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Chapter 4: The Processor
• Lecture
– 4.1 Introduction
– 4.2 Logic Design Conventions
– 4.3 Building a Datapath

• Lecture
– 4.4 A Simple Implementation Scheme

• Lecture
– 4.5 An Overview of Pipelining

• Lecture (Pipeline implementation), will not be covered!
– 4.6 Pipelined Datapath and Control
– 4.7 Data Hazards: Forwarding versus Stalling
– 4.8 Control Hazards
– 4.9 Exceptions
– 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe 

and Model a Pipeline and More Pipelining Illustrations 
• Lecture (Advanced pipeline techniques and real-world CPU examples)
– 4.10 Parallelism via Instructions
– 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
– 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
– 4.14 Fallacies and Pitfalls
– 4.15 Concluding Remarks
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Introduction

• CPU performance factors
– Instruction count

• Determined by ISA and compiler
– CPI and Cycle time

• Determined by CPU hardware

• We will examine two CPU implementations
– A simplified version
– A more realistic and pipelined version
• Simple subset, shows the most aspects

– Memory reference: ld/lw, sd/sw
– Arithmetic-logical: add, sub, and, and or
– Condition branch: beq (branch if equal)

§4.1 Introduction
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Instruction Set Architecture: The Interface 
Between Hardware and Software

• The words of a computer 
language are called instructions, 
and its vocabulary/dictionary is 
called an instruction set
– lowest software interface, 

assembly level, to the users or to 
the compiler writer

Instruction Set Architecture – A 
type of machine

A language represents a race

instruction set

software

hardware

4



RISC-V and X86_64 Assembly Example
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Three Classes of Instructions

1. Arithmetic-logic instructions
– add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
– lw and sw: Load/store word
– ld and sd: Load/store doubleword

3. Control transfer instructions (changing 
sequence of instruction execution)

– Conditional branch: bne, beq
– Unconditional jump: j (
– Procedure call and return: jal and jr
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Arithmetic-logic and load/store

• Arithmetic-logic instructions
– Three operands, could be either register or immediate (for source 

operands only)
• add x10, x5, x6; sub x5, x4, x7; and x10, x5, x7
• addi x10, x5, 10;

• Load and store (L/S) instructions: Load data from memory to 
register and store data from register to memory
– Remember the way of specifying memory address (base+offset)
– ld x9, 64(x22)    // load doubleword
sd x9, 96(x22)    // store doubleword

• With these two classes instructions, you can implement the 
following high-level code, and different ways of combining them
– f = (g + h) - (i + j);
– A[12] = h + A[8];

– For L/S: Left-value (of =) to Store, Right-value of (=) to Load 7



Load and Store Operations

Format:  ld rd, offset(rs1)

Example: ld x9, 64(x22)  // load doubleword to x9

• ld: load a doubleword from a memory location whose address is 
specified as rs1+offset (base+offset, x22+64) into register rd (x9)
– Base should be stored in an register, offset MUST be a constant number
– Address is specified similar to array element, e.g. A[8], for ld, the address is 

offset(base), e.g. 64(x22)
Format:  sd rs2, offset(rs1)

Example: sd x9, 96(x22)    // store a doubleword

• sd: store a doubleword from register rs2 (x9 in the example) to a 
memory location whose address is specified as rs1+offset(base+offset, 
x22+96). Offset MUST be a constant number. 

• Load and store are the ONLY two instructions that access memory
• lw: load a word from memory location to a register
• sw: store a word from a register to a memory location
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Memory Operand Example

• C code:
double A[N]; //double size is 8 bytes

A[12] = h + A[8];
– h in x21, base address of A in x22

• Compiled RISC-V code:
– Index 8 requires offset of 64
– A[8] right-val, A[12]: left-val

ld x9, 64(x22)    // load doubleword
add x9, x21, x9
sd x9, 96(x22)    // store doubleword
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Conditional Branch
Branch to the labeled instruction if a condition is true, otherwise continue

• beq rs1, rs2, L1
– if (rs1 == rs2, i.e. true) branch to instruction labeled L1 (branch target);
– else continue the following instruction

beq x1, x2, label1

add x5, x6, x7
…
addi …

label1:  sub x5, x6, x7
…

• bne rs1, rs2, L1
– if (rs1 != rs2) branch to instruction labeled L1 (branch target);
– else continue the following instruction
• J: unconditional jump (not an instruction)

– beq x0, x0, L1
10
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label1:  sub x5, x6, x7
…
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Translating If Statements 1/2

• C code:

if (i==j) f = g+h;
else f = g-h;

• Compiled RISC-V code:

bne x22, x23, Else //branch if not equal
add x19, x20, x21  //Then path
beq x0, x0, Exit //unconditional

Else: sub x19, x20, x21 //Else path
Exit: …
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Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using bne (reverse of if (==)) to branch to the Else path b.c. we want the code 
following the bne to be the code of the Then path

2. We need “beq x0 x0 Exit”,  an unconditional jump, to let Then path terminate since 
CPU executes instruction in the sequence if not branching. 



Translating Loop Statement
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1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

for (i=0; i<100; i++) { … }

while (i<100) { …; i++; }

• Do the loop structure first
– Init condition
– Loop condition (using reverse 

relationship for branch instr)
– True path (the loop body)
– Loop back
– False path (break the loop)
• Then translate the loop body

Loop: beq/bge x22, x23, Exit
…  # loop body

addi, x22, x22, 1
beq x0, x0, loop

Exit:



Translating Loop Statement: for loop

• C code:

for (i=0; i<100; i++) …
– i in x22
• RISC-V code: 

addi x22, x0, 0
li x23, 100

Loop: bge x22, x23, Exit //beq works
… …
addi x22, x22, 1 //true,the loop body,i++

beq x0,  x0,  Loop
Exit: …
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1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…



Instruction and Data (1/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them

• Each instruction is encoded as 32-bit numbers
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Instruction and Data (2/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them
• Each byte/word has its memory address
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R-Format Encoding for Arithmetic-Logic 
Instructions

add x9,x20,x21   (add rd, rs1, rs2)

x21, x20,       x9   add

0000 0001 0101 1010 0000 0100 1011 0011two =
015A04B316

5 bits for rd, rs1 and rs2 because we have 32 registers, 
thus only needs 5 bit to address a register

0 21 20 90 51

0000000 10101 10100 01001000 0110011

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits
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RISC-V I-Format Encoding for Instructions That Has 
Immediate as one of the Operand

• I-Format: The second source operand is an Immediate, the first 
source operand is register, destination operand is register.  

• Immediate arithmetic/logic, and load instructions (NOT store 
instruction)
– addi x22, x22, 4; Format: addi rd, rs1, #immediate

– ld x9, 64(x22); Format: ld|lw, rd, #immediate(rs1)

– rs1: source or base address register number
– immediate: constant operand, or offset added to base address

• 2s-complement, sign extended

– NOT for store: because destination for store is the memory location (not a register), 
thus no rd for store. 
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immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits



RISC-V S-Format Encoding for Just Store

• S-Format: instructions that use two source register operands and 
NO destination operand register (rd), only store instruction

• Format: sd|sw, rs2, #immediate(rs1)

• Different immediate format for store instructions
– sd x9, 96(x22); 

– rs1: base address register number (x22)
– rs2: source operand register number (x9), which provide the value to be 

stored to memory
– immediate: offset added to base address

• Split so that rs1 and rs2 fields always in the same place as for R- or I-Format

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]
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SB-Format Encoding for Branch Instructions

• Branch instructions specify
– Opcode, two registers, target address
• Most branch targets are near branch

– Forward or backward
• SB-Format instructions: beq x8, x9, 4

• PC-relative addressing
– Branch target address is encoded as the offset off the the address of 

the branch instruction itself
– Target address = PC (Branch address) + immediate × 2
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Branch Target Address is Encoded as offset off the 
branch address

• The Exit offset of the bne is encoded as 6 (..0110)
– Offset is 6*2 = 12 bytes, i.e. 3 instr forward
– Exit’s address = bne’s address (8012) + 12 = 80024 (Exit)
• The Loop offset of the beq is encoded as -10 (..110110)

– Offset is -10*2 = -20 bytes, i.e. 5 instr backward
– Loop’s address = beq’s address (80020) + -20 = 80000 (Loop)
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Components of a Computer

• Program instructions and data are all stored in memory
– Instruction need to be loaded from memory in order to be executed

• Processor does this automatically, thus no instruction needed
• Program counter (PC): a register that stores the address of the 

execution the process is executing
– Data need to be loaded from memory to register in order to be 

processed: load and store instructions
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Instruction Execution
0x0FFE1230: add x6,   x12, x13
0x0FFE1234: lw x6,   24(x12)
0x0FFE1238:  sw x13, 24(x12)
0x0FFE123C: beq x12, x13, offset

1. Processor fetches an instruction word from instruction memory
– PC ® register to store address to access instruction memory to fetch instruction

2. The instruction word is decoded to know the source operands (register numbers), and 
then registers are read to have source operand values ready

– Register numbers ® register file, read registers (rs1 and rs2)
• x12 and x13 for add; x12 for lw, x12 and x13 for sw, x12 and x13 for beq

3. Use ALU to calculate
– Depending on instruction class

• Arithmetic result: [x12] + [x13]
• Memory address for load/store: 24+[x12], add operation
• Branch condition: x12 ?= x13 è[x12]-[x13] and check result is 0 or not
• Branch target address: PC ¬ target address or PC + 4: pc = [pc]+offset*2 if branch is taken

4. LW|SW: access data memory: 
– load from mem[32+[x12]]
– Store [x13] to mem[32+[x12]]

5. Write result to register
– Arithmetic (add): write result back to the register file x6
– Load: write to register x6
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CPU Overview
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Multiplexers

• Can’t just join wires together
– Use multiplexers
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Full CPU with Data and Control Path (Wires)
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Logic Design Basics
§4.2 Logic D

esign C
onventions

• Information encoded in binary
– Low voltage = 0, High voltage = 1
– One wire per bit
– Multi-bit data encoded on multi-wire buses
• Combinational element

– Operate on data
– Output is a function of input
• State (sequential) elements

– Store information
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Combinational Elements

§ AND-gate
– Y = A & B

A
B Y

I0
I1 Y

M
u
x

S

n Multiplexer
n Y = S ? I1 : I0

A

B
Y+

n Adder
n Y = A + B

n Arithmetic/Logic Unit
n Y = F(A, B)
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Clocking Methodology

• Combinational logic transforms data during clock cycles
– Between clock edges
– Input from state elements, output to state element
– Longest delay determines clock period
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Register Files

• Reads are combinational
– Can read in any cycle and for multiple reads
– Only 2 register source operands needed

• Calculate the number of input/output wires of the register file
– Read register 1 , Read register 2 and Write register each needs 5 bits 

(5 wires) since we have 32 32-bit registers
– Read Data 1, Read Data 2 and Write Data each has 32 bits
– Write needs one wire (one bit each). 
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A Simple Memory Model

• Reads and writes are always completed in one cycle
• Read can be done any time (i.e. combinational)
• Write is performed at the rising clock edge

– if it is enabled  
• The number of wires for RAM (Random Access Memory)

– Address has 32 bits
– WriteData and ReadData each has 32 bits
– WE and Clock each needs one wire   
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Building a Datapath

• Datapath
– Elements/wires that process data and addresses in the CPU

• Registers, ALUs, mux’s, memories, …
• We will build a RISC-V datapath incrementally

– Refining the overview design

§4.3 Building a D
atapath
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Instruction Fetch

32-bit register

Increment by 4 for 
next instruction
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R-Format Instructions

• Read two register operands
– x12 and x13
• Perform arithmetic/logical ops

– [x12] + [x13], ALU operation is +
• Write register result

– x6 ß [x12] + [x13], RegWrite is on
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Load/Store Instructions

• Fetch source register operands
– Load: x12
– Store: x12 and x13
• Calculate address using 12-bit 

signed offset
– 24 + [x12]
– Use ALU, but sign-extend offset
– ALU operation is +
• Load: Read memory and 

update register
– x6 ß MEM(24+[x12])
– MemRead signal is on
• Store: Write register value to 

memory
– [x3] à MEM(24+[x12])
– MemWrite is on

35

Address Read
data

Data
memory

a. Data memory unit

Write
data

MemRead
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Figure 4.8. Imm Gen: generate 32- or 64-bit 
immediate value (depending on whether we design 
32-bit or 64-bit machine) from an instruction word. 
• Select the 12-bit from the instruction word and 

sign-extended to 32- or 64-bit. 
• Used for for I-, S- and SB-format (I-format 

ALU, load, store, and beq)



Immediate Generator

• Figure 4.8. Imm Gen: generate 32- or 64-bit immediate value 
(depending on whether we design 32-bit or 64-bit machine) 
from an instruction word. 
• Select the 12-bit from the instruction word and sign-extended to 

32- or 64-bit. 
• Used for for I-, S- and SB-format (I-format ALU, load, store, and 

beq)

• Elaboration on Imm generation: 
• Last paragraph of 4.3, page 251
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Branch Instructions

• Read register operands
– x12 and x13

1. Calculate target address 
(pc + offset * 2)

– Shift left 1 places
• Offset * 2

– Add to PC
2. Branch condition: 

Compare operands
– Use ALU, subtract ([x12] –

[x13]) and check Zero output

• Target address calculation 
and branch condition check 
can be performed at the 
same time 
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Full Datapath -
Study Goals
• Know what each component 

does
– PC, two adders, IM, Registers, 

Mux, ALU, DM, Imm-Gen
• Know what each line does and 

their width
– Data path
– Control path

• Given an instruction, mark the 
lines that the inst uses
– Add/andi, etc
– lw and sw
– Beq

• Given a control signal, know 
what instructions assert it
– RegWrite, MemRead, 

MemWrite, ALUSrc, etc 43
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Chapter 4: The Processor
• Lecture
– 4.1 Introduction
– 4.2 Logic Design Conventions
– 4.3 Building a Datapath

• Lecture
– 4.4 A Simple Implementation Scheme

• Lecture
– 4.5 An Overview of Pipelining

• Lecture (Pipeline implementation), will not be covered!
– 4.6 Pipelined Datapath and Control
– 4.7 Data Hazards: Forwarding versus Stalling
– 4.8 Control Hazards
– 4.9 Exceptions
– 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe 

and Model a Pipeline and More Pipelining Illustrations 
• Lecture (Advanced pipeline techniques and real-world CPU examples)
– 4.10 Parallelism via Instructions
– 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
– 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
– 4.14 Fallacies and Pitfalls
– 4.15 Concluding Remarks
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How Those Control Signals are Set Correctly? 

• 1 4-bit control: ALU operation
• 6 1-bit control: PCSrc, ALUSrc, RegWrite, MemRead, 

MemWrite, MemtoReg
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ALU Operation Control

• ALU used for
– Load/Store: Func = add
– Branch: Func = subtract
– R-type: Func depends on funct field

• How to generate those control signals
– Based on the opcode, func3 and func7 fields of an instruction word
– Encoding Review: 
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ALU operation control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR



R-Format Instruction Encoding (AL Instructions)
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

47

RV32I Base Instruction Set

RV64I Base Instruction Set (in addition to RV32I)Ar
ith

m
et

ic
 in

st
ru

ct
io

ns
Lo

gi
c 

in
st

ru
ct

io
ns

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


I-Format Instruction Encoding (AL and Load)
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116
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immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits

Immediate arithmetic/logic load instructions 

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


S-Format Instruction Encoding (Store)
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

• Same opcode
• Func3 are different for different sizes of data

– Byte, half-word, word, doubleword
49

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

Store instructions

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


SB-Format Encoding for Branch Instr (e.g. beq)
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

• Branch instructions specify
– Opcode, two registers, target address
– Most branch targets are near branch, Forward or backward
• SB-Format instructions: beq x8, x9, 4

– Same opcode, func3 are different for different branch instr
• PC-relative addressing
– Branch target address is encoded as the offset off the the address of 

the branch instruction itself
– Target address = PC (Branch address) + immediate × 2 50

rs2 rs1 funct3 opcodeimm
[10:5]

imm
[4:1]

imm[12] imm[11]

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


Observation 

• Opcode are the same for each basic function category
– R-format 32-bit AL
– R-format 64-bit AL
– I-format AL
– Load (I-Format)
– Store (S-Format)
– Branch (SB-Format)

• Func3 and func7 are different for different operations with 
each categories
– To determine the ALU action for the instructions

• Add, sub, AND, or, etc. 
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Four Formats of Instructions

• ALU Control input = ALUOp + ALU action
– 2-bit ALUOp determined by opcode
– ALU action determinded by bit[30, 14-12] of func3/func7
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Name
(Bit position) 31:25 24:20 19:15 14:12 11:7 6:0

(a) R-type funct7 rs2 rs1 funct3 rd opcode

(b) I-type rs1 funct3 rd opcode

(c) S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode

(d) SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode

immediate[11:0]

Fields

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

Instruction 
opcode ALUOp operation

Funct7 
fi eld

Funct3 
fi eld

Desired 
ALU action

ALU control 
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

Instruction 
opcode ALUOp operation

Funct7 
fi eld

Funct3 
fi eld

Desired 
ALU action

ALU control 
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001



The Truth Table for ALU Operation

• Control signals derived from instruction opcode/func3/func7
– Nothing to do with operands (register or immediate) 

• The design of those logics can be done with PLA 53

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

Instruction 
opcode ALUOp operation

Funct7 
fi eld

Funct3 
fi eld

Desired 
ALU action

ALU control 
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001



Datapath With 
Control
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Read
register 1

Write
data

Registers

ALU

Add

Zero

MemRead

MemWrite

RegWrite

PCSrc

MemtoReg
Read

data 1

Read
data 2

Imm
Gen

32 64

Instruction
[31-0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

ALUOp
Instruction [30,14-12]

Instruction [19-15]

Instruction [11-7]

Instruction [24-20]

Instruction [31-0]

Read
register 2

Write
register

Write
data

Name
(Bit position) 31:25 24:20 19:15 14:12 11:7 6:0

(a) R-type funct7 rs2 rs1 funct3 rd opcode

(b) I-type rs1 funct3 rd opcode

(c) S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode

(d) SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode

immediate[11:0]

Fields



Six Control 
Signals
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Read
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Write
data

Registers

ALU

Add

Zero

MemRead

MemWrite

RegWrite

PCSrc

MemtoReg
Read

data 1

Read
data 2

Imm
Gen

32 64

Instruction
[31-0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

ALUOp
Instruction [30,14-12]

Instruction [19-15]

Instruction [11-7]

Instruction [24-20]

Instruction [31-0]

Read
register 2

Write
register

Write
data

Signal name Effect when deasserted Effect when asserted

situpniretsigeretirWehtnoretsigerehT.enoNetirWgeR
written with the value on the Write data input.

ALUSrc The second ALU operand comes 
 le output 

(Read data 2).

The second ALU operand is the sign-extended, 
12 bits of the instruction.

PCSrc The PC is replaced by the output of 
the adder that computes the value 
of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

ehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
address input are put on the Read data 
output.

ehtybdetangisedstnetnocyromemataD.enoNetirWmeM
address input are replaced by the value on 
the Write data input.

MemtoReg The value fed to the register Write 
data input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.



Control Signals
• 6 1-bit control: 
– PCSrc: Mux input to select PC+4 or PC+offset, for beq instruction to select next instruction
– ALUSrc: Mux input to select input from rs2 or immediate, for R/I-type ALU and load instr
– RegWrite: enable signal to enable write to register, for ALU, and load instr (write to 

register)
– MemRead: enable signal to enable read from memory, for load instr
– MemWrite: enable signal to enable write to memory, for store instr
– MemtoReg: Mux input to select input to write to register from memory or ALU, for ALU and 

load instr
• 1 4-bit control: ALU operation
– 2-bit ALUOp: for enabling certain input (Ainvert, Binvert, etc) of the ALU
– 2-bit ALU Action: AL operation (add, AND, etc) to be performed by ALU

56



Setting of the 2-Bit ALUOp and the 6 1-bit Controls 

• Are completely determined by the instruction opcode 
– Check Figure 4.18 of the description 
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Signal name Effect when deasserted Effect when asserted

situpniretsigeretirWehtnoretsigerehT.enoNetirWgeR
written with the value on the Write data input.

ALUSrc The second ALU operand comes 
 le output 

(Read data 2).

The second ALU operand is the sign-extended, 
12 bits of the instruction.

PCSrc The PC is replaced by the output of 
the adder that computes the value 
of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

ehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
address input are put on the Read data 
output.

ehtybdetangisedstnetnocyromemataD.enoNetirWmeM
address input are replaced by the value on 
the Write data input.

MemtoReg The value fed to the register Write 
data input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.

Instruction ALUSrc
Memto-

Reg
Reg-
Write

Mem-
Read

Mem -
Write Branch ALUOp1 ALUOp0

R-format 0 0 1 0 0 0 1 0
ld 1 1 1 1 0 0 0 0
sd 1 X 0 0 1 0 0 0
beq 0 X 0 0 0 1 0 1



Read
register 1
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data
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ALU
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Read
data 1

Read
data 2

Instruction
[31-0] ALU

result

Add
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M
u
x

M
u
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M
u
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Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

Instruction [6-0]

Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Imm
Gen

32 64

Instruction [19-15]

Instruction [11-7]

Instruction [24-20]

Instruction [31-0]

Instruction [30,14-12]

Datapath 
With 
Control
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Name
(Bit position) 31:25 24:20 19:15 14:12 11:7 6:0

(a) R-type funct7 rs2 rs1 funct3 rd opcode

(b) I-type rs1 funct3 rd opcode

(c) S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode

(d) SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode

immediate[11:0]

Fields

“ALU Control” logic derives 
the 2-bit ALU action based on 
Instruction[30,14-12] bits 
(func3 and func7) and then 
combines the 2-bit ALU 
action with the 2-bit ALUOp
to create the 4-bit ALU input 
control. 

The “Control” logic derives the 
2-bit ALUOp and other six 1-bit 
control, solely based on 
Instruction[6-0] bits, which is the 
opcode of an instruction word. 

Instruction Word: 
• Operation: opcode, func3 and 

func7) è control logic
• Operands: register or immediate 

operands è data path



Truth Table for the 
Control Logic
• The “Control” logic derives the 2-bit 

ALUOp and other six 1-bit controls, 
solely based on Instruction[6-0] bits, 
which is the opcode of an instruction 
word. 
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Input or 
output Signal name R-format ld sd beq

1000]6[IstupnI
I[5] 1 0 1 1
I[4] 1 0 0 0
I[3] 0 0 0 0
I[2] 0 0 0 0
I[1] 1 1 1 1
I[0] 1 1 1 1

Outputs ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1



R-, I-, S and SB-
Instruction
• Study and test goals:

– Understand the data and control path
– Given an instruction and the processor diagram, specify the 

values in EACH datapath and control path
• Exercise in HW4 and test questions

– Datapath flow
• Slide 38-42

– Control path
• Slide 46-60

– Exercise today
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PCnext
INS6-0, Opcode

INS19-15, RS1

INS24-20, RS2

INS11-7, RD

PC+4

IW

RS1Value, ALUin1

IW:Imm, 
BeqOffset

ALUout, MemAddr
MEMReadData

IW:Imm

BeqTarget

IW

PC

BeqOffset*2

RS2Value

ALUin2

WriteData

ALUout

PCnext

WriteBackData

ALUOpCtl (4 bits)

(2 bits)

INS30,14-12, Func

Diagram 
with 
datapath
and control 
path labeld



Specifying Values for Each Datapath
Answer sheet: https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx
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https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx


Specifying Values for Each Control
Answer sheet: https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx
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https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx


Homework 4
https://passlab.github.io/ITSC3181/HW4/Homework_4.pdf

• Homework 4
– Work out the datapath and control for I-type AL instruction

• Addi, ANDi
– Fill in the sheet for the datapath and control value for other 

instructions
– Pipeline execution diagram (following sections)
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https://passlab.github.io/ITSC3181/HW4/Homework_4.pdf


Lab 11 and 12
https://passlab.github.io/ITSC3181/notes/Lab_11_12_SingleCycleCPU.pdf

• Create the processor diagram 
using Digital
– Close to realistic design, but not 

need to make it work
– We have most components: 

• Instr/Data Mem, ALU, Mux, Register, Adder
– We need to add

• PC: a 32-bit register
• Control, ALU control, Imm Gen, and Shift left 1: 

– Create fake logics that have the required input and outputs and use them
– Make sure the bitwidth of the input and output are correctly set

• Decoder: to split 32-bit instruction word into instruction[6-0], 
instruction[19-15], instruction[24-20], instruction[11-7], 
instruction[30], and instruction[14-12], 
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Performance Issues

• Longest delay determines clock period
– Critical path: load instruction
– Instruction memory ® register file ® ALU ® data memory ®

register file
• Not feasible to vary period for different instructions
• Violates design principle

– Making the common case fast
• We will improve performance by pipelining
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Chapter 4: The Processor
• Lecture
– 4.1 Introduction
– 4.2 Logic Design Conventions
– 4.3 Building a Datapath

• Lecture
– 4.4 A Simple Implementation Scheme

• Lecture
– 4.5 An Overview of Pipelining

• Lecture (Pipeline implementation), will not be covered!
– 4.6 Pipelined Datapath and Control
– 4.7 Data Hazards: Forwarding versus Stalling
– 4.8 Control Hazards
– 4.9 Exceptions
– 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe 

and Model a Pipeline and More Pipelining Illustrations 
• Lecture (Advanced pipeline techniques and real-world CPU examples)
– 4.10 Parallelism via Instructions
– 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
– 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
– 4.14 Fallacies and Pitfalls
– 4.15 Concluding Remarks
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Pipelining Analogy

• Laundry Example

• Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, fold, and put away
– Washer takes 30 minutes
– Dryer takes 30 minutes
– ”Folder” takes 30 minutes
– “Putter” takes 30 minutes

• One load: 120 minutes

A B C D

30 minutes

30 minutes

30 minutes

30 minutes

68

§4.5 An O
verview

 of Pipelining



Pipelining: Its Natural!

• Pipelined laundry: overlapping execution
– Parallelism improves performance
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n Four loads:
n Speedup

= 8/3.5 = 2.3

n Non-stop:
n Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

Important to note
© Each laundry still takes 120 minutes.
© Improvement are for 4 load throughput.
© More complicated if stages take different 

amount of time



RISC-V Pipeline

Five stages, one step per stage
1. IF: Instruction Fetch from memory
2. ID: Instruction Decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result Back to register
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• IF: Instruction Fetch from memory
– Box representing instruction memory
– Right-half shade representing usage of IM at the second half of the cycle

• ID: Instruction Decode & register read
– Box representing register
– Right-half shade representing usage (read) of Register at the second half of the 

cycle
• EX: Execute operation or calculate address
– Shade representing usage

• MEM: Access memory operand (only for load/store)
– White background representing NOT used by add instruction in this example

• WB: Write result Back to register (only for load and AL instructions)
– Box representing register
– Left-half shade representing write to register at the first half of the cycle

Graphical Representation of Instruction Pipeline
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Time

add x1, x2, x3 IF MEMID WBEX

200 400 600 800 1000



Classic 5-Stage Pipeline for a RISC

• In each cycle, hardware 
initiates a new instruction 
and executes some part of 
five different instructions:
– Simple

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB 72

Time

add x1, x2, x3 IF MEMID WBEX

200 400 600 800 1000



Pipeline Performance

• Assume time for stages is
– 100ps for register read or write
– 200ps for other stages
• Compare pipelined datapath with single-cycle datapath
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Instruction class
Instruction 

fetch
Register 

read
ALU 

operation
Data 

access
Register 

write
Total 
time

Load doubleword (ld) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store doubleword (sd) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, 
and, or)

200 ps 100 ps 200 ps 100 ps 600 ps

sp005sp002sp001sp002)qeb(hcnarB



Program
execution
order
(in instructions)

ld x1, 100(x4)

ld x2, 200(x4)

ld x3, 400(x4)

Time
1000 1200 1400200 400 600 800

1000 1200 1400200 400 600 800

1600 1800

Instruction
fetch

Data
access Reg

Instruction
fetch

Data
access Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

ld x1, 100(x4)

ld x2, 200(x4)

ld x3, 400(x4)

Time

Instruction
fetch

Data
access Reg

Instruction
fetch

Instruction
fetch

Data
access Reg

Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

ALUReg

ALUReg

ALU

ALU

ALU

Reg

Reg

Reg

Pipeline Performance

• For large number of instructions, say 1M, the speedup will be
– ~= 800ps/200ps = 4 74

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

2400ps 

vs

1400ps



Pipeline Speedup

• Execute billions instructions, so throughput is what matters.
• Pipelining doesn’t help latency of single instruction
• Potential speedup = number pipeline stages;

• Unbalanced lengths of pipeline stages reduces speedup;
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Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB



Pipelining and ISA Design

• RISC ISA designed for pipelining
– All instructions are 32-bits

• Easier to fetch and decode in one cycle
• c.f. x86: 1- to 17-byte instructions

– Few and regular instruction formats
• Can decode and read registers in one step

– Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

– Alignment of memory operands
• Memory access takes only one cycle
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Hazards

• Situations that prevent starting the next instruction in the 
next cycle

• Structure hazards
– A required resource is busy
• Data hazard

– Need to wait for previous instruction to complete its data 
read/write

• Control hazard because of branch or jump
– Deciding on control action depends on previous instruction
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Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB



Structure Hazards

• Conflict for use of a resource
– Find a situation in laundry example?
• In RISC-V pipeline if with a single memory 

à IF and WB conflict
– Load/store requires mem access
– Instruction fetch would have to stall for 

that cycle
• Would cause a pipeline “bubble”

• Hence, pipelined datapaths require 
separate instruction/data memories
– Or separate instruction/data caches
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Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Load or store Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB



One Memory PortàStructural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg
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One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe? à No-Op
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One cycle delay!



Summary of Structure Hazard

• To address structure hazard, have separate memories for 
instructions and data

• However, it will increase cost
– E.g.: pipelining function units or duplicated resources is a high 

cost;

† If the structure hazard is rare, it may not be 
worth the cost to avoid it.
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Data Hazards

• An instruction needs data produced 
by a previous instruction
– Read-After-Write (RAW) data dependency

add x1, x2, x3
sub x4, x1, x5

add x1, x2, x3

sub x4, x1, x5

– Sub would read old value of x1 at cycle 3
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Data Hazards and Solution #1: Interlocking

• An instruction needs data produced by a previous instruction
– Read-After-Write (RAW) data dependency

add x1, x2, x3
sub x4, x1, x5

• Interlock: Hardware detect their dependency, and 
– Insert no-op instructions, e.g. “add $0,$0,$0”, as bubble
– Waste 400: two instructions in between since sub needs to 

wait for two stages for add to write the result x1 to register 
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x1

add x1, x2, x3

sub x4, x1, x5

Two cycles delay!



Solution #2: Forwarding (aka Bypassing)
• Use result right after when it is computed instead of waiting for it to be stored 

in a register
– add produces the result at the end of its EXE stage
– sub uses the result at the beginning of its EXE stage, which is right after the 

cycle for add’s EXE
– Requires extra connections in the datapath
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Time

add x1, x2, x3

sub x4, x1, x5

IF MEMID WBEX

IF MEMID WBEX
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execution
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Load-Use Data Hazard

• Load produce the results after the MEM stage
– Sub use the result at the beginning of the EXE stage, which is in 

the same cycle as load’s MEM, thus, not possible to forward 
• Can’t avoid stalls by forwarding for load-use

– If value not computed when needed
– Can’t forward backward in time!
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200 400 600 800 1000 1200 1400
Time

ld x1, 0(x2)

sub x4, x1, x5

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

bubble bubble bubble bubble bubble

One cycle delay!



Code Scheduling to Avoid Stalls (Software 
Solution)

• Reorder code to avoid use of load result in the next 
instruction

• C code for a = b + e; c = b + f;
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ld x1, 0(x31)

ld x2, 8(x31)

add x3, x1, x2

sd x3, 24(x31)

ld x4, 16(x31)

add x5, x1, x4

sd x5, 32(x31)

stall

stall

ld x1, 0(x31)

ld x2, 8(x31)

ld x4, 16(x31)

add x3, x1, x2

sd x3, 24(x31)

add x5, x1, x4

sd x5, 32(x31)

11 cycles13 cycles



To Check Cycles Delayed and How Forward Works 
in Different Cases

• In the 5-stage pipeline, check whether the results can be 
generated before it is being used
– If so, forwarding 
– If not, stall
• Load-Use
• Produce-Store

– sw rs2, offset(rs1)
• sw needs rs1 to be ready at the EXE stage
• sw needs rs2 to be ready at the MEM stage
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add x9, x7, x8
sw x9, 32(x31) add x9, x7, x8

sw x10, 32(x9) 
2-cycle delay if no forwarding
No delay with forwarding 
(Forwarding from EXE to EXE)

2-cycle delay if no forwarding
No delay with forwarding 
(forwarding from EXE to MEM)



Control Hazards

• Branch determines flow of control
– Fetching next instruction depends on branch outcome
– Pipeline might fetch incorrect instruction in the next cycle after a 

beq instru is fetched
• Still working on ID stage of branch

• In RISC-V pipeline
– Need to compare registers and compute target early in the 

pipeline
– Add hardware to do it in ID stage
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Stall on Branch

• Wait until branch outcome determined before fetching next 
instruction
– One cycle stall (bubble) if branch condition is determined at ID 

stage
– Two cycles stall if branch condition is determined at EXE stage
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add x4, x5, x6

beq x1, x0, 40

or x7, x8, x9

Time
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Data
access

Data
access

Data
access

Reg

Instruction
fetch
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Reg

200 ps
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bubble bubble bubble bubble bubble
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Program
execution
order
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Reg ALU

Reg ALU

Reg ALU

One cycle delay!



Branch Prediction

• Longer pipelines can’t readily determine branch outcome 
early
– Stall penalty becomes unacceptable
• Predict outcome of branch

– Only stall if prediction is wrong
• In pipeline

– Can predict branches not taken
– Fetch instruction after branch, with no delay
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RISC-V with Predict Not Taken

Prediction 
correct

Prediction 
incorrect
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More-Realistic Branch Prediction

• Static branch prediction
– Based on typical branch behavior
– Example: loop and if-statement branches

• Predict backward branches taken
• Predict forward branches not taken

• Dynamic branch prediction
– Hardware measures actual branch behavior

• e.g., record recent history of each branch
– Assume future behavior will continue the trend

• When wrong, stall while re-fetching, and update history
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Pipeline Summary

• Pipelining improves performance by increasing instruction 
throughput
– Executes multiple instructions in parallel
– Each instruction has the same latency
• Subject to hazards

– Structure, data, control
• Instruction set design affects complexity of pipeline 

implementation
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The BIG Picture



Pipeline Execution Diagram: Steps
1. Identify RAW dependencies between two instructions that are one after the other or 

there is one instruction in between
– AL-Use: 2-cycle delay without forwarding, no delay with forwarding
– Load-Use: 2-cycle delay without forwarding, 1 cycle delay with forwarding

• With forwarding, we can reschedule load to eliminate the 1 cycle delay even with 
forwarding

– No need to looking for RAW dependency between instructions that are far from each other 
(>=1 instructions in between)
• Thus only check for the two instructions that could be executed one after another or 

has one other instruction in between
2. Identify branch instruction
– 1 cycle delay (or two cycles delay) depending on the implementation (question)

3. Pipeline diagrams (4 situations)
– a) No pipeline at all, one cycle per stage, no overlap
– b) Pipeline with no forwarding, 2 cycle delay for AL-USE, Load-USE, beq (EXE outcome)
– c) Pipeline with forwarding, 1 cycle delay for Load-use, and 2 cycle-delay for beq
– d) Pipeline with forwarding and load-use rescheduling: reschedule the instruction to 

eliminate the 1-cycle delay for load-use
• No any two instructions can be in the same stage in the same cycle
– Structural hazard
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for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

• Base address B and B2 are in register x22 and x23. i is stored in 
register x5, M is stored in x4.

add x5, x0, 1        // i=0
add x22, x4, -1    // loop bound x22 has M-1

LOOP: beq x5, x22, Exit
slliw x6, x5, 2      // x6 now store i*4, slliw is i<<2 (shift left logic)
add x7, x22, x6   // x7 now stores address of B[i]. 
lw x9, 0(x7)        // load B[i] from memory location (x7+0) to x9
lw x10, -4(x7)     // load B[i-1] to x10
add x9, x10, x9  // x9 = B[i] + B[i-1]
lw x10, 4(x7)      //load B[i+1] to x10
add x9, x10, x9  // x9 = B[i-1] + B[i] + B[i+1]
add x8, x23, x6  // x8 now stores the address of B2[i]
sw x9, 0(x8)       // store value for B2[i] from register x9 to memory (x8+0)
addi x5, x5, 1     // i++
beq x0, x0, LOOP

Exit: 
95

Using beq (==) for (<) 
to exit



for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

• Base address B and B2 are in register x22 and x23. i is stored in 
register x5, M is stored in x4.

1. add x5, x0, 1   
2. add x22, x4, -1  
3. LOOP: beq x5, x22, Exit
4. slliw x6, x5, 2      
5. add x7, x22, x6
6. lw x9, 0(x7)
7. lw x10, -4(x7) 
8. add x9, x10, x9 
9. lw x10, 4(x7)
10. add x9, x10, x9
11. add x8, x23, x6  
12. sw x9, 0(x8)      
13. addi x5, x5, 1    
14. beq x0, x0, LOOP
15. Exit: 
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Using beq (==) for (<) 
to exit

Instruction that
writes the register

Instruction that 
reads the register

The
register

# instructions in
between

Load-
use

add x5, x0, 1  beq x5, x22, Exit x5 1

add x22, x4, -1 beq x5, x22, Exit x22 0
slliw x6, x5, 2 add x7, x22, x6 x6 0

add x7, x22, x6 lw x9, 0(x7) x7 0

add x7, x22, x6 lw x10, -4(x7) x7 1

lw x9, 0(x7) add x9, x10, x9 x9 1 Y
lw x10, -4(x7) add x9, x10, x9 x10 0 Y

lw x10, 4(x7) add x9, x10, x9 x10 0 Y
add x9, x10, x9 sw x9, 0(x8) x9 1
add x8, x23, x6 sw x9, 0(x8) x8 0
addi x5, x5, 1 beq x5, x22, Exit x5 1

RAW Dependencies



Examples
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Instruction that
writes the register

Instruction that 
reads the register

The
register

In instructions in
between

Load-
use

add x5, x0, 1  beq x5, x22, Exit x5 1

add x22, x4, -1 beq x5, x22, Exit x22 0
slliw x6, x5, 2 add x7, x22, x6 x6 0

add x7, x22, x6 lw x9, 0(x7) x7 0

add x7, x22, x6 lw x10, -4(x7) x7 1

lw x9, 0(x7) add x9, x10, x9 x9 1 Y
lw x10, -4(x7) add x9, x10, x9 x10 0 Y

lw x10, 4(x7) add x9, x10, x9 x10 0 Y
add x9, x10, x9 sw x9, 0(x8) x9 1
add x8, x23, x6 sw x9, 0(x8) x8 0
addi x5, x5, 1 beq x5, x22, Exit x5 0
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Chapter 4: The Processor
• Lecture
– 4.1 Introduction
– 4.2 Logic Design Conventions
– 4.3 Building a Datapath

• Lecture
– 4.4 A Simple Implementation Scheme

• Lecture
– 4.5 An Overview of Pipelining

• Lecture (Pipeline implementation), will not be covered!
– 4.6 Pipelined Datapath and Control
– 4.7 Data Hazards: Forwarding versus Stalling
– 4.8 Control Hazards
– 4.9 Exceptions
– 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe 

and Model a Pipeline and More Pipelining Illustrations 
• Lecture (Advanced pipeline techniques and real-world CPU examples)
– 4.10 Parallelism via Instructions
– 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
– 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
– 4.14 Fallacies and Pitfalls
– 4.15 Concluding Remarks
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Instruction-Level Parallelism (ILP)

• Pipelining: executing multiple instructions in parallel
– CPI ~= 1
• To increase ILP

– Deeper pipeline by having more stages
• Less work per stage Þ shorter clock cycle

– Multiple issue
• Replicate pipeline stages Þ multiple pipelines
• Start multiple instructions per clock cycle

• Performance of Multiple issue
– E.g., 4GHz 2-way multiple-issue
– IPC (Instruction Per Cycle): 2
• peak CPI = 0.5
• Instr/Second: 4*109 * 2 = 8*109

– But dependencies reduce this in practice
• Pipeline hazards for single issue happen
• Not always have two instruction to be issued per cycle

§4.10 Parallelism
 via Instructions
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Clock number
Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB
Instruction i+1 IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB
Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB



Multiple Issue

• Static multiple issue
– Compiler groups instructions to be 

issued together
– Packages them into “issue slots”
– Compiler detects and avoids hazards
• Dynamic multiple issue

– CPU examines instruction stream and 
chooses instructions to issue each cycle

– Compiler can help by reordering 
instructions

– CPU resolves hazards using advanced 
techniques at runtime
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High-end processors 
(desktop, server) use 
dynamic multiple issue



Speculation

• “Guess” what to do with an instruction
– Start operation as soon as possible
– Check whether guess was right

• If so, complete the operation
• If not, roll-back and do the right thing

• Common to static and dynamic multiple issue
• Examples

– Speculate on branch outcome
• Roll back if path taken is different

– Speculate on load
• Roll back if location is updated
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Compiler/Hardware Speculation

• Compiler can reorder instructions
– e.g., move load before branch
– Can include “fix-up” instructions to recover from incorrect guess

• Move lw to remove load-use cycle delay in RAW hazards
• Schedule delayed slot

• Hardware can look ahead for instructions to execute
– Buffer results until it determines they are actually needed
– Flush buffers on incorrect speculation
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Static Multiple Issue

• Compiler groups instructions into “issue packets”
– Group of instructions that can be issued on a single cycle

• 2 IPC: ALU/BEQ + LW/SW
– Determined by pipeline resources required
• Think of an issue packet as a very long instruction

– Specifies multiple concurrent operations
– Þ Very Long Instruction Word (VLIW)
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Scheduling Static Multiple Issue

• Compiler must remove some/all hazards
– Reorder instructions into issue packets
– No dependencies with a packet
– Possibly some dependencies between packets

• Varies between ISAs; compiler must know!
– Pad with nop if necessary
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RISC-V with Static Dual Issue

• Two-issue packets
– One ALU/branch instruction
– One load/store instruction
– 64-bit aligned

• ALU/branch, then load/store
• Pad an unused instruction with nop
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RISC-V with Static Dual Issue

• Double resources
– 2 set of register R/W ports
– 2 ALUs

• Top for Load/store
• Bottom for AL and BEQ
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Hazards in the Dual-Issue RISC-V

• More instructions executing in parallel
• EX data hazard

– Forwarding avoided stalls with single-issue
– Now can’t use ALU result in load/store in same packet

• add  x10, $s0, $s1
load $s2, 0(x10)

• Split into two packets, effectively a stall

• Load-use hazard
– Still one cycle use latency, but now two instructions

• More aggressive scheduling required
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Scheduling Example

• Schedule this for dual-issue RISC-V

110

Loop: ld x31, 0(x20)      # x31=array element
add  x31, x31, x21    # add scalar in x21
sd x31, 0(x20)      # store result
addi $20, x20, –8     # decrement pointer
blt x22, x20, Loop # compare to loop limit

# branch if x20 > x22 

n addi and ld CANNOT be in one cycle
n Load-use (ld-add) hazard: 1 cycle delay

n IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

for (i=1000;i!=0;i--)
A[i] += a;

Each element is 8 bytes

ALU or branch instruction Data transfer instruction Clock cycle

Loop: ld x31,0(x20) 1

addi x20,x20,-8 2

add x31,x31,x21 3

blt x22,x20,Loop 4sd x31,8(x20)
Figure 4.67

A[i] +
= a;



Loop Unrolling

• Replicate loop body to expose more parallelism
– Reduces loop-control overhead
– For two calculations, e.g. A[i]+=a
• 2 beq vs 1 beq; 2 i-1 vs 1 i-2

• Use different registers per replication
– Called “register renaming”
– Avoid loop-carried “anti-dependencies”
• Store followed by a load of the same register
• Aka “name dependence”
– Reuse of a register name 111

for (i=1000;i!=0;i--)
A[i] += a;

Unrolling with factor 2
for (i=1000;i!=0;i-=2) {
A[i] += a;;
A[i-1] += a;

}



Loop Unrolling Example

• Load-use hazard
– 1 cycle use delay

• IPC = 14/8 = 1.75
– Closer to 2, but at cost of registers and code size
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Unrolling with factor 4
for (i=1000;i!=0;i-=4){
A[i] += a;
A[i-1] += a;
A[i-2] += a;
A[i-3] += a;

}
ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi x20,x20,-32 ld x28,0(x20) 1
ld x29,24(x20) 2

add x28,x28,x21 ld x30,16(x20) 3
add x29,x29,x21 ld x31,8(x20) 4
add x30,x30,x21 sd x28,32(x20) 5
add x31,x31,x21 sd x29,24(x20) 6

sd x30,16(x20) 7
blt x22,x20,Loop sd x31,8(x20) 8

Figure 4.68

A[i] +
= a;

A[i-1] += a;

A[i-2] += a;

A[i-3] += a;



Summary for Four Iterations of the Loop

• Original version + single issue
– Total 20 instructions à

~5 cycles/calculation 
• Original version + multi-issue
– About 4 cycles/calculation
• Unrolling by 4 + single issue
– 14 instructions à 3.5 cycles/calculation (14/4)
• Unrolling + multi-issue
– About 2 clocks/calculation (8/4)
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for (i=1000;i!=0;i--)
A[i] += a;

Unrolling with factor 4
for (i=1000;i!=0;i-=4){
A[i] += a;;
A[i-1] += a;
A[i-2] += a;
A[i-3] += a;

}

ALU or branch instruction Data transfer instruction Clock cycle

Loop: ld x31,0(x20) 1

addi x20,x20,-8 2

add x31,x31,x21 3

blt x22,x20,Loop 4sd x31,8(x20)

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi x20,x20,-32 ld x28,0(x20) 1
ld x29,24(x20) 2

add x28,x28,x21 ld x30,16(x20) 3
add x29,x29,x21 ld x31,8(x20) 4
add x30,x30,x21 sd x28,32(x20) 5
add x31,x31,x21 sd x29,24(x20) 6

sd x30,16(x20) 7
blt x22,x20,Loop sd x31,8(x20) 8



Dynamic Multiple Issue

• “Superscalar” processors
• CPU decides whether to issue 0, 1, 2, … each cycle

– Avoiding structural and data hazards
• Avoids the need for compiler scheduling

– Though it may still help
– Code semantics ensured by the CPU
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Dynamic Pipeline Scheduling

• Allow the CPU to execute instructions out of order to avoid 
stalls
– But commit result to registers in order
• Example

ld x31, 0(x21)
add x1, x31, x2
sub x23,x23, x3
andi x5, x23, 20

– Can start sub while add is waiting for lw

115



Dynamically Scheduled CPU

Results also sent 
to any waiting 
reservation stations

Reorders buffer for 
register writes Can supply 

operands for 
issued instructions

Preserves 
dependencies

Hold pending 
operands
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Why Do Dynamic Scheduling?

• Why not just let the compiler schedule code?
• Not all stalls are predicable

– e.g., cache misses
• Can’t always schedule around branches

– Branch outcome is dynamically determined
• Different implementations of an ISA have different latencies 

and hazards
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Does Multiple Issue Work?

• Yes, but not as much as we’d like
• Programs have real dependencies that limit ILP
• Some dependencies are hard to eliminate

– e.g., pointer aliasing
• Some parallelism is hard to expose

– Limited window size during instruction issue
• Memory delays and limited bandwidth

– Hard to keep pipelines full
• Speculation can help if done well
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Power Efficiency

• Complexity of dynamic scheduling and speculations requires 
power

• Multiple simpler cores may be better
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Microprocessor Year Clock Rate
Pipeline 
Stages

Issue 
Width

Out-of-Order/
Speculation

Cores/
Chip Power

W51oN15zHM529891684letnI
W011oN25zHM663991muitnePletnI

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 W

W572seY441zHM03926002eroCletnI
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 2–4 87 W
Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W



Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 920

Market Personal Mobile Device Server, cloud

Thermal design power 100 milliWatts
(1 core @ 1 GHz)

130 Watts

Clock rate 1.5 GHz 2.66 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order 
with speculation

Branch prediction Hybrid 2-level

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 2-8 MB

§4.11 R
eal Stuff: The AR

M
 C

ortex-A53 and Intel C
ore i7 Pipelines121



ARM Cortex-A53 Pipeline

• Used as the basis for several tablets and cell phones
– Dual-issue, statically scheduled superscalar with dynamic issue 

detection à 0.5 CPI ideally
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Figure 4.72

Processor ARM A53 Intel Core i7 920

duolC ,revreSeciveD eliboM lanosrePtekraM
Thermal design power 100 milliWatts (1 core @ 1 GHz) 130 Watts
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ARM Cortex-A53 Performance using SPEC2006

• Ideal CPI: 0.5 since it is 2-way multi-issue (IPC=2)
– Best case 1.0, median case 1.3, worst 8.6
– 60% stalls due to pipelining hazards
– 40% stalls due to the memory hierarchy
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Figure 4.73



Intel Core i7

• Aggressive out-of-order 
speculative 

• 14 stages pipeline,
• Branch mispredictions costing 

17 cycles.
• 48 load and 32 store buffers. 
• Six independent functional units

– 6-wide superscalar

Processor ARM A53 Intel Core i7 920
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noitalucepS htiw redro-fo-tuO cimanyDredro-nI citatSeludehcs enilepiP
level-2dirbyHnoitciderp hcnarB

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D
2nd level cache/core 128–2048 KiB (shared) 256 KiB (per core)

BiM 8–2)tnedneped mroftalp()derahs( ehcac level dr3

Processor ARM A53 Intel Core i7 920

duolC ,revreSeciveD eliboM lanosrePtekraM
Thermal design power 100 milliWatts (1 core @ 1 GHz) 130 Watts

zHG 66.2zHG 5.1etar kcolC
4)elbarug 
seYseY?tniop gnitaolF

cimanyDcimanyD?eussI elpitluM
42elcyc kcolc/snoitcurtsni kaeP
418segatS enilepiP

noitalucepS htiw redro-fo-tuO cimanyDredro-nI citatSeludehcs enilepiP
level-2dirbyHnoitciderp hcnarB

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D
2nd level cache/core 128–2048 KiB (shared) 256 KiB (per core)

BiM 8–2)tnedneped mroftalp()derahs( ehcac level dr3 124



Core i7 Pipeline: IF

• Instruction fetch – Fetch 16 bytes from the I cache
– A multilevel branch target buffer to achieve a balance between 

speed and prediction accuracy.
– A return address stack to speed up function return.
– Mispredictions cause a penalty of about 15 cycles. 
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Core i7 Pipeline: Predecode

• Predecode –16 bytes instr in the predecode I buffer
– Macro-op fusion: Fuse instr combinations such as compare followed 

by a branch into a single operation. 
– Instr break down: breaks the 16 bytes into individual x86 instructions.
• nontrivial since the length of an x86 instruction can be from 1 to 17 

bytes and the predecoder must look through a number of bytes 
before it knows the instruction length.

– Individual x86 instructions (including some fused instructions) are 
placed into the 18-entry instruction queue. 
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Core i7 Pipeline:
Micro-op decode 

• Micro-op decode – Translate Individual x86 instructions into micro-
ops. 
– Micro-ops are simple MIPS-like instructions that can be executed 

directly by the pipeline (RISC style)
• introduced in the Pentium Pro in 1997 and has been used since. 

– Three simple micro-op decoders handle x86 instructions that translate 
directly into one micro-op. 

– One complex micro-op decoder produce the micro-op sequence of 
complex x86 instr; 
• produce up to four micro-ops every cycle

– The micro-ops are placed according to the order of the x86 
instructions in the 28- entry micro-op buffer. 
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Core i7 Pipeline:
loop stream detection 
and microfusion

• loop stream detection and microfusion by the micro-op buffer 
preforms
– If there is a sequence of instructions (less than 28 instrs or 256 bytes 

in length) that comprises a loop, the loop stream detector will find the 
loop and directly issue the micro-ops from the buffer
• eliminating the need for the instruction fetch and instruction decode 

stages to be activated. 
– Microfusion combines instr pairs such as load/ALU operation and ALU 

operation/store and issues them to a single reservation station, thus 
increasing the usage of the buffer. 
• Study comparing the microfusion and macrofusion by Bird et al. 

[2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive 
impact on integer performance and little impact on FP. 
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Core i7 Pipeline: Issue

• Basic instruction issue
– Looking up the register location in 

the register tables
– renaming the registers
– allocating a reorder buffer entry
– fetching any results from the 

registers or reorder buffer before sending the micro-ops to the 
reservation stations. 

• 36-entry centralized reservation station shared by six 
functional units
Up to six micro-ops may be dispatched to the functional units 
every clock cycle. 
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Core i7 Pipeline: EXE
and Retirement

• Micro-ops are executed by the individual function units
– results are sent back to any waiting reservation station as well as to 

the register retirement unit, where they will update the register state. 
The entry corresponding to the instruction in the reorder buffer is 
marked as complete. 

• Retirement
– When one or more instructions at the head of the reorder buffer have 

been marked as complete, the pending writes in the register 
retirement unit are executed, and the instructions are removed from 
the reorder buffer. 
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Core i7 Performance running SPEC2006 INT

• Ideal CPI: 0.25
• Best 0.44, median 0.79, worst 2.67;
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Concluding Remarks

• ISA influences design of datapath and control
• Datapath and control influence design of ISA
• Pipelining improves instruction throughput

using parallelism
– More instructions completed per second
– Latency for each instruction not reduced
• Hazards: structural, data, control
• Multiple issue and dynamic scheduling (ILP)

– Dependencies limit achievable parallelism
– Complexity leads to the power wall

§4.14 C
oncluding R

em
arks
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Slides and Chapter Sections that are 
not covered for Fall 2020. 
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Chapter 4: The Processor
• Lecture
– 4.1 Introduction
– 4.2 Logic Design Conventions
– 4.3 Building a Datapath

• Lecture
– 4.4 A Simple Implementation Scheme

• Lecture
– 4.5 An Overview of Pipelining

• Lecture (Pipeline implementation), will not be covered!
– 4.6 Pipelined Datapath and Control
– 4.7 Data Hazards: Forwarding versus Stalling
– 4.8 Control Hazards
– 4.9 Exceptions
– 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe 

and Model a Pipeline and More Pipelining Illustrations 
• Lecture (Advanced pipeline techniques and real-world CPU examples)
– 4.10 Parallelism via Instructions
– 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
– 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
– 4.14 Fallacies and Pitfalls
– 4.15 Concluding Remarks
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Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB



Pipeline registers

• Registers between stages
– For each instruction, hold information produced in previous stage/cycle and pass on
– Each register set (IF/ID, ID/EX, EX/MEM, MEM/WB) has the information for each of the 

instructions that are in the pipeline

136

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB



Pipeline Operation

• Cycle-by-cycle flow of instructions through the pipelined 
datapath
– “Single-clock-cycle” pipeline diagram

• Shows pipeline usage in a single cycle
• Highlight resources used

– c.f. “multi-clock-cycle” diagram
• Graph of operation over time

• We’ll look at “single-clock-cycle” diagrams for load & store
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IF for Load, Store, …

138Instruction word and PC+4 are in the IF/ID pipeline register

LW $4, 32($5)



ID for Load, Store, …

139

LW $4, 32($5)

Value of $5, 32, and others are in ID|EX pipeline register
Similar info of the following instruction are now in IF|ID register



EX for Load

140Value of $5+32, and others are in EX|MEM pipeline register

LW $4, 32($5)



MEM for Load

141

LW $4, 32($5)

Value of MEM[$5+32], and others are in MEM|WB pipeline register for WB



WB for Load

Wrong
register number, which is 
from one of the following 
instructions that is in the 
ID stage.
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LW $4, 32($5)

Value of MEM[$5+32], and others are in MEM|WB pipeline register for WB



Corrected Datapath for Load
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LW $4, 32($5)

LW completes and exits from the pipeline.



EX for Store

144

SW $6, 64($5)

Value of $5+64 and $6 are in EX|MEM pipeline register



MEM for Store

145$6 is written to MEM[$5+64]

SW $6, 64($5)



WB for Store

146Nothing to do for SW in WB stage and SW completes

SW $6, 64($5)



Multi-Cycle Pipeline Diagram

• Traditional form
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Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle
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Multi-Cycle Pipeline Diagram

• Form showing resource usage
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Pipelined Control (Simplified)
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Pipelined Control

• Control signals derived from instruction
– As in single-cycle implementation
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Pipelined Control
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Data Hazards in ALU Instructions
• Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or  $13,$6,$2
add $14,$2,$2
sw $15,100($2)

• Called Read After Write (RAW) hazards 

• We can resolve hazards with forwarding
– How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. Stalling
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Data Dependency à Data Hazards
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Read old value of $2 from register file



Solution #1: Handling RAW Hazards by Forwarding
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Forward the latest $2 via data path



RegIfetch

Reg Bubble Bubble Bubble

Bubble Bubble Bubble

Solution #2: Insert stalls

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch

Time (clock cycles)

IF ID/RF EX MEM WB

Two cycles delay!

Ifetch
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Datapath for Forwarding

• Forwarding happens in two 
consecutive cycles
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Detecting RAW Hazards

• Current instruction being executed in ID/EX register
• Previous instruction is in the EX/MEM register
• 2nd Previous is in the MEM/WB register

• Forwarding happens in the same cycle

ADD R1, R2, R3 #2nd Previous in MEM/WB 

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF    ID     EX    MEM WB

158



Detecting RAW Hazards
ADD R1, R2, R3 #2nd Previous in MEM/WB 

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF      ID       EX     MEM   WB
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Detecting RAW Hazards

• Pass register numbers along pipeline
– ID/EX.RegisterRs = register number for Rs in ID/EX (Rs1)
– ID/EX.RegisterRt = register number for Rt in ID/EX (Rs2)
– ID/EX.RegisterRd = register number for Rd in ID/EX

• RAW Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

ADD R1, R2, R3 #2nd Previous in MEM/WB 
SUB R6, R4, R5 #Previous in EX/MEM
AND R7, R1, R6 #Current in ID/EX
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Detecting the Need to Forward

• But only if forwarding instruction will write to a register!
– EX/MEM.RegWrite, MEM/WB.RegWrite
• And only if Rd for that instruction is not R0

– EX/MEM.RegisterRd ≠ 0
– MEM/WB.RegisterRd ≠ 0

ADD R1, R2, R3 #2nd Previous in MEM/WB 

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX

IF       ID        EX     MEM   WB
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Forwarding Conditions

• Detecting RAW hazard with Previous Instruction
– if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01 (Forward from EX/MEM pipe stage)

– if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01 (Forward from EX/MEM pipe stage)
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Forwarding Conditions

• Detecting RAW hazard with Second Previous
– if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10 (Forward from MEM/WB pipe stage)

– if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10 (Forward from MEM/WB pipe stage)
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Control Signals During Forwarding:
Those Light Blue lines

ADD R1, R2, R3 #2nd Previous in MEM/WB 

SUB R6, R4, R5 #Previous in EX/MEM

AND R7, R1, R6 #Current in ID/EX
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RAW Hazards with Load/Store

• LW Rt, 20(Rs): load a word from memory @ [Rs]+20 into Rt
– ID/RF: Read register Rs: [Rs] (rs select)
– EX: Calculate effective address: [Rs] + 20
– MEM: Memory read from [Rs]+20
• Data is available in MEM|WB
• Unlike ALU: data is available in EX|MEM

– WB: data write back to Rt (rt select)
• SW Rt,12(Rs): store a word in Rt in the memory @ [Rs]+12
– ID/RF: Read register Rs and Rt (rs and rt select, no rd)
• Rs is needed in EX, and Rt is needed in MEM

– EX: Calculate effective address: [Rs] + 12
– MEM: Memory write to [Rs]+12
• Need Rt to be available
• Unlike ALU, data needs to be available in ID|EX

– No need WB

Reg A
LU DMemIfetch Reg

IF ID/RF EX MEM WB
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Load-Use RAW Data Hazard

Data for $2 is only available 
after MEM stage, forwarding 
from MEM to EXE between 
two instructions will not work. 
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Stall/Bubble in the Pipeline

Stall inserted here
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Stall/Bubble in the Pipeline

Or, more 
accurately… 168



Load-Use Hazard Detection

• Check when using instruction is decoded in ID stage
• ALU operand register numbers in ID stage are given by

– IF/ID.RegisterRs, IF/ID.RegisterRt
• Load-use hazard when

– ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

• If detected, stall and insert bubble
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How to Stall the Pipeline

• Force control values in ID/EX register to 0
– EX, MEM and WB do nop (no-operation)
• Prevent update of PC and IF/ID register

– Using instruction is decoded again
– Following instruction is fetched again
– 1-cycle stall allows MEM to read data for lw

• Can subsequently forward to EX stage
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Datapath with Hazard Detection
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Compiler Scheduling for Removing Load-Use Stall 

• Compilers can schedule code in a way to avoid load à ALU-use stalls 
a = b + c;  d = e – f;

• Slow code: 2 stall cycles
lw r10, (r1) # r1 = addr b
lw r11, (r2) # r2 = addr c

# stall
add  r12, r10, r11 # b + c
sw r12, (r3)        # r3 = addr a
lw r13, (r4)        # r4 = addr e
lw r14, (r5)       # r5 = addr f

# stall
sub  r15, r13, r14 # e - f
sw r15, (r6) # r6 = addr d

Fast code: No Stalls
lw r10, 0(r1)
lw r11, 0(r2)
lw r13, 0(r4)
lw r14, 0(r5)
add r12, r10, r11
sw r12, 0(r3)
sub r15, r13, r14
sw r15, 0(r6)
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Stalls and Performance

• Stalls reduce performance
– But are required to get correct results
• Compiler can arrange code to avoid hazards and stalls

– Requires knowledge of the pipeline structure
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Control Hazards Because of Branches

• Branch outcome determined in MEM

40      beq $1,    $3, 28

44      and   $12, $2, $5

48       or      $13, $6,  $2

52       add   $14, $2, $2
…

72 lw $4,  50($7)
174
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Control Hazards

• Branch outcome determined in MEM

175

PC

Flush these three
instructions
(Set control
values to 0)



Reducing Branch Delay

• In general, branch could cause 3 cycle delay
– Since branch outcome is determined at MEM stage
• Move hardware to determine outcome at ID stage à 1 cycle 

delay
– BEQZ instruction

– For BEQ:  add target address adder and Register comparator in the ID 
stage

176



Reducing Branch Delay

• Move hardware to determine outcome to ID stage à 1 
cycle delay
– Add Target address adder and Register comparator
• Example: branch taken
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Example: Branch Taken
• Add is already fetched when beq outcome is determined
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Example: Branch Taken
• Add won’t enter ID stage and branch target (lw) is fetched

179

Still one cycle delay!



Four Branch Hazard Alternatives

• #1: Stall until branch direction is clear
• #2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction
• #3: Predict Branch Taken

– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

• #4: Schedule Branch Delay Slots
– Exec an instruction in that delay slot regardless whether branch 

will be taken or not

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3
if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Exceptions and Interrupts

• “Unexpected” events requiring change
in flow of control
– Different ISAs use the terms differently
• Exception

– Arises within the CPU
• e.g., undefined opcode, overflow, syscall, …

• Interrupt
– From an external I/O controller
• Dealing with them without sacrificing performance is 

hard

§4.9 Exceptions
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Handling Exceptions

• In MIPS, exceptions managed by a System Control 
Coprocessor (CP0)
• Save PC of offending (or interrupted) instruction

– In MIPS: Exception Program Counter (EPC)
• Save indication of the problem

– In MIPS: Cause register
– We’ll assume 1-bit

• 0 for undefined opcode, 1 for overflow

• Jump to handler at 8000 00180
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An Alternate Mechanism

• Vectored Interrupts
– Handler address determined by the cause
• Example:

– Undefined opcode: C000 0000
– Overflow: C000 0020
– …: C000 0040
• Instructions either

– Deal with the interrupt, or
– Jump to real handler
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Handler Actions

• Read cause, and transfer to relevant handler
• Determine action required
• If restartable

– Take corrective action
– use EPC to return to program
• Otherwise

– Terminate program
– Report error using EPC, cause, …
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Exceptions in a Pipeline

• Another form of control hazard
• Consider overflow on add in EX stage
add $1, $2, $1
– Prevent $1 from being clobbered
– Complete previous instructions
– Flush add and subsequent instructions
– Set Cause and EPC register values
– Transfer control to handler
• Similar to mispredicted branch

– Use much of the same hardware
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Pipeline with Exceptions
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Exception Properties

• Restartable exceptions
– Pipeline can flush the instruction
– Handler executes, then returns to the instruction

• Refetched and executed from scratch
• PC saved in EPC register

– Identifies causing instruction
– Actually PC + 4 is saved

• Handler must adjust
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Exception Example

• Exception on add in
40 sub  $11, $2, $4
44 and  $12, $2, $5
48 or   $13, $2, $6
4C add  $1,  $2, $1
50 slt  $15, $6, $7
54 lw   $16, 50($7)
…

• Handler
80000180 sw   $25, 1000($0)
80000184 sw   $26, 1004($0)
…
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Exception Example
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Exception Example

191



Multiple Exceptions

• Pipelining overlaps multiple instructions
– Could have multiple exceptions at once
• Simple approach: deal with exception from earliest 

instruction
– Flush subsequent instructions
– “Precise” exceptions

• In complex pipelines
– Multiple instructions issued per cycle
– Out-of-order completion
– Maintaining precise exceptions is difficult!
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Imprecise Exceptions

• Just stop pipeline and save state
– Including exception cause(s)
• Let the handler work out

– Which instruction(s) had exceptions
– Which to complete or flush

• May require “manual” completion

• Simplifies hardware, but more complex handler software
• Not feasible for complex multiple-issue

out-of-order pipelines
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Data Hazards for Branches

• If a comparison register is a destination of 2nd or 3rd

preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

n Can resolve using forwarding
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Data Hazards for Branches

• If a comparison register is a destination of preceding ALU 
instruction or 2nd preceding load instruction
– Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target

195



Data Hazards for Branches

• If a comparison register is a destination of immediately 
preceding load instruction
– Need 2 stall cycles

196

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target



1-Bit Predictor: Shortcoming

• Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

n Mispredict as taken on last iteration of 
inner loop

n Then mispredict as not taken on first 
iteration of inner loop next time around
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2-Bit Predictor

• Only change prediction on two successive mispredictions
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Calculating the Branch Target

• Even with predictor, still need to calculate the target address
– 1-cycle penalty for a taken branch
• Branch target buffer

– Cache of target addresses
– Indexed by PC when instruction fetched

• If hit and instruction is branch predicted taken, can fetch target 
immediately
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Dynamic Branch Prediction

• In deeper and superscalar pipelines, branch penalty is 
more significant
• Use dynamic prediction

– Branch prediction buffer (aka branch history table)
– Indexed by recent branch instruction addresses
– Stores outcome (taken/not taken)
– To execute a branch

• Check table, expect the same outcome
• Start fetching from fall-through or target
• If wrong, flush pipeline and flip prediction
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Speculation and Exceptions

• What if exception occurs on a speculatively executed 
instruction?
– e.g., speculative load before null-pointer check
• Static speculation

– Can add ISA support for deferring exceptions
• Dynamic speculation

– Can buffer exceptions until instruction completion (which may 
not occur)
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Matrix Multiply

nUnrolled C code
1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)

5 {

6  for ( int i = 0; i < n; i+=UNROLL*4 )

7   for ( int j = 0; j < n; j++ ) {

8    __m256d c[4];

9    for ( int x = 0; x < UNROLL; x++ )

10    c[x] = _mm256_load_pd(C+i+x*4+j*n);

11

12   for( int k = 0; k < n; k++ )

13   {

14    __m256d b = _mm256_broadcast_sd(B+k+j*n);

15    for (int x = 0; x < UNROLL; x++)

16    c[x] = _mm256_add_pd(c[x],

17                        _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

18   }

19

20    for ( int x = 0; x < UNROLL; x++ )

21     _mm256_store_pd(C+i+x*4+j*n, c[x]);

22  }

23 }

§4.12 Instruction-Level Parallelism
 and M

atrix M
ultiply

202



Matrix Multiply

nAssembly code:
1 vmovapd (%r11),%ymm4                # Load 4 elements of C into %ymm4

2 mov %rbx,%rax # register %rax = %rbx

3 xor %ecx,%ecx                       # register %ecx = 0

4 vmovapd 0x20(%r11),%ymm3            # Load 4 elements of C into %ymm3

5 vmovapd 0x40(%r11),%ymm2            # Load 4 elements of C into %ymm2

6 vmovapd 0x60(%r11),%ymm1            # Load 4 elements of C into %ymm1

7 vbroadcastsd (%rcx,%r9,1),%ymm0     # Make 4 copies of B element

8 add $0x8,%rcx # register %rcx = %rcx + 8

9 vmulpd (%rax),%ymm0,%ymm5           # Parallel mul %ymm1,4 A elements

10 vaddpd %ymm5,%ymm4,%ymm4           # Parallel add %ymm5, %ymm4

11 vmulpd 0x20(%rax),%ymm0,%ymm5      # Parallel mul %ymm1,4 A elements

12 vaddpd %ymm5,%ymm3,%ymm3           # Parallel add %ymm5, %ymm3

13 vmulpd 0x40(%rax),%ymm0,%ymm5      # Parallel mul %ymm1,4 A elements

14 vmulpd 0x60(%rax),%ymm0,%ymm0      # Parallel mul %ymm1,4 A elements

15 add %r8,%rax                       # register %rax = %rax + %r8

16 cmp %r10,%rcx                      # compare %r8 to %rax

17 vaddpd %ymm5,%ymm2,%ymm2           # Parallel add %ymm5, %ymm2

18 vaddpd %ymm0,%ymm1,%ymm1           # Parallel add %ymm0, %ymm1

19 jne 68 <dgemm+0x68>                # jump if not %r8 != %rax

20 add $0x1,%esi                      # register % esi = % esi + 1

21 vmovapd %ymm4,(%r11)               # Store %ymm4 into 4 C elements

22 vmovapd %ymm3,0x20(%r11)           # Store %ymm3 into 4 C elements

23 vmovapd %ymm2,0x40(%r11)           # Store %ymm2 into 4 C elements

24 vmovapd %ymm1,0x60(%r11)           # Store %ymm1 into 4 C elements

§4.12 Instruction-Level Parallelism
 and M

atrix M
ultiply
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Performance Impact
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Concluding Remarks

• ISA influences design of datapath and control
• Datapath and control influence design of ISA
• Pipelining improves instruction throughput

using parallelism
– More instructions completed per second
– Latency for each instruction not reduced
• Hazards: structural, data, control
• Multiple issue and dynamic scheduling (ILP)

– Dependencies limit achievable parallelism
– Complexity leads to the power wall

§4.14 C
oncluding R
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Fallacies

• Pipelining is easy (!)
– The basic idea is easy
– The devil is in the details

• e.g., detecting data hazards

• Pipelining is independent of technology
– So why haven’t we always done pipelining?
– More transistors make more advanced techniques feasible
– Pipeline-related ISA design needs to take account of technology 

trends
• e.g., predicated instructions

§4.14 Fallacies and Pitfalls
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Pitfalls

• Poor ISA design can make pipelining harder
– e.g., complex instruction sets (VAX, IA-32)

• Significant overhead to make pipelining work
• IA-32 micro-op approach

– e.g., complex addressing modes
• Register update side effects, memory indirection

– e.g., delayed branches
• Advanced pipelines have long delay slots
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End of Chapter 4
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Sequential Elements

• Register: stores data in a circuit
– Uses a clock signal to determine when to update the stored 

value
– Edge-triggered: update when Clk changes from 0 to 1
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Sequential Elements

• Register with write control
– Only updates on clock edge when write control input is 1
– Used when stored value is required later
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