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☛

FLOPs: floating point operations, e.g. add/sub/mul/div per second
20 - 100 flops per word transferred
Recently, 200 flops per word transferred 



The Big Picture: Where are We Now? 

Control

Datapath

Off-Chip
Memory

Processor
Input

Output
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§5.1 Introduction

Instruction Fetch (Load)



Overview

• Programmers want memory system
– Speed: To supply data on time for computation
– Capacity: To be large enough to hold everything needed

• However, fast memory technology is more expensive per 
bit than slower memory

• Solution: organize memory system into a hierarchy
– Entire addressable memory space available in largest, slowest 

memory ècapacity, store “always” in large memory
– Incrementally smaller and faster memories, each containing a 

subset of the memory below it, proceed in steps up toward the 
processor èspeed, access “always” from fast memory
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Memory Hierarchy

• Memories of different technologies are organized in a hierarchy
– The closer to the CPU, the faster and smaller of the memory
– The farther from the CPU, the slower and larger of the memory
– Data movement from far level to close level are via blocks
• 64 bytes from DRAM to cache, and 4KB from disk to DRAM (paging) 5



Why Memory Hierarchy Works? 
The Principle of Locality

• Programs access a small proportion of their address space at any time
• Temporal locality - Time

– Items accessed recently are likely to be accessed again soon
– e.g., instructions in a loop, induction variables

• Spatial locality – Space
– Items near those accessed recently are likely to be accessed soon
– E.g., sequential instruction access, array data
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• Data
– Reference array elements in succession: Spatial 

Locality
– Reference sum each iteration: Temporal Locality

• Instructions
– Reference instructions in sequence: Spatial Locality

– Cycle through loop repeatedly: Temporal Locality

sum = 0;
for(i=0; i<n; i++)

sum += a[i];
return sum;



The Principle of Locality: Explained using 
Borrowing and Reading Books to Study a Topic

• Spatial locality: one reads pages/books and those nearby 
pages or related books at the same time

• Temporal locality: one reads the same pages or books 
multiple times

• If we need lots of books, we need to borrow from the 
library, put on our bookshelf and on our study desk. 
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Books are Data, Study is the Program, 
Desk/Bookshelf/Library are Memory Hierarchy

• You are the CPU
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Memory Hierarchy: Explained with Desk, 
Bookshelf and Library

• Except, compared with memory hierarchy
– Upper level do not have copies of the books

You, as a processor study and read books 
of a topic (a program) 

Books that are used often are on your 
desk; fast access, small # of books

Your bookshelf can hold more books, less 
often used than those on the desk. you 

need to stand up to grab a book and you 
often grab more than one books a time

Library has more books, but you do not go 
often since it is far. Each time you go, you 

borrow a bag of books. 



Taking Advantage of Locality

• Memory hierarchy
• Store everything on disk (library)
• Copy recently accessed (and nearby) 

items from disk to smaller DRAM 
memory (bookshelf)
– Main memory
• Copy more recently accessed (and 

nearby) items from DRAM to 
smaller SRAM memory (desk)
– Cache memory attached to CPU
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Memory Hierarchy Levels

• Block (aka line): unit of copying
– May be multiple words, just like we move 

multiple books a time

• If accessed data is present in upper 
level
– Hit: access satisfied by upper level

• Hit ratio: hits/accesses

• If accessed data is absent
– Miss: block copied from lower level

• Time taken: miss penalty
• Miss ratio: misses/accesses

= 1 – hit ratio
– Then accessed data supplied from upper 

level



Memory Hierarchy
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Memory Technology

• CPU speedup, e.g. 2GHz à0.5ns per cycle
– Pipelined CPU CPI = 1

• Ideal memory
– Access time of SRAM
– Capacity and cost/GB of disk
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Static RAM (SRAM): Cache
0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB

Magnetic disk
5ms – 20ms, $0.20 – $2 per GB



Random-Access Memory (RAM)

• Key features
– RAM is packaged as a chip.
– Basic storage unit is a cell (one bit per cell).
– Multiple RAM chips form a memory.

• Static RAM (SRAM)
– Each cell stores bit with a six-transistor circuit.
– Retains value indefinitely, as long as it is kept powered.
– Relatively insensitive to disturbances such as electrical noise.
– Faster and more expensive than DRAM.
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DRAM Technology

• Data stored as a charge in a capacitor
– Single transistor used to access the 

charge
– Dynamic: need to be “refreshed” 

regularly, every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.
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DRAM in Real is Main Memory, off-chip

• In reality,
– Several DRAM chips are bundled into Memory Modules
• SIMMS - Single Inline Memory Module
• DIMMS - Dual Inline Memory Module
• DDR- Dual data Read
– Reads twice every clock cycle
• Quad Pump: Simultaneous R/ W

16

CPU is The chip. 



SRAM in Real is Cache in the CPU, on-chip
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CPU is The chip. Cache is Cash



Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large, not 
expensive

Control

Datapath

Off-Chip
Memory

Processor
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Output
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CPU is The chip. 



Memory Technology

• CPU speedup, e.g. 2GHz à0.5ns per cycle
– Pipelined CPU CPI = 1

• Ideal memory
– Access time of SRAM
– Capacity and cost/GB of disk
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Static RAM (SRAM)
0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB

Magnetic disk
5ms – 20ms, $0.20 – $2 per GB



Disk Storage

• Nonvolatile, rotating magnetic storage
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Flash Storage

• Nonvolatile semiconductor storage
– 100× – 1000× faster than disk
– Smaller, lower power, more robust
– But more $/GB (between disk and DRAM)
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Flash Types

• NOR flash: bit cell like a NOR gate
– Random read/write access
– Used for instruction memory in embedded systems
• NAND flash: bit cell like a NAND gate
– Denser (bits/area), but block-at-a-time access
– Cheaper per GB
– Used for USB keys, media storage, …
• Flash bits wears out after 1000’s of accesses
– Not suitable for direct RAM or disk replacement
– Wear leveling: remap data to less used blocks
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History: Further Back

Ideally one would desire an indefinitely large memory capacity 
such that any particular ... word would be immediately 
available. ... We are ... forced to recognize the possibility of 
constructing a hierarchy of memories, each of which has 
greater capacity than the preceding but which is less quickly 
accessible. 
A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an Electronic 

Computing Instrument, 1946 
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Cache Memory

• Cache memory
– The level of the memory hierarchy closest to the CPU, our desk
– Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
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§5.3 The Basics of C
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Cache Memory and Main Memory

• Memory access:
– Instruction Fetch
– Data memory access: LW|SW

• Instruction Fetch and LW|SW use off-chip main memory 
address (DRAM) to read or write a word
– Instruction/Data is fetched from off-chip memory to on-chip 

cache first, and then to register
– CPU calculates (arithmetic and logic operation) using data in 

register only
26
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Load/Store Instructions

• Read register operands
– x2, and x1(for sw only)
• Calculate main memory 

address using 12-bit signed 
offset
– 32 + x2
– ALU operation is +
• Load: Read memory and 

update register
– x1 ß MEM(32+x2)
– MemRead signal is on
• Store: Write register value 

to memory
– x1 à MEM(32+x2)
– MemWrite is on

27

Address Read
data

Data
memory

a. Data memory unit

Write
data

MemRead

MemWrite

b. Immediate generation unit

Imm
Gen

32 64

Memory addresses for IF and 
for the calculated address of 
Load/Store are off-chip 
memory addresses



Cache is Transparent to Programmers

• A program does not need to know the existence of cache
• Instruction Fetch and LW/SW: read/write data from memory 
– Main memory address is used for IF/LW/SW, not cache mem 

address

The BIG Question: How cache is used for IF/LW/SW, i.e. how 
hardware knows the cache memory address to access a word 
addressed by main memory address in IF/LW/SW instructions 28
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Cache Memory

• Memory access: IF/LW/SW
– If data is in cache, IF/LW/SW

from cache
– If data is not in the cache, IF/LW/SW from main memory
• Given accesses X1, …, Xn–1, Xn

29

n How do we know if 
the data is present?

n Where do we look?



Cache Organization: Direct Mapped Cache

• Location determined by address
– Main memory addresses 00001, 01001 in the example
• Direct mapped: only one choice
– (Memory address) modulo (#Blocks in cache)
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n #Blocks is a power of 2
n 8 in this example, need 3 bit to 

address a block
n Use low-order address bits

n The last three bits
n E.g. just check the last three bits

n 00001 is in block 00001 % 8 = 001
n 01001 is in block 01001 % 8 = 001
n 10101 is in block 10101 % 8 = 101
n 11101 is in block 11101 % 8 = 101



Tags and Valid Bits

• Much less cache blocks than main memory since cache is small
– Multiple memory blocks end up in the same cache block
• How do we know which/whether a particular main memory 

block is stored in a cache location?
– Store block/memory address, in addition to the data
– But only need the high-order bits, called the tag, E.g. 
• For 00001 block, 00 (tag) is stored in the cache
• For 01001 block, 01(tag) is stored in the cache

• What if there is no data in a location?
– Valid bit: 1 = present, 0 = not present
– Initially 0
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Cache Example

• 8-blocks, 1 word/block, direct mapped
• Initial state
– Only green box are the cache
– Index is the block address, not 

part of the cache

32

V Tag Data
N
N
N
N
N
N
N
N

Index
000
001
010
011
100
101
110
111



Cache Example

• A sequence of main memory access
– Load and store instruction
• Given a word address, we can easily calculate the block 

address and tag bits
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Cache Example

V Tag Data
N
N
N
N
N
N
Y 10 Mem[10110]
N

Decimal addr Binary addr Hit/miss Cache block
22 10 110 Miss 110
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Index
000
001
010
011
100
101
110
111

E.g. Ld x1, 22(x0) CPU

Cache

Main 
Memory

10 110

10 110

Mem[10110]

Mem[10110]



Cache Example

V Tag Data
N
N
Y 11 Mem[11010]
N
N
N
Y 10 Mem[10110]
N

Decimal addr Binary addr Hit/miss Cache block
26 11 010 Miss 010
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Index
000
001
010
011
100
101
110
111



Cache Example

V Tag Data
N
N
Y 11 Mem[11010]
N
N
N
Y 10 Mem[10110]
N

Decimal addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010
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Index
000
001
010
011
100
101
110
111

CPU

Cache

Main 
Memory

10 110

Mem[10110]



Cache Example

V Tag Data
Y 10 Mem[10000]
N
Y 11 Mem[11010] (26)
Y 00 Mem[00011]
N
N
Y 10 Mem[10110]
N

Decimal addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000
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Index
000
001
010
011
100
101
110
111



Cache Example

V Tag Data
Y 10 Mem[10000]
N
Y 10 Mem[10010] (18)
Y 00 Mem[00011]
N
N
Y 10 Mem[10110]
N

Decimal addr Binary addr Hit/miss Cache block
18 10 010 Miss 010
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Index
000
001
010
011
100
101
110
111

Replace Mem[11 010] (26)

CPU

Cache

Main 
Memory

10 010

10 010
Mem[10010] 

Mem[10010] 



Byte-address Memory Access

• 32 blocks, 4 bytes/block (1 word/blk)
– 2 bits for addressing a byte within a block, byte offset
– 5 bits for addressing a block of the cache, block address

• To what block number does byte-address 1200 map?
• Use binary address to find out the solution:

120010 = ...01001   01100  002

• Bytes at addresses 1200, 1201, 1203, 1203 are all in the same block
– 01001   01100  002
– 01001   01100  012
– 01001   01100  102
– 01001   01100  112

• 01001   01100 00 can be considered as the block address of any of the 
four bytes
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Tag Index Offset

0126731

2 bits5 bits25 bits

block index     byte offset



Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3252

Index

0

1

2

1023

1022

1021

=

Index

52 10

Byte
offset

63 62 13 12 11 2   1 0

Address Subdivision
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64-bit address
Each block has 4 bytes 

à2 bits for byte offset
1024 (2^^10 blocks) 

è 10 bits for block address
64-2-10 = 52 bits tag



Pseudo Code for Simulating Directed-Mapped 
Cache Read Access (lb instruction)

41

#typedef struct cacheLine {
int v;
int tag;
char Datablock[4]; //each datablock is 4 bytes, the address is byte address

} cacheLine_t;
cacheLine_t cache [1024]; //cache has 1024 blocks

int memory[1024x1024]; //memory has 1024*1024 blocks

char loadByte(long int address) { //directed mapped cache
int cacheIndex = address[2:11]; //2-11 bit of the 32-bit address, which is the index
cacheLine_t cline = cache[cacheIndex];
If (cline.v && cline.tag == address[12:63]) { //cache hit

return cline.Datablock[address[0:1]];
} else { //miss

//fetch data from memory and update cache line
cline.dataBlock = fetchABlockMemory(memory, address); //e.g. memory[address]
cline.v = 1; cline.tag = address[12:63];
return cline.Datablock[address[0:1]];

}
}



Larger Block Size

• 64 blocks, 16 bytes/block (4 words/blk)
– 4 bits for addressing a byte within a block, byte offset
– 6 bits for addressing a block of the cache, block address

• To what block number does byte-address 1200 map?
• Use binary address to find out the solution:

120010 = 1      001011           00002

• Bytes at addresses 1200 to 1215 are all in the same block
– 01  001011  00002
– 01  001011  00012
– 01  001011  00102
– ...
– 01  001011  11112

• 01 001011  0000 can be considered as the block address of any of the 
16 bytes at 1200 to 1215 42

Tag Index Offset
03491031

4 bits6 bits22 bits

block index         byte offset



Caching Exploits Both Types of Locality by 
Preloading and Keeping Data in Faster Memory

• Exploit temporal locality by keeping the contents of 
recently accessed locations in the cache.
• Exploit spatial locality by fetching blocks of data around 

recently accessed locations.

43

double A[N];
sum = 0;
for(i=0; i<N; i++)

sum += A[i];
return sum;

64-byte block size, A[i] is an 8-byte double è
A block (cache line) can hold 8 elements of A. 

Referencing to A[0] ( or A[1], …, A[7]) will cause the memory system to bring 
A[0:7] to the cache è
Future reference to A[1:7] are all hits in cache è faster access than reading from 
memory



Block Size Considerations

• Larger blocks should reduce miss rate
– Due to spatial locality
• But in a fixed-sized cache
– Larger blocks Þ fewer of them
• More competition Þ increased miss rate

– Larger blocks Þ pollution
• Larger miss penalty
– Can override benefit of reduced miss rate
– Early restart and critical-word-first can help
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Cache Memory Size Calculation

• A cache line: Valid bit + Tag + Data

• Directed Mapped Cache, 16KiB for data, four words blocks, 64-bit 
address
– 16KiB is 4096 (212) words (214 bytes), Each block is 4 (22) words = 16 

bytes (24)
• Thus there are 214/24 = 1024 (210) blocks
• 4 bit for byte offset within a block
– 2 bit for word offset within a block, 2 bit for byte offset within a word

• Thus # tag bits: 64 – 10 – 4 = 50
• 1 bit for valid

– Total bits for the cache 16KiB + 210 * 51 = 179 Kibits = 22.4 KiB for 
16KiB cache
• Total SRAM needed is 1.4 times of SRAM for data
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Terminology for Memory Hierarchy

• Hit: Data appears in cache 
– Hit Rate: the fraction of memory access found in the cache.
– Hit Time: Time to access the cache 
• Miss: data needs to be retrieve from a block in memory
– Miss Rate  = 1 - (Hit Rate), i.e. # misses / # memory access
– Miss Penalty: Time to replace a block in cache
• Hit Time << Miss Penalty (100x cycles)
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Cache Misses

• On cache hit, CPU proceeds normally
• On cache miss
– Stall the CPU pipeline in MEM stage

IF ID  EX  Mem stall stall stall … stall Mem   Wr
IF  ID  EX      stall stall stall … stall stall      Ex   Wr

– Fetch block from next level of hierarchy
– Instruction cache miss
• Restart instruction fetch

– Data cache miss
• Complete data access

47



Example: Intrinsity FastMATH

48

Word

256 blocks × 16 words/block



Example: Intrinsity FastMATH

• Embedded MIPS processor
– 12-stage pipeline
– Instruction and data access on each cycle
• Split cache: separate I-cache and D-cache
– Each 16KB: 256 blocks × 16 words/block
– D-cache: write-through or write-back
• SPEC2000 miss rates
– I-cache: 0.4%
– D-cache: 11.4%
– Weighted average: 3.2%

Very good principle locality and memory system works well 
with the principle. 
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What are the low 
miss rate indicating?



Main Memory Supporting Caches

• Use DRAMs for main memory
– Fixed width (e.g., 1 word)
– Connected by fixed-width clocked bus

• Bus clock is typically slower than CPU clock
• Example cache block read
– 1 bus cycle for address transfer
– 15 bus cycles per DRAM access
– 1 bus cycle per data transfer

• For 4-word block, 1-word-wide DRAM
– Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
– Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Write-Through

• On data-write hit, could just update the block in cache
– But then cache and memory would be inconsistent
• Write through: also update memory
• But makes writes take longer
– e.g., if base CPI = 1, 10% of instructions are stores, write to memory 

takes 100 cycles
• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
– Holds data waiting to be written to memory
– CPU continues immediately
• Only stalls on write if write buffer is already full

51

Processor
Cache

Write Buffer

DRAM



Write-Back

• Alternative: On data-write hit, just update the block in cache
– Keep track of whether each block is dirty
• When a dirty block is replaced
– Write it back to memory
– Can use a write buffer to allow replacing block to be read first
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Write Allocation: What should happen on a write 
miss?

• Alternatives for write-through
– Allocate on miss: fetch the block
– Write around: don’t fetch the block
• Since programs often write a whole block before reading it (e.g., 

initialization)
• For write-back
– Usually fetch the block
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Measuring Cache Performance

• CPU performance factors
– Instruction count

• Determined by ISA and compiler
– CPI and Cycle time

• Determined by CPU hardware

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle
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CPU Performance with Memory Factor
• Components of CPU time
– Program execution cycles
• Includes cache hit time

– Memory stall cycles
• Mainly from cache misses

• Memory Stall Cycles: the number of cycles during 
which the processor is stalled waiting for a memory 
access. 
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 timecycleClock cycles) stallMemory   cyclesclock  (CPUtimeexecution  CPU ´+=

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle



Memory Stall Cycles per Instruction

• CPI and Memory stall cycles/instruction are averages
57

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

 timecycleClock cycles) stallMemory   cyclesclock  (CPUtimeexecution  CPU ´+=



Memory Stall Cycles

• Memory Stall Cycles: the number of cycles during which the 
processor is stalled waiting for a memory access. 
– Depends on both the number of misses and the cost per miss, i.e. the 

miss penalty:

Penalty Missrate Miss
Instrution

accessesMemory IC                                

Penalty Miss
Instrution

MissesIC                                

penalty Missmisses ofNumber cycles stallMemory 

´´´=

´´=

´=
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Miss Rate: Miss per Memory Reference

Miss Rate = # Misses / # Memory reference
• Memory access include both instruction access and data access
– Each instruction needs to be read from memory: one I-mem access
– LW/SW are memory access instructions: one D-mem access (in 

addition to one I-mem access) 
– Count # memory accesses: Each iteration, 14 instructions in total, 9 

ld/lw/sw è 14+9 or 9*2+5 = 23 memory accesses
• 9 are data-mem accesses
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int sum(int N, int a, int *X) {
int i;
int result = 0;
for (i = 0; i < N; ++i)

        result += X[i];
return result;

}

.L3: 
        lw      a5,-20(s0)    /* a5 = i */ 
        sll     a5,a5,2       /* a5 = i<<2, which is i=i*4 */ 
        ld      a4,-48(s0)    /* a4 = X */ 
        add     a5,a4,a5      /* the &X[i] */ 
        lw      a5,0(a5)      /* the X[i] */ 
        lw      a4,-24(s0)    /* load result */ 
        addw    a5,a4,a5      /* result += X[i] */ 
        sw      a5,-24(s0)    /* store to result */ 
        lw      a5,-20(s0)    /* i */ 
        addw    a5,a5,1       /* i++ */ 
        sw      a5,-20(s0)    /* store i */ 
.L2: 
        lw      a4,-20(s0)    /* i */ 
        lw      a5,-36(s0)    /* N */ 
        blt     a4,a5,.L3     /* if (i < N) goto .L3 */ 
	



Cache Performance
• Given
– I-cache miss rate = 2%
– D-cache miss rate = 4%
– Miss penalty = 100 cycles
– Base CPI (ideal cache) = 2
– Load & stores are 36% of instructions

• Stall cycles per instruction (Misses/Instruction * Miss Penalty)
– I-mem: 1* 0.02 × 100 = 2 (each instruction has one I-cache/mem 

access)
– D-mem: 0.36 × 0.04 × 100 = 1.44 (only load/store has D-cache access)

• Actual CPI = 2 + 2 + 1.44 = 5.44
– Ideal CPU is (5.44/2 =2.72) times faster
– 2+1.44 cycles/instruction on memory stalls è 3.44/5.44 = 63%

• Miss penalty (100 cycles) is the killing factor
– DRAM speed
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100 cycles



Average Memory Access Time (AMAT)

Average Memory Access Time (AMAT)
= Hit Time + Miss Rate * Miss Penalty

• Miss penalty: Time to fetch a block from lower memory level
– Access time: function of latency
– Transfer time: function of bandwith b/w levels

• Transfer one “cache block/line” at a time
• Example:

– CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss 
rate = 5%

– AMAT = 1 + 0.05 × 20 = 2ns
• 2 cycles per instruction
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20 cycles



Three Important Equations for Cache Performance

Average Memory Access Time (AMAT)
= Hit Time + Miss Rate * Miss Penalty

62

Penalty Missrate Miss
Instrution

accessesMemory IC                                

Penalty Miss
Instrution

MissesIC                                

penalty Missmisses ofNumber cycles stallMemory 

´´´=

´´=

´=



Performance Summary

• When CPU performance increased
– Miss penalty becomes more significant
• Decreasing base CPI
– Greater proportion of time spent on memory stalls
• Increasing clock rate
– Memory stalls account for more CPU cycles
• Can’t neglect cache behavior when evaluating system 

performance
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Associative Caches

• Fully associative
– Allow a given block to go in any cache entry
– Requires all entries to be searched at once
– Comparator per entry (expensive)
• n-way set associative
– Each set contains n entries
– Block number determines which set
• (Block number) modulo (#Sets in cache)

– Search all entries in a given set at once
– n comparators (less expensive)
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Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel
• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache;
– The two tags in the set are compared to the input in parallel;
– Data is selected based on the tag result.

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR
Hit

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

CompareCompare

OR
Hit 65



4-Way Set Associative Cache
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Associative Cache Example
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Spectrum of Associativity

• For a cache with 8 entries
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Associativity Example

• Compare 4-block caches
– Direct mapped, 2-way set associative,

fully associative
– Block access sequence: 0, 8, 0, 6, 8

• Direct mapped
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Block 
address

Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]



Associativity Example

• 2-way set associative
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Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]



How Much Associativity

• Increased associativity decreases miss rate
– But with diminishing returns
• Simulation of a system with 64KB D-cache, 16-word blocks, 

SPEC2000; Miss rate: 
– 1-way: 10.3%
– 2-way: 8.6%
– 4-way: 8.3%
– 8-way: 8.1%
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Replacement Policy

• Direct mapped: no choice
• Set associative
– Prefer non-valid entry, if there is one
– Otherwise, choose among entries in the set
• Least-recently used (LRU)
– Choose the one unused for the longest time
• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random
– Gives approximately the same performance as LRU for high 

associativity
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Multilevel Caches

• Primary cache attached to CPU
– Small, but fast
• Level-2 cache services misses from primary cache
– Larger, slower, but still faster than main memory
• Main memory services L-2 cache misses
• Some high-end systems include L-3 cache
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Multilevel Caches

• More info for multilevel cache 
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Sky Lake - Microarchitectures – Intel
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
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https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)


Multilevel Cache Example

• Given
– CPU base CPI = 1, clock rate = 4GHz
– Miss rate/instruction = 2%
– Main memory access time = 100ns
• With just primary cache
– Miss penalty = 100ns/0.25ns = 400 cycles
– Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)

• Now add L-2 cache
– Access time = 5ns
– Global miss rate to main memory = 0.5%
• Primary miss with L-2 hit
– Penalty = 5ns/0.25ns = 20 cycles
• Primary miss with L-2 miss
– Extra penalty = 500 cycles
• CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
• Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations
• Primary cache
– Focus on minimal hit time
• L-2 cache
– Focus on low miss rate to avoid main memory access
– Hit time has less overall impact
• Results
– L-1 cache usually smaller than a single cache
– L-1 block size smaller than L-2 block size

78



Interactions with Advanced CPUs

• Out-of-order CPUs can execute instructions during cache miss
– Pending store stays in load/store unit
– Dependent instructions wait in reservation stations
• Independent instructions continue

• Effect of miss depends on program data flow
– Much harder to analyse
– Use system simulation
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Interactions with Software

• Misses depend on 
memory access patterns
– Algorithm behavior
– Compiler optimization for 

memory access
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Software Optimization via Blocking

nGoal:  maximize accesses to data before it is replaced
nConsider inner loops of DGEMM:

for (int j = 0; j < n; ++j)

{

double cij = C[i+j*n];

for( int k = 0; k < n; k++ )

cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;

}
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DGEMM Access Pattern

• C, A, and B arrays

older accesses

new accesses
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Cache Blocked DGEMM
1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5  for (int i = si; i < si+BLOCKSIZE; ++i)

6   for (int j = sj; j < sj+BLOCKSIZE; ++j)

7   {

8    double cij = C[i+j*n];/* cij = C[i][j] */

9    for( int k = sk; k < sk+BLOCKSIZE; k++ )

10    cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11   C[i+j*n] = cij;/* C[i][j] = cij */

12  }

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16  for ( int sj = 0; sj < n; sj += BLOCKSIZE )

17   for ( int si = 0; si < n; si += BLOCKSIZE )

18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )

19     do_block(n, si, sj, sk, A, B, C);

20 }
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Blocked DGEMM Access Pattern

Unoptimized Blocked

84



Chapter 5: Large and Fast: Exploiting Memory 
Hierarchy

• Lecture
– 5.1 Introduction
– 5.2 Memory Technologies

• Lecture
– 5.3 The Basics of Caches

• Lecture
– 5.4 Measuring and Improving Cache Performance
– 5.5 Dependable Memory Hierarchy
– 5.6 Virtual Machines 

• Lecture
– 5.6 Virtual Memory
– 5.8 A Common Framework for Memory Hierarchy

• Lecture 26
– 5.9 Using a Finite-State Machine to Control a Simple Cache
– 5.10 Parallelism and Memory Hierarchies: Cache Coherence
– 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks
– 5.12 Advanced Material: Implementing Cache Controllers
– 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
– 5.14 Going Faster: Cache Blocking and Matrix Multiply
– 5.15 Fallacies and Pitfalls
– 5.16 Concluding Remarks 
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Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large not expensive

Control

Datapath

Off-Chip
Memory

Processor
Input

Output
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CPU is The chip. 



Memory System of A Bare Machine

• In a bare machine, the only kind of address is a 
physical address
– The address of a memory byte
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PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical AddressPhysical Address

Physical Address



Virtual Memory

• Programs share main memory
– Each gets a private virtual address space holding its 

frequently used code and data
– Protected from other programs

• CPU and OS translate virtual addresses to physical 
addresses
– VM “block” is called a page
– VM translation “miss” is called a page fault

• Use main memory as a “cache” for secondary (disk) 
storage
– Managed jointly by CPU hardware and the operating system 

(OS)

§5.7 Virtual M
em

ory

88



Virtual Memory to Physical Memory Mapping 
Example
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Virtual Memory: Motivations and Benefits

• Protection: to allow efficient and safe sharing of memory among 
multiple programs
– Conventional multi-programming, time-sharing OS
– Today for the memory needed by multiple virtual machines for cloud 

computing
• Virtualization: to remove the programming burdens of a small, 

limited amount of main memory. 
– 4G memory space of 32-bit OS/machine even with << 4GB physical 

memory, e.g. 256MB
• Each sees 0x00000000 – 0xFFFFFFFF memory 

• Relocation: simplifies loading the program for execution.
– allows the same program to run in any location in physical memory. 

• It is called Virtual Memory, thus NOT REAL or PHYSICAL memory
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Address Translation

• Fixed-size pages (e.g., 4K)
– 4K (212) byes per page
– 12 bits to address a byte within a page
• Address translation: to map the upper [47:12] bits of the 

virtual address, i.e. virtual page number, to a physical page 
number [39:12]
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Virtual page number Page offset

47 46 45 44 43 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

39 38 37 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation



Example:

The physical address of 0x0FFE1230

• A computer with 240 (1024 Gbytes = 1 Tibytes) physical memory
– Each process (the execution of a program) can access 248 (4 TiB) bytes 

of address space, thus a virtual address has 48 bits
• For 4K-byte (212) of pages, a process can have 236 virtual pages

– For 1 TiGbyte of physical memory, which is 240 Bytes = 228 pages
• Thus a physical page number should have 28 bits

• Address translation
– No need to translate the lower 12 bit (230) since it is for addressing a 

byte within a page, i.e. 0x00000FFE1230
– Only need to translate  0x00000FFE1 (virtual page number) to 

physical page number in 28 bits, e.g. 0x2F16AB4
– Thus the physical address is: 0x2F16AB4230 92

Virtual page number Page offset

47 46 45 44 43 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

39 38 37 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation



Virtual page number Page offset

4 7 4 6  4 5  4 4  4 3 3 2 1 01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

3 9  3 8  3 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

36 12

28

Translation Using a Page Table
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0x00000FFE1230

2F16AB4

0x2F16AB4230

230

2F16AB4

00000FFE1

228 entries



Page Tables for Address Translation

• A page table is a (DRAM) memory area that stores mapping 
information between virtual page number to physical page 
number
– Array of page table entries, indexed by virtual page number
– Page table register in CPU has the address of the page table in 

physical memory
• If page is present in memory
– PTE stores the physical page number
– Plus other status bits (referenced, dirty, …)
• If page is not present
– PTE can refer to location in swap space on disk
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Paging: Private Address Space per Process (User)

• Each user (process) has a page table 
• A page table contains an entry for each user page

– Each entry stores the physical page address and other 
info
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VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table
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Where Should Page Tables Reside?

• Space required by the page tables (PT) is proportional 
to the address space, number of users, ...

Þ Too large to keep in registers or SRAM cache in 
full

• Idea: Keep PTs in the main memory

• A page table register is used to store the address of 
the page table
• Each user has her own page table
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Mapping Pages to Storage

• Demand paging
– Valid bit to indicate whether a page is in physical mem or not
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Virtual page number Page offset

4 7 4 6  4 5  4 4  4 3 3 2 1 01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

3 9  3 8  3 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

36 12

28

Linear Page Table Example (4K pages)

• 48-bit address
• 4K-size page
• 4-byte PTE
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Linear Page Table

• With 48-bit virtual addresses, 4-KB pages & 4-byte PTEs, 
and 40-bit physical address
– 236 PTEs (48-12)
– 4 TiB of swap needed to back up full virtual address space, in real, no need 

that much

• Larger pages?
– Internal fragmentation (Not all memory in page is used)
– Larger page fault penalty (more time to read from disk)

• What about the full 64-bit virtual address space???
– How many page table entries (PTEs)?
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Page Fault and Page Fault Penalty

• Page Fault: when fetching a byte whose page is not in memory
– Memory miss 

• On page fault, the page must be fetched from disk to memory
– Takes millions of clock cycles
– Handled by OS code, a process is swapped and context switched to 

another process
• Different from cash miss, in which CPU stall to wait for memory 

access to be fulfilled.
• Try to minimize page fault rate
– Fully associative placement
– Smart replacement algorithms
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Virtual address

ld x10, 0x3540(x5) Page Transfer



Page Fault Handler

• Use faulting virtual address to find PTE
• Locate page on disk
• Choose page to replace
– If dirty, write to disk first
• Read page into memory and update page table
• Make process runnable again
– Restart from faulting instruction
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Replacement and Writes

• To reduce page fault rate, prefer least-recently used (LRU) 
replacement
– Reference bit (aka use bit) in PTE set to 1 on access to page
– Periodically cleared to 0 by OS
– A page with reference bit = 0 has not been used recently
– Work with principle of locality

• Disk writes take millions of cycles
– Block at once, not individual locations
– Write through is impractical
– Use write-back
– Dirty bit in PTE set when 

page is written
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Page Table in Main Memory

• One memory address needs:
– One reference to access the page table for the physical page 

number and
– Then another reference to access the data word
– è doubles the number of memory references/accesses!
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Virtual page number Page offset

4 7 4 6  4 5  4 4  4 3 3 2 1 01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

3 9  3 8  3 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

36 12

28



Fast Translation Using a TLB

TLB are cache (in SRAM) for page tables

• Address translation requires extra memory references
– One to access the PTE
– Then the actual memory access
• But access to page tables has good locality
– So use a fast cache of PTEs within the CPU
– Called a Translation Look-aside Buffer (TLB)
– Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 

0.01%–1% miss rate
– Misses could be handled by hardware or software
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Fast Translation Using a TLB

SRAM (Cache)

DRAM (Mem)
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TLB Misses

• If page is in memory
– Load the PTE from memory and retry
– Could be handled in hardware
• Can get complex for more complicated page table structures

– Or in software
• Raise a special exception, with optimized handler

• If page is not in memory (page fault)
– OS handles fetching the page and updating the page table
– Then restart the faulting instruction
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TLB Miss Handler

• TLB miss indicates
– Page present, but PTE not in TLB
– Page not present
• Must recognize TLB miss before destination register 

overwritten
– Raise exception
• Handler copies PTE from memory to TLB
– Then restarts instruction
– If page not present, page fault will occur
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TLB and Cache Interaction:
From VA to Byte via TLB and L-1 Cache

• If cache tag uses physical 
address
– Need to translate before 

cache lookup

• Alternative: use virtual 
address tag
– Complications due to 

aliasing
• Different virtual addresses 

for shared physical address



From VA to Data via TLB and Cache
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YesWrite access
bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception Physical address



VM: On-Demand Paging and Swap: 
Protection, Virtualization and Relocation
• Fixed-size pages (e.g., 4K)

• Protection: with multiple virtual address spaces, errors are 
confined to one address space
– Between programs (processes)
• Virtualization via on-demand paging: move only frequently used 

pages to VM
– Principle of locality
• Relocation: pages on disk can be loaded to any free physical 

pages

Virtual address

ld x10, 0x3540(x5)
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VM: Address Translation & Protection

• Every instruction and data access needs address translation and 
protection checks
– Within a program: writes to EXE or Read-only segment are violations

• A good VM design needs to be fast (~ one cycle) and space 
efficient

Exception?

Kernel/User Mode

Read/Write/Exe
Protection 
Check
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Virtual page number Page offset

47 46 45 44 43 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

39 38 37 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation



Summary

• Virtual Memory:
– Protection, Virtualization and Relocation

• Paging:
– Page table, address translation
– In main memory
• TLB:
– Cache for page tables
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Chapter 5: Large and Fast: Exploiting Memory 
Hierarchy

• Lecture
– 5.1 Introduction
– 5.2 Memory Technologies

• Lecture
– 5.3 The Basics of Caches

• Lecture
– 5.4 Measuring and Improving Cache Performance
– 5.5 Dependable Memory Hierarchy
– 5.6 Virtual Machines 

• Lecture
– 5.6 Virtual Memory
– 5.8 A Common Framework for Memory Hierarchy

• Lecture 26
– 5.9 Using a Finite-State Machine to Control a Simple Cache
– 5.10 Parallelism and Memory Hierarchies: Cache Coherence
– 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks
– 5.12 Advanced Material: Implementing Cache Controllers
– 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
– 5.14 Going Faster: Cache Blocking and Matrix Multiply
– 5.15 Fallacies and Pitfalls
– 5.16 Concluding Remarks 
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The Memory Hierarchy

1. Common principles apply at all 
levels of the memory hierarchy
– Based on notions of caching and locality
• Loading frequently used item and its surrounding in fast mem 

• At each level in the hierarchy
– Block placement
– Finding a block
– Replacement on a miss
– Write policy
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4 Questions for Each Level

• Q1: Where can a block be placed in the upper level?
– Block placement
• Q2: How is a block found if it is in the upper level?
– Block identification
• Q3: Which block should be replaced on a miss?
– Block replacement
• Q4: What happens on a write? 
– Write strategy
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Q1: Where Can a Block be Placed in The Upper 
Level?

• Block Placement 
– Direct Mapped, Fully Associative, Set Associative

• Direct mapped: (Block number) mod (Number of blocks in cache)
• Set associative: (Block number) mod (Number of sets in cache)

– # of set £ # of blocks
– n-way: n blocks in a set
– 1-way = direct mapped

• Fully associative: # of set = 1

Block-frame address

Block no. 0 1 2 3 54 76 8 129 31

Direct mapped: data block 12 can go 
only into block 4 (12 mod 8)

0  1 2  3 4  5 6 7Block no.

Set associative: data block 12 can 
go anywhere in set 0 (12 mod 4)

0  1 2  3 4  5 6 7

Set0

Block no.

Set1 Set2 Set3

Fully associative: data block 
12 can go anywhere

Block no. 0  1 2  3 4  5 6 7
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Q2: Block Identification

• Tag on each block
– No need to check index or block offset
• Increasing associativity shrinks index, expands tag
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Block
Offset

Block Address

IndexTag

Cache size = Associativity × 2index_size × 2offest_size

Set Select Data Select



Finding a Block

• Hardware caches
– Reduce comparisons to reduce cost
• Virtual memory
– Full table lookup makes full associativity feasible
– Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0
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Q3: Which block should be replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative
– Random
– LRU (Least Recently Used)
– First in, first out (FIFO)

Associativity

2-way 4-way 8-way

Size LRU Ran. FIFO LRU Ran. FIFO LRU Ran. FIFO

16KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5
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Replacement

• Choice of entry to replace on a miss
– Least recently used (LRU)
• Complex and costly hardware for high associativity

– Random
• Close to LRU, easier to implement

• Virtual memory
– LRU approximation with hardware support
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Q4: What Happens on a Write?

Write-Through Write-Back

Policy

Data written to 
cache block, also 
written to lower-
level memory

1. Write data only 
to the cache

2. Update lower 
level when a 
block falls out of 
the cache

Debug Easy Hard
Do read misses produce writes? No Yes

Do repeated writes make it to 
lower level? Yes No

Additional option -- let writes to an un-cached address allocate a new 
cache line (“write-allocate”). 

121



Write Policy

• Write-through
– Update both upper and lower levels
– Simplifies replacement, but may require write buffer
• Write-back
– Update upper level only
– Update lower level when block is replaced
– Need to keep more state
• Virtual memory
– Only write-back is feasible, given disk write latency 
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Write Buffers for Write-Through Caches

• Q. Why a write buffer ? 
– A. So CPU doesn’t stall 
• Q. Why a buffer, why not just one register ?
– A. Bursts of writes are common.
• Q. Are Read After Write (RAW) hazards an issue for write buffer?
– A. Yes!  Drain buffer before next read, or send read 1st after check 

write buffers.

Processor
Cache

Write Buffer

DRAM
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Sources of Misses

• Compulsory misses (aka cold start misses)
– First access to a block
• Capacity misses
– Due to finite cache size
– A replaced block is later accessed again
• Conflict misses (aka collision misses)
– In a non-fully associative cache
– Due to competition for entries in a set
– Would not occur in a fully associative cache of the same total 

size
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Cache Design Trade-offs

Design change Effect on miss 
rate

Negative performance effect

Increase cache 
size

Decrease 
capacity misses

May increase access time

Increase 
associativity

Decrease conflict 
misses

May increase access time

Increase block 
size

Decrease 
compulsory 
misses

Increases miss penalty. For very 
large block size, may increase 
miss rate due to pollution.
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Multilevel On-Chip Caches
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2-Level TLB Organization



Supporting Multiple Issue

• Both have multi-banked caches that allow multiple accesses 
per cycle assuming no bank conflicts

• Core i7 cache optimizations
– Return requested word first
– Non-blocking cache
• Hit under miss
• Miss under miss

– Data prefetching
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Concluding Remarks

• Fast memories are small, large memories are slow
– We really want fast, large memories L
– Caching gives this illusion J
• Principle of locality
– Programs use a small part of their memory space frequently
• Memory hierarchy
– L1 cache « L2 cache «… « DRAM memory
« disk

• Memory system design is critical for multiprocessors

§5.16 C
oncluding R

em
arks
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Vector/Matrix and Array in C

• C has row-major storage for multiple dimensional array
– A[2,2] is followed by A[2,3]
• 3-dimensional array
– B[3][100][100]

130

int A[4][4]

• Stepping through columns in one row:
for (i=0; i<4; i++) sum += A[0][i];
accesses successive elements

• Stepping through rows in one column:
for (i=0; i<4; i++) sum += A[i][0];
Stride-4 access



Locality Example

• Claim: Being able to look at code and get qualitative sense 
of its locality is key skill for professional programmer

• Question: Does this function have good locality?

int sumarrayrows(int a[M][N]){
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}
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Locality Example

• Question: Does this function have good locality?

int sumarraycols(int a[M][N]){
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}
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Locality Example

• Question: Can you permute the loops so that the function 
scans the 3-d array a[] with a stride-1 reference pattern 
(and thus has good spatial locality)?

int sumarray3d(int a[M][N][N]) {
int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}
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Review: Memory Hierarchy

134

CPU-Mem Performance Gap: Memory Wall

Architecture Approach: Memory Hierarchy

int sumarrayrows(int a[M][N]){
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

Locality-Friendly Code: Locality to Work 
With Memory Hierarchy

Program Behavior: Principle of Locality



Slides for Other Sections of the 
Chapter
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Disk Performance Issues

• Manufacturers quote average seek time
– Based on all possible seeks
– Locality and OS scheduling lead to smaller actual average seek 

times
• Smart disk controller allocate physical sectors on disk
– Present logical sector interface to host
– SCSI, ATA, SATA

• Disk drives include caches
– Prefetch sectors in anticipation of access
– Avoid seek and rotational delay
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Dependability

• Fault: failure of a 
component
– May or may not lead to 

system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
ependable M

em
ory H

ierarchy
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Dependability Measures

• Reliability: mean time to failure (MTTF)
• Service interruption: mean time to repair (MTTR)
• Mean time between failures
– MTBF = MTTF + MTTR
• Availability = MTTF / (MTTF + MTTR)
• Improving Availability
– Increase MTTF: fault avoidance, fault tolerance, fault forecasting
– Reduce MTTR: improved tools and processes for diagnosis and 

repair
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The Hamming SEC Code

• Hamming distance
– Number of bits that are different between two bit patterns
• Minimum distance = 2 provides single bit error detection
– E.g. parity code
• Minimum distance = 3 provides single error correction, 2 bit 

error detection
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Encoding SEC

• To calculate Hamming code:
– Number bits from 1 on the left
– All bit positions that are a power 2 are parity bits
– Each parity bit checks certain data bits:
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Decoding SEC

• Value of parity bits indicates which bits are in error
– Use numbering from encoding procedure
– E.g.
• Parity bits = 0000 indicates no error
• Parity bits = 1010 indicates bit 10 was flipped
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SEC/DEC Code

• Add an additional parity bit for the whole word (pn)
• Make Hamming distance = 4
• Decoding:
– Let H = SEC parity bits

• H even, pn even, no error
• H odd, pn odd, correctable single bit error
• H even, pn odd, error in pn bit
• H odd, pn even, double error occurred

• Note:  ECC DRAM uses SEC/DEC with 8 bits protecting 
each 64 bits
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Virtual Machines

• Host computer emulates guest operating system and 
machine resources
– Improved isolation of multiple guests
– Avoids security and reliability problems
– Aids sharing of resources
• Virtualization has some performance impact
– Feasible with modern high-performance comptuers

• Examples
– IBM VM/370 (1970s technology!)
– VMWare
– Microsoft Virtual PC

§5.6 Virtual M
achines
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Virtual Machine Monitor

• Maps virtual resources to physical resources
– Memory, I/O devices, CPUs
• Guest code runs on native machine in user mode
– Traps to VMM on privileged instructions and access to protected 

resources
• Guest OS may be different from host OS
• VMM handles real I/O devices
– Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization

• In native machine, on timer interrupt
– OS suspends current process, handles interrupt, selects and 

resumes next process
• With Virtual Machine Monitor
– VMM suspends current VM, handles interrupt, selects and 

resumes next VM
• If a VM requires timer interrupts
– VMM emulates a virtual timer
– Emulates interrupt for VM when physical timer interrupt occurs
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Instruction Set Support

• User and System modes
• Privileged instructions only available in system mode
– Trap to system if executed in user mode
• All physical resources only accessible using privileged 

instructions
– Including page tables, interrupt controls, I/O registers
• Renaissance of virtualization support
– Current ISAs (e.g., x86) adapting
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Cache Control

• Example cache characteristics
– Direct-mapped, write-back, write allocate
– Block size: 4 words (16 bytes)
– Cache size: 16 KB (1024 blocks)
– 32-bit byte addresses
– Valid bit and dirty bit per block
– Blocking cache

• CPU waits until access is complete

§5.9 U
sing a Finite State M

achine to C
ontrol A Sim

ple C
ache

Tag Index Offset
03491031

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines

• Use an FSM to sequence 
control steps
• Set of states, transition on 

each clock edge
– State values are binary 

encoded
– Current state stored in a 

register
– Next state

= fn (current state,
current inputs)

• Control output signals
= fo (current state)
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Cache Controller FSM

Could 
partition into 

separate 
states to 

reduce clock 
cycle time
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Cache Coherence Problem

• Suppose two CPU cores share a physical address 
space
– Write-through caches

§5.10 Parallelism
 and M

em
ory H

ierarchies: C
ache C

oherence

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined

• Informally: Reads return most recently written value
• Formally:
– P writes X; P reads X (no intervening writes)
Þ read returns written value

– P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value
• c.f. CPU B reading X after step 3 in example

– P1 writes X, P2 writes X
Þ all processors see writes in the same order
• End up with the same final value for X
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Cache Coherence Protocols

• Operations performed by caches in multiprocessors to ensure 
coherence
– Migration of data to local caches
• Reduces bandwidth for shared memory

– Replication of read-shared data
• Reduces contention for access

• Snooping protocols
– Each cache monitors bus reads/writes
• Directory-based protocols
– Caches and memory record sharing status of blocks in a 

directory

153



Invalidating Snooping Protocols
• Cache gets exclusive access to a block when it is to be 

written
– Broadcasts an invalidate message on the bus
– Subsequent read in another cache misses
• Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency

• When are writes seen by other processors
– “Seen” means a read returns the written value
– Can’t be instantaneously
• Assumptions
– A write completes only when all processors have seen it
– A processor does not reorder writes with other accesses
• Consequence
– P writes X then writes Y
Þ all processors that see new Y also see new X

– Processors can reorder reads, but not writes
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DGEMM

• Combine cache blocking and subword parallelism

§5.14 G
oing Faster:  C

ache Blocking and M
atrix M

ultiply
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Pitfalls

• Byte vs. word addressing
– Example: 32-byte direct-mapped cache,

4-byte blocks
• Byte 36 maps to block 1
• Word 36 maps to block 4

• Ignoring memory system effects when writing or generating 
code
– Example: iterating over rows vs. columns of arrays
– Large strides result in poor locality

§5.15 Fallacies and Pitfalls
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Pitfalls

• In multiprocessor with shared L2 or L3 cache
– Less associativity than cores results in conflict misses
– More cores Þ need to increase associativity
• Using AMAT to evaluate performance of out-of-order 

processors
– Ignores effect of non-blocked accesses
– Instead, evaluate performance by simulation
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Pitfalls

• Extending address range using segments
– E.g., Intel 80286
– But a segment is not always big enough
– Makes address arithmetic complicated
• Implementing a VMM on an ISA not designed for 

virtualization
– E.g., non-privileged instructions accessing hardware resources
– Either extend ISA, or require guest OS not to use problematic 

instructions
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Advanced DRAM Organization

• Bits in a DRAM are organized as a rectangular array
– DRAM accesses an entire row
– Burst mode: supply successive words from a row with reduced 

latency
• Double data rate (DDR) DRAM
– Transfer on rising and falling clock edges
• Quad data rate (QDR) DRAM
– Separate DDR inputs and outputs
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Memory is Much Slower Compared with CPU

CPU-DRAM Memory Latency Gap à Memory Wall

Processor-Memory
Performance Gap:
(grows 50% / year)
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Memory Hierarchy Works

163

• capacity:  Register << SRAM << DRAM
• latency:     Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data Î fast memory Þ low latency access (SRAM)
if data Ï fast memory Þ high latency access (DRAM)

Control

Datapath

Off-Chip
Memory

Processor
Input

Output



Disk Sectors and Access

• Each sector records
– Sector ID
– Data (512 bytes, 4096 bytes proposed)
– Error correcting code (ECC)

• Used to hide defects and recording errors
– Synchronization fields and gaps
• Access to a sector involves
– Queuing delay if other accesses are pending
– Seek: move the heads
– Rotational latency
– Data transfer
– Controller overhead
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Disk Access Example

• Given
– 512B sector, 15,000rpm, 4ms average seek time, 100MB/s 

transfer rate, 0.2ms controller overhead, idle disk
• Average read time
– 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

• If actual average seek time is 1ms
– Average read time = 3.2ms
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Sources of locality

• Temporal locality
– Code within a loop
– Same instructions fetched repeatedly
• Spatial locality
– Data arrays
– Local variables in stack
– Data allocated in chunks (contiguous bytes)

for (i=0; i<N; i++) {
A[i] = B[i] + C[i] * a;

}
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int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Writing Cache Friendly Code

• Repeated references to variables are good (temporal locality)
• Stride-1 reference patterns are good (spatial locality)
• Examples:
– cold cache, 4-byte words, 4-word cache blocks
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Matrix Multiplication Example

• Major cache effects to consider
– Total cache size
• Exploit temporal locality and blocking)

– Block size
• Exploit spatial locality

• Description:
– Multiply N x N matrices
– O(N3) total operations
– Accesses
• N reads per source element
• N values summed per destination

– but may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register
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Miss Rate Analysis for Matrix Multiply

• Assume: 
– Cache line size = 32 Bytes (big enough for 4 64-bit words) 
– Matrix dimension (N) is very large
• Approximate 1/N as 0.0 

– Cache is not even big enough to hold multiple rows
• Analysis method: 
– Look at access pattern of inner loop
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Matrix Multiplication (ijk)
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Matrix Multiplication (jik)
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Matrix Multiplication (kij)
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Matrix Multiplication (ikj)
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Matrix Multiplication (jki)
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Matrix Multiplication (kji)
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Summary of Matrix Multiplication
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for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] *

b[k][j]; c[i][j] = sum;

}
}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0


