1 < M; i++4)
for (j = 0; j < N; J++)

sum += a[i] [J]’
return sum;
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Locality Example

* Question: Does this function have good locality?

int sumarraycols (int a[M] [N]) {
int i, j, sum = 0;

for (§J = 0; j < N; j++)
for (1 = 0; 1 < M; 1i++4)
sum += a[i] [3];
return sum;
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Locality Example

* Question: Can you permute the loops so that the function
scans the 3-d array a [ ] with a stride-1 reference pattern

(and thus has good spatial locality)?

int sumarray3d(int a[M] [N] [N]) {
int i, j, k, sum = 0;

for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k] [1][]]’
return sum;
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Review: Memory Hierarchy

CPU-Mem Performance Gap: Memory Wall

Program Behavior: Principle of Locality

100,000 * Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
) themselves
L * Spatial locality: Items with nearby addresses tend to be
referenced close together in time
o 1000 * Temporal locality: Recently referenced items are likely to
g be referenced in the near future
E Processor =0
8 - Processor-Memory e Data :“m = 0’
o or(i=0; i<n; i++
& Performance Gap —Reference array elements in succession (stride-1 51(1;n~ = ;[i] L )
reference pattern): Spatial Locality S
return sum;
10 —Reference sum each iteration: Temporal Locality
¢ Instructions
1 . ’ —Reference instructions in sequence: Spatial Locality

1980 2000

1985

1990 1995 2005 2010

Year

—Cycle through loop repeatedly: Temporal Locality

Architecture Approach: Memory Hierarchy

Locality-Friendly Code: Locality to Work

I/o "

Disk
memory
reference

4-16TB
5-10ms

Flash

L3
With Memory Hierarchy :
h
int Sumarrayr Ows (lnt a [M] [N] ) { Register LgveH Lcevelz Lgve:le Mfemory
reference ache ache ache reference
int i j Sum = 0 ; reference  reference  reference
r 4 Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB
Speed: 300 ps 1ns 3-10ns 10-20 ns 50-100 ns
(a) Memory hierarchy for server
for (1 = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] []J];

Level 1 Level 2
Cache Cache
reference  reference

64 KB 256 KB
2ns 10-20 ns

Register
reference

return sum;

Size: 500 bytes 256-512

Speed: 500 ps

Memory
reference

50-100 ns
(b) Memory hierarchy for a personal mobile device

memory
reference

4-8GB
25-50 us

MB




Slides for Other Sections of the
Chapter
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Disk Performance Issues

* Manufacturers quote average seek time
— Based on all possible seeks

— Locality and OS scheduling lead to smaller actual average seek
times

* Smart disk controller allocate physical sectors on disk

— Present logical sector interface to host
— SCSI, ATA, SATA

* Disk drives include caches
— Prefetch sectors in anticipation of access
— Avoid seek and rotational delay
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Dependability

* Fault: failure of a

component

Restoration Failure — May or may not lead to
system failure
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Dependability Measures

* Reliability: mean time to failure (MTTF)
* Service interruption: mean time to repair (MTTR)

* Mean time between failures
— MTBF=MTTF+ MTTR

* Availability = MTTF / (MTTF + MTTR)
* Improving Availability
— Increase MTTF: fault avoidance, fault tolerance, fault forecasting

— Reduce MTTR: improved tools and processes for diagnosis and
repair
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The Hamming SEC Code

* Hamming distance
— Number of bits that are different between two bit patterns

* Minimum distance = 2 provides single bit error detection
— E.g. parity code

* Minimum distance = 3 provides single error correction, 2 bit
error detection
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* To calculate Hamming code:
— Number bits from 1 on the left
— All bit positions that are a power 2 are parity bits

Encoding SEC

— Each parity bit checks certain data bits:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Encoded date bits

pl p2

d4  p8

Parity
bit
coverate

pl

X

X

X

X

X

X

p2
p4
p8
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Decoding SEC

* Value of parity bits indicates which bits are in error
— Use numbering from encoding procedure
— E.g.
 Parity bits = 0000 indicates no error
 Parity bits = 1010 indicates bit 10 was flipped
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SEC/DEC Code

* Add an additional parity bit for the whole word (p,,)
* Make Hamming distance =4

* Decoding:
— Let H = SEC parity bits
* Heven, p, even, no error
* Hodd, p,, odd, correctable single bit error

* Heven, p,odd, errorin p, bit
 Hodd, p, even, double error occurred

* Note: ECC DRAM uses SEC/DEC with 8 bits protecting
each 64 bits
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Virtual Machines

* Host computer emulates guest operating system and
machine resources
— Improved isolation of multiple guests
— Avoids security and reliability problems
— Aids sharing of resources

* Virtualization has some performance impact
— Feasible with modern high-performance comptuers

* Examples
— IBM VM/370 (1970s technology!)
— VMWare
— Microsoft Virtual PC
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Virtual Machine Monitor

Maps virtual resources to physical resources
— Memory, I/O devices, CPUs

Guest code runs on native machine in user mode

— Traps to VMM on privileged instructions and access to protected

resources
Guest OS may be different from host OS

VMM handles real I/O devices
— Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization

* In native machine, on timer interrupt

— OS suspends current process, handles interrupt, selects and
resumes next process

* With Virtual Machine Monitor

— VMM suspends current VM, handles interrupt, selects and
resumes next VM

* |f a VM requires timer interrupts
— VMM emulates a virtual timer
— Emulates interrupt for VM when physical timer interrupt occurs
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Instruction Set Support

User and System modes

Privileged instructions only available in system mode
— Trap to system if executed in user mode
All physical resources only accessible using privileged

instructions
— Including page tables, interrupt controls, 1/O registers

Renaissance of virtualization support
— Current ISAs (e.g., x86) adapting

146



Cache Control

* Example cache characteristics
— Direct-mapped, write-back, write allocate
— Block size: 4 words (16 bytes)
— Cache size: 16 KB (1024 blocks)
— 32-bit byte addresses
— Valid bit and dirty bit per block

— Blocking cache
 CPU waits until access is complete

31 10 9 4 3 0

Tag Index | Offset
18 bits 10 bits 4 bits
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CPU

Interface Signals

Read/Write

Valid

Address 2
Write Data 32
Read Data %
Ready

Cache

Read/Write

Valid

Address 32 R
Write Data 128
Read Data %
Ready

/

Memory

148



Finite State Machines

®* Use an FSM to sequence
control steps

* Set of states, transition on
eaCh ClOCk edge Combinational

control logic
— State values are binary
encoded

— Current state stored in a
register f e

— Next state HHH
=fn (CU rre nt State, Inputs from cache St‘ate rei;ister
current inputs) "
* Control output signals

= f, (current state)

Datapath control outputs

Outputs <

Next state

T
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Cache Controller FSM

Cache Hit
Mark Cache Ready (

dle Compare Tag

If Valid && Hit ,
Set Valid, SetTag,
if Write Set Dirty

A

-
Y

Valid CPU request

Cache

Miss Miss

and and

Old Block Old Block
is Clean is Dirty

Write-Back

Write Old
Block to

Allocate

Read new block
from Memory

Memory Ready
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Cache Coherence Problem

* Suppose two CPU cores share a physical address
space
— Write-through caches

Time | Event CPUA's CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined

* Informally: Reads return most recently written value

* Formally:

— P writes X; P reads X (no intervening writes)
—> read returns written value

— P, writes X; P, reads X (sufficiently later)
— read returns written value

 c.f. CPU B reading X after step 3 in example
— P, writes X, P, writes X

—> all processors see writes in the same order

* End up with the same final value for X
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Cache Coherence Protocols

* QOperations performed by caches in multiprocessors to ensure
coherence
— Migration of data to local caches
e Reduces bandwidth for shared memory
— Replication of read-shared data
* Reduces contention for access

* Snooping protocols
— Each cache monitors bus reads/writes

* Directory-based protocols

— Caches and memory record sharing status of blocks in a
directory
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Invalidating Snooping Protocols

* Cache gets exclusive access to a block when it is to be

written

— Broadcasts an invalidate message on the bus
— Subsequent read in another cache misses

* Owning cache supplies updated value

CPU activity Bus activity CPUA's CPU B’s Memory
cache cache
0
CPU Areads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency

* When are writes seen by other processors
— “Seen” means a read returns the written value
— Can’t be instantaneously

* Assumptions
— A write completes only when all processors have seen it
— A processor does not reorder writes with other accesses

* Consequence

— P writes X then writes Y
—> all processors that see new Y also see new X

— Processors can reorder reads, but not writes
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DGEMM

* Combine cache blocking and subword parallelism

W 32x32 W 160x160 480x480 960x960
16.0

12.0 A

8.0

GFLOPS

4.0

Unoptimized AVX AVX + unroll AVX + unroll +
blocked
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Pitfalls

* Byte vs. word addressing

— Example: 32-byte direct-mapped cache,
4-byte blocks

* Byte 36 maps to block 1
* Word 36 maps to block 4

* |gnoring memory system effects when writing or generating
code
— Example: iterating over rows vs. columns of arrays
— Large strides result in poor locality
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Pitfalls

* In multiprocessor with shared L2 or L3 cache
— Less associativity than cores results in conflict misses
— More cores = need to increase associativity

* Using AMAT to evaluate performance of out-of-order
processors
— lgnores effect of non-blocked accesses
— Instead, evaluate performance by simulation
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Pitfalls

* Extending address range using segments
— E.g., Intel 80286
— But a segment is not always big enough
— Makes address arithmetic complicated

* Implementing a VMM on an ISA not designed for
virtualization

— E.g., non-privileged instructions accessing hardware resources

— Either extend ISA, or require guest OS not to use problematic
instructions
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Slides that are not used
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Advanced DRAM Organization

* Bits in a DRAM are organized as a rectangular array
— DRAM accesses an entire row

— Burst mode: supply successive words from a row with reduced
latency

* Double data rate (DDR) DRAM
— Transfer on rising and falling clock edges

* Quad data rate (QDR) DRAM
— Separate DDR inputs and outputs

Bank |
Column |
|

Rd/Wr

Act

|| Pre —

o 161

Row




Memory is Much Slower Compared with CPU

CPU-DRAM Memory Latency Gap = Memory Wall

100,000
10’000 e I T T S T 0 W o
o
Q 1000 oo @l
g Processor-Memory
B 100 8 | Performance Gap:
= (grows 50% / year)
10 -
1 I I I I 1
1980 1985 1990 1995 2000 2005 2010 2015
Year

of the processor-DRAM performance gap. The memory baseline is 64 KiB DRAM in 1980,
with a 1.07 per year performance improvement in latency (see Figure 2.4 on page 88).
The processor line assumes a 1.25 improvement per year until 1986, a 1.52 improve-
ment until 2000, a 1.20 improvement between 2000 and 2005, and only small improve-
ments in processor performance (on a per-core basis) between 2005 and 2015. As you 162



Memory Hierarchy Works

Processor

Input

Control

Datapath Output

® capacity: Register << SRAM << DRAM
e l[atency: Register << SRAM << DRAM
e bandwidth: on-chip >> off-chip

On a data access:
if data € fast memory = low latency access (SRAM)
if data ¢ fast memory = high latency access (DRAM)
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Disk Sectors and Access

®* Each sector records
— Sector ID
— Data (512 bytes, 4096 bytes proposed)

— Error correcting code (ECC)
* Used to hide defects and recording errors

— Synchronization fields and gaps

®* Access to a sector involves
— Queuing delay if other accesses are pending
— Seek: move the heads
— Rotational latency
— Data transfer
— Controller overhead
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Disk Access Example

* @Given
— 512B sector, 15,000rpm, 4ms average seek time, 100MB/s
transfer rate, 0.2ms controller overhead, idle disk
* Average read time

— 4ms seek time
+ % [ (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
=6.2ms
* |f actual average seek time is 1ms
— Average read time = 3.2ms
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Slides for Lab 13/14
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Sources of locality

* Temporal locality
— Code within a loop
— Same instructions fetched repeatedly

* Spatial locality
— Data arrays
— Local variables in stack
— Data allocated in chunks (contiguous bytes)

for (i=0; i<N; i++) {
A[i] = B[i] + C[i] * a;
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Writing Cache Friendly Code

* Repeated references to variables are good (temporal locality)

* Stride-1 reference patterns are good (spatial locality)
* Examples:
— cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows (int a[M] [N]) int sumarraycols(int a[M] [N])
{ {
int i, j, sum = 0; int i, j, sum = 0;
for (i = 0; 1 < M; i++) for (j = 0; j < N; j++)
for (j = 0; j < N; j++) for (i = 0; 1 < M; i++)
sum += a[i] [J]; sum += a[i][j];
return sum; return sum;
} }
Miss rate = 1/4 = 25% Miss rate = 100%
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Matrix Multiplication Example

* Major cache effects to consider

— Total cache size

* Exploit temporal locality and blocking)

— Block size
* Exploit spatial locality

* Description:
— Multiply N x N matrices
— O(N?3) total operations
— Accesses

* N reads per source element

/* ijk */ Variable sum

for (i=0; i<n; i++) { held in register
for (j=0; j<n; j++) { /

sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] * b[k]I[j];
c[i] [j] = sum;
}
}

* N values summed per destination

— but may be able to hold in register
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Miss Rate Analysis for Matrix Multiply

* Assume:
— Cache line size = 32 Bytes (big enough for 4 64-bit words)
— Matrix dimension (N) is very large
* Approximate 1/N as 0.0
— Cache is not even big enough to hold multiple rows

* Analysis method:
— Look at access pattern of inner loop

-k — —j—» —j—»
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Matrix Multiplication (ijk)

/* i3k */
for (i=0; i<n; i++) {
for (3=0; j<n; j++) { (*,J)
sum = 0.0; L;;;JU*) | @D

for (k=0; k<n; k++) ,

sum += a[i] [k] * b[k][3]; A B C
c[i][]]

e ]

Row-wise Column- Fixed
wise

Inner loop:

}

e Misses per Inner Loop lteration:
A B C
0.25 1.0 0.0
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Matrix Multiplication (jik)

/* jik */

Inner loop:
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { (*.J)
sum = 0.0; g . (L))
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k]1[j]; A B C
c[i] [j] = sum
} I —
Row-wise Column- Fixed
_ _ wise
e Misses per Inner Loop lteration:
A B C
0.25 1.0 0.0
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (3=0; j<n; J++)
c[i][j] += © * b[k][j];

e Misses per Inner Loop lteration:

A B C
0.0 0.25 0.25

Inner loop:

(i.K)

A

|

Fixed

E ) g (i,")

B C

|

Row-wise Row-wise
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (iK) i(k,*)g
r = a[i] [k]; O (i,)

Inner loop:

for (j=0; j<n; Jj++) A B C
c[i][J] += r * b[k][]];
} ]
}
Fixed Row-wise Row-wise

e Misses per Inner Loop lteration:
A B C
0.0 0.25 0.25
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Matrix Multiplication (jki)

/* Jkiox/ Inner loop:
for (j=0; j<n; Jj++) {
for (k=0; k<n; k++) { (*,k) ("))
r = b[k][j]; :ﬂ (k)
for (i=0; i<n; i++) =
c[i] [§] += al[il[k] * r; A B C
}

} I
Column -  Fixed Column-
wise wiSse

e Misses per Inner Loop lteration:
A B C
1.0 0.0 1.0
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Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][]j];
for (i=0; i<n; i++)
c[i][]J] += a[il[k] * r;

e Misses per Inner Loop lteration:

A B C

1.0 0.0 1.0

Inner loop:
(*,k) (*,))
| \ (k.j) ‘ |
[
A B C
Column- Fixed Column-
wise wise
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Summary of Matrix Multiplication

: kij (& ikj): jki (& Kiji):
« 2 loads, O stores - 2 loads, 1 store - 2 loads, 1 store
* misses/iter = 1.25 * misses/iter = 0.5 * misses/iter = 2.0

for (i=0; i<n; i++) { for (k=0; k<n; k++) { for (j=0; j<n; j++) {
for (j=0; j<n; j++) { for (i=0; i<n; i++) { for (k=0; k<n; k++) {
sum = 0.0; r = a[i][k]; r = b[k][l;
for (k=0; k<n; k++) for (j=0; j<n; j++) for (i.=(.); i<n: i.++)
sum += a[i][k] * c[illi] += r * bIKIL]; ctiin] += apik] * v
bIKI]; chilli] = sum; ) )
} } }
}
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