Chapter 4: The Processor

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan
yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Chapter 4: The Processor

I Lecture
— 4.1 Introduction
— 4.2 Logic Design Conventions
— 4.3 Building a Datapath

* Lecture
— 4.4 A Simple Implementation Scheme
* Lecture

— 4.5 An Overview of Pipelining

— 4.6 Pipelined Datapath and Control
— 4.7 Data Hazards: Forwarding versus Stalling
— 4.8 Control Hazards

—4.C FExconitons

Lecture (Advanced pipeline techniques and real-world CPU examples)
— 4.10 Parallelism via Instructions
— 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
— 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
— 4.15 Concluding Remarks

Introduction

* CPU performance factors

— Instruction count
* Determined by ISA and compiler

— CPI and Cycle time CPU Time
* Determined by CPU hardware
* We will examine two CPU implementations
— A simplified version
— A more realistic and pipelined version
* Simple subset, shows the most aspects
— Memory reference: Id/ 1w, sd/sw
— Arithmetic-logical: add, sub, and, and or
— Condition branch: beq (branch if equal)

_ Instructions | Clock cycles y Seconds
Program Instruction Clock cycle

Instruction Set Architecture: The Interface
Between Hardware and Software

software

IIIIIIIIIIIIIIIIIIIIIIIIIIII
llllllllllllllllllllllllllll

hardware

* The words of a computer
language are called instructions,
and its vocabulary/dictionary is
called an instruction set

— lowest software interface,
assembly level, to the users or to
the compiler writer

Instruction Set Architecture — A
type of machine
A language represents a race

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)

I
1

size_t temp;
temp = v[k]1;
vkl = v[k+1];
vik+l] = temp;

swap:
s11i x6,
add x6,
1d x8,
1d X7,
sd X7,
sd 5,
jalr x0,

Assembler

x11, 3
x10, x6
0(x6)
8(x6)
0(x6)
8(x6)
0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111 4

RISC-V and X86 64 Assembly Example

High-level
language
program
(inC)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

{
size_t temp;
temp = v[k];
vlk] vik+1];
vlk+1] = temp;

Y

I

swap:
s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)

1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

swap(size_t v[]. size_t k) MacBook-Pro-8:exercises yanyh$ gcc —c swap.c

MacBook-Pro-8:exercises yanyh$ objdump -D swap.o

swap.o: file format Mach-0 64-bit x86-64

Disassembly of section __ TEXT,__ text:

_swap:
0 55
1: 48
4: 48
8: 89
b 48
f: 48

13: 8b
16: 89
19: 48
1d: 8b
20: 83
23: 48
26: 8b
29: 48
2d: 48
31: 89
34: 8b
37: 48
3b: 8b
3e: 83
41: 48
44 89
47: 5d
48: c3

89
89
75
8b
63
34
75
8b
75
(of¢)
63
34
8b
63
34
75
8b
4d
cl
63
34

e5
7d
f4
7d
45
87
0
45
f4
01
fe
b8
45
7d
b8
0
45
f4
01
f9
b8

pushq
8

8

T4

8

8

f4

8

popq
retq

%rbp
movq
movq
mov L
movq
movs lq
mov L
mov 1
movq
mov L
addl
movs lq
mov L
movq
movs lq
mov L
mov 1
movq
mov L
addl
movs lq
mov L
%rbp

%rsp, S%rbp

%rdi, —-8(%rbp)
%esi, —12(%rbp)
—-8(%rbp), %rdi
-12(%rbp), %rax
%rdi,%rax,4), %esi
%esi, —16(%rbp)
—-8(%rbp), %rax
-12(%rbp), %esi

$1, %esi

%esi, %rdi
%rax,%srdi,4), %esi
-8(%rbp), %rax
-12(%rbp), %rdi
%esi, (%rax,%srdi,4)
-16(%rbp), %esi
—-8(%rbp), %rax
-12(%rbp), %ecx

$1, %ecx

%ecx, S%rdi

%esi, (%rax,%srdi,4)

5

Three Classes of Instructions

1. Arithmetic-logic instructions

— add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions

— |lw and sw: Load/store word

— |d and sd: Load/store doubleword

3. Control transfer instructions (changing

sequence of instruction execution)

— Conditional branch: bne, beq

— Unconditional jump: j (

— Procedure call and return: jal and jr

~rw wm v

Arithmetic-logic and load/store

* Arithmetic-logic instructions

— Three operands, could be either register or immediate (for source
operands only)

e add x10, x5, x6; sub x5, x4, x7; and x10, x5, x7
e addi x10, x5, 10;

* Load and store (L/S) instructions: Load data from memory to
register and store data from register to memory

— Remember the way of specifying memory address (base+offset)

— 1d x9, 64(x22) // load doubleword
sd x9, 96(x22) // store doubleword

* With these two classes instructions, you can implement the
following high-level code, and different ways of combining them
-f=0+h) -0+ 7);
— A[12] = h + A[8];
— For L/S: Left-value (of =) to Store, Right-value of (=) to Load

Load and Store Operations

Format: 1d rd, offset(rsl)
Example: 1d x9, 64(x22) // load doubleword to x9

* |d: load a doubleword from a memory location whose address is
specified as rs1+offset (base+offset, x22+64) into register rd (x9)
— Base should be stored in an register, offset MUST be a constant number

— Address is specified similar to array element, e.g. A[8], for |d, the address is
offset(base), e.g. 64(x22)

Format: sd rs2, offset(rsl)
Example: sd x9, 96(x22) // store a doubleword

* sd: store a doubleword from register rs2 (x9 in the example) to a
memory location whose address is specified as rs1+offset(base+offset,
x22+96). Offset MUST be a constant number.

* Load and store are the ONLY two instructions that access memory
* |w:load a word from memory location to a register
* sw: store a word from a register to a memory location

Memory Operand Example

* Ccode:
double A[N]; //double si1ze 1s 8 bytes

A[12] = h + A[8];
— hin x21, base address of A in x22

°int a[6];

* Compiled RISC-V code:
- |ndeX 8 reqUireS OffSEt Of 64 ® aisthe name of the array’s base address
— A[8] right-val, A[12]: left-val ~ %% gali]: (char*)a + i * sizeof(int)

1d x9, 64(x22) // load doubleword
add x9, x21, x9

sd x9, I/ / store doubleword

Conditional Branch

Branch to the labeled instruction if a condition is true, otherwise continue

* beq rsl, rs2, L1
— if (rs1 ==rs2, i.e. true) branch to instruction labeled L1 (branch target);
— else continue the following instruction

beq x1, x2, labell

beq x1, x2, labell

. False | ‘
add x5, x6, x7 True add x5, x6, x7 True
addi ... [addi ...

— labell: sub x5, x6, x7
labell: sub x5, x6, x7

* bne rsl, rs2, L1
— if (rs1 !=rs2) branch to instruction labeled L1 (branch target);
— else continue the following instruction

* J: unconditional jump (not an instruction)
— beq x0, x0, L1

10

Translating If Statements 1/2

* Ccode: =] 2]
'i'F ('i::j) 'F = g+h; | Else: |
e1se f = g-h; f-g+h el

_m___
Register x19 x20 x2 x23 1 =

* Compiled RISC-V code:

bne x22, x23, Else //vranchifnotequal
add x19, x20, x21 //Then path

beg x0, x0, Exit //unconditional
Else: sub x19, x20, x21 //Else path
EX1t:

1. Using bne (reverse of if (==)) to branch to the Else path b.c. we want the code
following the bne to be the code of the Then path

2. We need “beq x0 x0 Exit”, an unconditional jump, to let Then path terminate since 11
CPU executes instruction in the sequence if not branching.

et

Translating Loop Statement

i=0;

for (i=0; i<100; i¥%) { |} }
while (i<100) { I, ¥,

* Do the loop structure first

— Init condition Loop: beq/bge x22, x23, -
— Loop condition (using reverse

relationship for branch instr)

— True path (the loop body) _

— Loop back beq x0, x0, loop
— False path (break the loop) -

* Then translate the loop body

Using bge for (<) to branch to the false/exit path, which breaks the loop

The instruction(s) following bge are for the true path, which are for the loop body.
beq to jumping back to the beginning of the loop

12

Translating Loop Statement: for loop

i=0;

* Ccode:

for (i=0; i<100; i++) ¥
— 1inx22
* RISC-V code:
addi x22, x0, O
11 x23, 100

Loop: bge x22, x23, Exit //beq works

Eeq xg, xg, Loop
Exit: ..

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop 13

Instruction and Data (1/2)

* Are all numbers stored as binary format in memory

— It is up to the CPU on how to interpret and do with them
2s-Complement Signed Integers

s e &t : 0000 0000 0000 0000 0000 0000 0000, = 0,
Bit311is sIgn bit 0000 0000 0000 0000 0000 0000 0001, = 1.
— 1 for negative numbers 0000 0000 0000 0000 0000 0000 0010, = 2,

— 0 for non-negative numbers 1111 1111 1111 1111 1111 1111 1101, = 2,147,483,645,,
1111 1111 1111 1111 1111 1111 1110, = 2,147,483,646,,,
1111 1111 1111 1111 1111 1111 1111, = 2,147,483,647.

0000 0000 0000 0000 0000 0000 0000, = -2,147,483,648,_

0000 0000 0000 0000 0000 0000 0001, = -2,147,483,647,

0000 0000 0000 0000 0000 0000 0010, = -2,147,483,646,_,

37 53 5 69 E | 85

38 & 54 6 70 F 86

39 55 7 71 G 87

40 (56 8 72 H 88

41) 57 9 73 I 89

42 58 . 74 J 90

43 + 59 75 K 91

44 60 76 L 92

45 61 = F i M 93

46 62 78 N 94

a1 |/ | e | 2 79 0 95

FIGURE 2.15

sl=IN<IxX|SE|<|/Cl=0 DO|D

96
97

o8 |
99

| 100 |

101
102

| 103 |

104

[105 |

106
107 |
108 |
109

110 |

[111 |

aljlo oo

- T~ ®

= [~

=2 | -
=}

0

112

113 |

114

115 |

116

117 |
118 |
119 |
120 |

[121

ASCII representation of characters.

* Each instruction is encoded as 32-bit numbers

122 |

123

124 |

125

126 |
127 |

~ Nw | % | E <« C|l~n|~|0|D

DEL

14

Instruction and Data (2/2)

* Are all numbers stored as binary format in memory
— It is up to the CPU on how to interpret and do with them

* Each byte/word has its memory address

< EE——
Edit .m > Coproc 1 Coproc 0

Name Number Value
Text Segment Labels $zero 0 0x00000000
kpt Address ode Basic Source Label Address A $at 1 0x00000000
0x00400000 0x24080010 addiu $8,$0,0x00000010 33: i $t0, 16 # $t0 = numb... row-major.asm $v0 2 0x00000000
0x00400004f 0x24090010 addiu $9,$0,0x00000010 34: i $t1, 16 # $t1 = numb... loop 0x00400014 $v1 3 0x00000000
0x004000088 0x00008021 addu $16,$0,$0 B85 move $s0, $zero # $s0 = row ... 0x10010000 $ad 4 0x00000000
0x0040000cl| 0x00008821 addu $17,$0,$0 36: move $s1, $zero # $s1 = colu... $al 5 0x00000000
0x00400010f 0x00005021 addu $10, $0,$0 37: move $t2, $zero # $t2 = the ... $a2 6 0x00000000
0x00400014f 0x02090018 mult $16,$9 41: loop: mult $s0, $t1 # $S2 = row ... $a3 7 0x00000000
0x00400018§ 0x00009012 mflo $18 42: mflo $s2 # move multi... $t0 8 0x00000000
0x0040001cll 0x02519020 add $18,$18,$17 43: add $s2, $s2, $s1 # $s2 += col... $t1 9 0x00000000
0x00400020f§ 0x00129080 s11 $18,$18,0x00000002 44: sll $s2, $s2, 2 # $s2 x= 4 (... $t2 10 0x00000000
0x00400024f 0x3c011001 lui $1,0x00001001 45: sw $t2, data($s2) # store the ... $t3 11 0x00000000
0x00400028) 0x00320821 addu $1,$1,$18 $t4 12 0x00000000
0x0040002cl| 0xac2a0000 sw $10.0x00000000 ($1) v Data v Text $t5 13 0x00000000
$t6 14 0x00000000
$t7 15 0x00000000
$s0 16 0x00000000
Data Segment $s1 17 0x00000000
ddress \Vllue (+0) Value (+4) Value (+8) Value (+c¢) Value (+10) Value (+14) Value (+18) Value (+1c) $s2 18 0x00000000
0x10010000 0x 0x 0x 0x 0x 0x 0x 0x $s3 19 0x00000000
0x10010020 0x 0x 0x 0x 0x 0x 0x 0x $s4 20 0x00000000
0x10010040 0x 0x 0x 0x 0x 0x 0x 0x $s5 21 0x00000000
0x10010060 0x 0x 0x 0x 0x 0x 0x 0x $s6 %) 0x00000000
0x10010080 ox ox 0x ox 0x ox 0x 0x $s7 23 0x00000000
0x100100a0 0x Ex 0x 0x gx 0x gx 0x $t8 24 0x00000000
0x100100c0 ox ox 0x ox 0x ox o ox $t9 25 0x00000000
0x100100e0 0x gx gx gx gx 0x ox 2 $ko 26 0x00000000
DOODII0 | V000000 DODI0N00 VA0 D000 DOD00D00 DxO0D0000 1000000 OxD00DOON® $k1 27 0x00000000

15

R-Format Encoding for Arithmetic-Logic

Instructions
add x9,x20, (add rd, rsl, rs2)
- rs2 - funct3 - opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
x20, X9 add

[0000000 | 10101 [10100 | o000 | 01001 | 0110011

0000 0001 0101 1010 0000 0100 1011 001140
015A04B3 6

5 bits for rd, rs1 and rs2 because we have 32 registers,

thus only needs 5 bit to address a register

16

RISC-V I-Format Encoding for Instructions That Has
Immediate as one of the Operand

* |-Format: The second source operand is an Immediate, the first
source operand is register, destination operand is register.

* Immediate arithmetic/logic, and load instructions (NOT store
instruction)
— addi x22, x22, 4; Format: addi rd, rsl, #immediate
— 1d x9, 64(x22); Format: 1d|lw, rd, #immediate(rsl)
— rsl: source or base address register number

— immediate: constant operand, or offset added to base address
e 2s-complement, sign extended

immediate rs1 funct3 rd opcode
12 bits 5bits 3 bits 5 bits 7 bits

— NOT for store: because destination for store is the memory location (not a register),
thus no rd for store.

17

RISC-V S-Format Encoding for Just Store

* S-Format: instructions that use two source register operands and
NO destination operand register (rd), only store instruction

* Format: sd|sw, rs2, #immediate(rsl)

imm[11:5] rs2 rs1 funct3 | imm[4:0] | opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

* Different immediate format for store instructions
— sd x9, 96(x22);

— rsl: base address register number (x22)
— rs2:source operand register number (x9), which provide the value to be
stored to memory

— immediate: offset added to base address
e Split so that rs1 and rs2 fields always in the same place as for R- or I-Format

18

SB-Format Encoding for Branch Instructions

® Branch instructions specify
— Opcode, two registers, target address

* Most branch targets are near branch

— Forward or backward

* SB-Format instructions: beq x8, x9, 4

+

imm
[10:5]

rs2

rsi

funct3

imm
[4:1]

opcode

|
imm[12]

* PC-relative addressing
— Branch target address is encoded as the offset off the the address of

the branch instruction itself
— Target address = PC (Branch address) + immediate X 2

imm[11]

19

Branch Target Address is Encoded as offset off the
branch address

®* Ccode:
False True
while (saveli] == k) i += 1; S ‘

| imm imm
— iinx22, kin x24 Exit - ITI gos | rs2 | rs1 | funct3| g ITI opcode
— address of save in x25 imm[12] imm[11]
* RISC-V code: (save[i] is to be read/loaded) Address Instruction

Loop: s11i x10 ’ X272 , 3 //XlO has q*& 80000 | 0000000 00011 10110| 001 01010| 0010011
add X10 , xX10 , X25 //base+offset 80004 | 0000000 | 11001 | 01010| 000| 01010 | 0110011
1d x9, O (x]_O)/[n ewbase 1n X10 sooos | 0000000| 00000 01010| 011| 01001 | 0000011
bne x9 y x24 , EX1t //fa1 se 80012 |H0000000 | 11000 | 01001 | 001 |00 | 1100011

addl x22, X22, 1 //true,the Toop body,i=i+1 80016 |10000000| 00001] 10110] 000 | 10110] 0010011

beq X ’ XO! Loop 80020 [FLLLLLTL | 00000 | 00000 | 000 [FOLTO1 | 1100011

ExXit: ..

* The Exit offset of the bne is encoded as 6 (..0110)
— Offsetis 6*2 = 12 bytes, i.e. 3 instr forward
— Exit’s address = bne’s address (8012) + 12 = 80024 (Exit)
* The Loop offset of the beq is encoded as -10(..110110)
— Offset is -10*2 =-20 bytes, i.e. 5 instr backward
— Loop’s address = beq’s address (80020) + -20 = 80000 (Loop)

20

Components of a Computer

®* Program instructions and data are all stored in memory
— Instruction need to be loaded from memory in order to be executed
* Processor does this automatically, thus no instruction needed

* Program counter (PC): a register that stores the address of the
execution the process is executing

— Data need to be loaded from memory to register in order to be
processed: load and store instructions

Processor Memory P Input
Control Logic Read/Write .
v 4 Program
Datapath
| Program Counter (PC) | Address q —
— Bytes
——— Registers———
Write Data
Read Data Data
(ALU) | Output
| 21

Processor-Memory Interface I/O-Memory Interfaces

Instruction Execution

O0xO0FFE1230: add x6, x12, x13
OxOFFE1234: Iw x6, 24(x12)
O0xO0FFE1238: sw x13, 24(x12)
0x0FFE123C: beq x12, x13, offset

Processor fetches an instruction word from instruction memory

Processor

Control Logic

Read/Write

Memory

Input

v 4

Datapath

[Program Counter (PC)

——— Registers——

Address

Write Data

Arithmetic & Logic Unit

Read Data

Processor-Memory Interface

Program

— Bytes]

Data

Output

=———

PC — register to store address to access instruction memory to fetch instruction

The instruction word is decoded to know the source operands (register numbers), and
then registers are read to have source operand values ready

Register numbers — register file, read registers (rs1 and rs2)

* x12 and x13 for add; x12 for Iw, x12 and x13 for sw, x12 and x13 for beq

Use ALU to calculate

Depending on instruction class
* Arithmetic result: [x12] + [x13]
* Memory address for load/store: 24+[x12], add operation

* Branch condition: x12 ?= x13 =»[x12]-[x13] and check result is 0 or not
* Branch target address: PC « target address or PC + 4: pc = [pc]+offset*2 if branch is taken

LW | SW: access data memory:
load from mem[32+[x12]]
Store [x13] to mem[32+[x12]]

Write result to register
Arithmetic (add): write result back to the register file x6
Load: write to register x6

1/0-Memory Interfaces

ALU

b —»]

> ALU

operation

|

Zero
Result

Overflow

CarryOut

CPU Overview

Instruction Execution

Add

Y

A

Y

PC (o>

Address

Instruction
memory

Instruction

0x0FFE1230: add x6, x12, x13
OxOFFE1234: Iw x6, 24(x12)
OxO0FFE1238: sw x13, 24(x12)

Processor

Control Logic

Datapath

Arithmetic & Logic Unit:

Read/Write

Address

Write Data

Read Data

0xOFFE123C: beq x12, x13, offset
Processor fetches an instruction word from instruction memory

Processor-Memory Interface 1/0-Memory Interfaces

PC — register to store address to access instruction memory to fetch instruction

The instruction word is decoded to know the source operands (register numbers), and
then registers are read to have source operand values ready
— Register numbers — register file, read registers (rs1 and rs2)

* x12 and x13 for add; x12 for Iw, x12 and x13 for sw, x12 and x13 for beq

Use ALU to calculate

— Depending on instruction class

Arithmetic result: [x12] + [x13]

¢ Memory address for load/store: 24+[x12], add operation
¢ Branch condition: x12 ?= x13 =»[x12]-[x13] and check result is 0 or not
Branch target address: PC «— target address or PC + 4: pc = [pc]+offset*2 if branch is taken

LW |SW: access data memory:

— load from mem[32+[x12]]

— Store [x13] to mem[32+[x12]]

Write result to register

— Arithmetic (add): write result back to the register file x6

o Add — Load: write to register x6

L \

Data

Register #

Registers ALU Address

Register # Data |

o> Register # 1 memory
» Data

ALU operation

Zero
Result
Overflow

CarryOut

23

Multiplexers

* Can’tjust join wires together

A
— Use multiplexers ” c
[)
ty \ s S
> Add

4 —»

Textbook A.3

Add /
>
N Y%
Data
Register #
> PC [Address Instruction { Registers Address
Register #
Instruction — ‘ m:;t:
memory > Register # i
» Data

Full CPU with Data and Control Path (Wires)

ranc

4 —>

M |-
u
)

Add

Y

\/

Add

A

>

Instruction Execution

Address

Instruction

Instruction
memory

Data

Register #
Registers
Register #

Register # Regwrite

<
<

CXCZ

ALU operation

0x0FFE1230: add x1, x2, x3
0x0FFE1234: Iw|sw x1, 32(x2)
0x0FFE1238: beq x1, x2, offset

o

woneh

* Processor loads an instruction word from instruction memory
— PC — register to store address to access instruction memory to fetch instruction
* The instruction word is decoded so source operands (register numbers) are
know, and then registers are read to have source operand values ready

— Register numbers — register file, read registers

+ x2 and x3 for add; x2 and x1 for Iw|sw, x1 and x2 for beq

* Use ALU to calculate
— Depending on instruction class
+ Arithmetic result: x2 + x3
* Memory address for load/store: 32+x2

« Branch condition: x1 ?= x2 Px1-x2 and check result is 0 o not
* LW|SW: access data memory: load/store from/to x1

Write result to register

— Arithmetic (add): write result (x1) back to the register file

~ Load: write x1 to register

Branch: PC « target address or PC + 4: pc = pc+offset if branch is taken

ALU

[

Y

Zero

MemWrite

Address

Data

Data
memory

MemRead

Control

25

Logic Design Basics

* Information encoded in binary
— Low voltage =0, High voltage = 1
— One wire per bit
— Multi-bit data encoded on multi-wire buses

* Combinational element
— Operate on data
— OQOutput is a function of input

* State (sequential) elements
— Store information

26

Combinational Elements

" AND-gate = Adder A U Ly
— Y=A&B - Y=A+B .

A_
B—}Y

= Arithmetic/Logic Unit

= Multiplexer = Y=F(A, B)
—_ . OpSelect
s Y=S?711:10 - Add, Sub, ..
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...
0 (M s Decoder
|1 — u Y A —>
X A g —> 8(1) >ALU —> Result
3 Sel " W § 5 —» L » Zero?
Ao, S L5 Ona /
Al — 9]
¢ | Mux

AT 27

Clocking Methodology

* Combinational logic transforms data during clock cycles
— Between clock edges
— Input from state elements, output to state element
— Longest delay determines clock period

\

State State
element Combinational logic element
1 2 > State Combinational logic
element

Clock cycle —

Register Files

P

En

Dy

l

%

Clk ;Pﬂ: ;}ff :>ff * ~2ff
Reads are combinational QD @& & G
— Canread in any cycle and for multiple reads Pl s
. number ea
— Only 2 register source operands needed Readre;ister dam |
number 2
—— Register file Read
T "|register data 2
Write
data Write

1

* (Calculate the number of input/output wires of the register file
— Read register 1, Read register 2 and Write register each needs 5 bits

(5 wires) since we have 32 32-bit registers

— Read Data 1, Read Data 2 and Write Data each has 32 bits

— Write needs one wire (one bit each).

29

A Simple Memory Model

WriteEnable
Cllock l
Address ——
RAM —— ReadData

WriteData ———

Reads and writes are always comp

eted in one cycle

Read can be done any time (i.e. combinational)

Write is performed at the rising clock edge

— ifitis enabled

The number of wires for RAM (Random Access Memory)

— Address has 32 bits

— WriteData and ReadData each has 32 bits

— WE and Clock each needs one wire

30

Building a Datapath

* Datapath
— Elements/wires that process data and addresses in the CPU
» Registers, ALUs, mux’s, memories, ...

* We will build a RISC-V datapath incrementally
— Refining the overview design

<

4 > \
{2
|—> Data
Register #
= PC [#>| Address Instruction { Registers Address
_ Register # Data
Instruction : memo
memory ¢+ Register # T i
» Data 31

Instruction Fetch
0xOFFE1230: add x6, x12, x13
0xOFFE1234: Iw x6, 24(x12)
OxO0FFE1238: sw x13, 24(x12)
0xOFFE123C: beq x12, x13, offset

32-bit register

4 \
PC Read Increment by 4 for
address next instruction
Instruction —
Instruction
memory

32

R-Format Instructions

, Ox0FFE1230: add x6, x12, x13
* Read two register operands ;5 oFFE1234: Iw x6, 24(x12)

— x12 and x13 0xOFFE1238: sw x13, 24(x12)
* Perform arithmetic/logical ops 0XOFFE123C: beq x12, x13, offset

— [x12] + [x13], ALU operation is +

* Write register result
— x6 €< [x12] + [x13], RegWrite is on

.
2 | Read ALU operation
register 1 Read)
Register) 5 |Read data 1
numbers ~ | register 2
5 |write Registers ¢ Data ALU ALy
e result
L register Read
: data 2
oua { —{B :
RegWrite

a. Reqisters b. ALU 33

R-Type Datapath

= R EeeE] O0xOFFE1230: add x6, x12, x13
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits OXOFFE1234: Iw x6, 24(x1 2)

x13 x12 x6 add 0xOFFE1238: sw x13, 24(x12)
O0xO0FFE123C: beq x12, x13, offse
12 Read 4adA(lU operation
register 1 Read [x12] ‘ MemWrite
13 | Read data 1 ~ MemigReg
register 2 . ALUSrc R ero
6 Write Registers Read [x13] I'?SIIJLd: Address I:;eaig 1
register data 2 I\‘f
X
Write 0
data Writ Data
RegWrite I dartlae memory
32 | tmm 64 MemRead
Yl Gen

34

4 ALU operation

Load/Store Instructions ﬂ

OxO0FFE1230: add x6, x12, x1

* Fetch source register operands

_ Load: x12 0xOFFE1234: Iw x6, 24(x12)
— Store: x12 and x13 OxO0FFE1238: sw x13, 24(x12)
* Calculate address using 12-bit 0xOFFE123C: beq x12, x13, offs

signed offset [omrite

- 24 + [X12] Address Read
. data
— Use ALU, but sign-extend offset 32 64
— ALU operation is + e memory
" |data

* Load: Read memory and

update register

— x6 € MEM(24+[x12])
— MemRead signal is on Figure 4.8. Imm Gen: generate 32- or 64-bit

o . . : immediate value (depending on whether we design
Store: Write register va lue t?Z—bit or 64-bit machine) from an instruction word.

‘ MemRead

a. Data memory unit b. Immediate generation unit

memory * Select the 12-bit from the instruction word and
— [x3] 2 MEM(24+[x12]) sign-extended to 32- or 64-bit.
— MemWrite is on e Used for for I-, S- and SB-format (I-format

ALU, load, store, and beq) 35

Immediate Generator

* Figure 4.8. Imm Gen: generate 32- or 64-bit immediate value
(depending on whether we design 32-bit or 64-bit machine)
from an instruction word.

e Select the 12-bit from the instruction word and sign-extended to
32- or 64-bit.

e Used for for I-, S- and SB-format (I-format ALU, load, store, and
beq)

* Elaboration on Imm generation: - -
e Last paragraph of 4.3, page 251

b. Immediate generation unit

36

Load Datapath

OxO0FFE1230: add x6, x12, x13

immediate rs1 funct3 rd opcode
12 bits 5bits 3bits 5bits 7bits OxOFFE1234: Iw x6, 24(x12)
24 x12 x6 load OxO0FFE1238: sw x13, 24(x12)
0xO0FFE123C: beq x12, x13, offset
add
12 Eae?sier 1 ALU operation
9 Read ‘ MemWrite
Read data 1 MemjgReg
ion register 2 . ALUSrc
6 | \Write Registers theag . Address F;e;: 1
register awa I\L,II
X
Write 0
data . Data
RegWrite I g \(;\gtlge memory
4
32 . 64 i MemRead

37

Store Datapath

imm[11:5] rs2 rs1 funct3 | imm[4:0] | opcode
7 bits 5 bits 5bits 3 bits 5 bits 7 bits
32 x1I x2 store
x12| Read
register 1 Read
x13| Read data 1
register 2 ALUSrc

Write

Write
data

register

Registers ro,4
data 2

IW

RegWrite ‘

32

24

OxO0FFE1230: add x6, x12, x13
O0xOFFE1234: Ilw x6, 24(x12)
OxOFFE1238: sw x13, 24(x12)

0xOFFE123C: beq x12, x13, offset

add
ALU operation

[x13]

MemtoReg

| MemWrite
Read
Address (1
data M
u
X
>0
_ Data
Write memory
data
MemRead

38

Andi Datapath

immediate rs1 | funct3 rd opcode Andi x6, x12, 25
12 bits 5bits 3 bits 5 bits 7 bits
25 x12 x6 andi
and
x12 Rer?:dt 1 4 JJALU operation
register 12
9 thea? [x12] MemWrite
ata
Regd Ze MemioReg
‘ ion register 2 ALUSrc AL
<6 . Registers p, 4] U ALu Address Read |
Write data 2 resul data
register
Write
data Writ Data
. M€ memo
Inst RegWrite ' data i
Word 25
32 64 MemRead

39

Branch Instructions

O0xO0FFE1230: add x6, x12, x13
OxOFFE1234: Iw x6, 24(x12)

1. Calculate target address gxgEEE:zgg :‘” XE’ 2:'8‘12%
(pc + offset * 2) = : beq x12, x13, offset

- Shift IEft 1 places PC from instruction datapath —
¢ Offset * 2 Add Sum Branch

— Add to PC q o
2. Branch condition:

Read | ALU operation

Compare operands % e [Read :
— Use ALU, subtract ([x12] - register 2 b

ister ALU Zero ntr :
[x13]) and check Zero output Wit Registers control logic

register Read
data 2

* Read register operands
— x12 and x13

Write
* Target address calculation e
and branch condition check
can be performed at the o
same time

40

Beq Datapath

: funct3 | 4 : opcode
imm[12] imm([11]
offset x13 beq
Xl 4 Read ALUS
register 1 Read x12
’. Read data 1
Instruction register 2
Regist
Write egisters g
Instruction register data 2
Write

OxO0FFE1230: add x6, x12, x13

OxOFFE1234: Iw x6, 24(x12)
OxOFFE1238: sw x13, 24(x12)

O0xOFFE123C: beq x12, x13, offset

RegWrite |

offset
64

MemRead

MemWrite

MemtoReg

Branch target address is PC + Imm * 2 (Slide #20)

41

Full Datapath

0x0FFE1230: add x6, x12, x13
OxOFFE1234: Iw x6, 24(x12)
OxOFFE1238: sw x13, 24(x12)

Y

PCSrC/L

Ry

PC

Read
address

Instruction

Instruction

memory

0xOFFE123C: beq x12, x13, offs¢

M
> ur—
X
Sum
>Add _/
Re?dt 1 ALUSrc 4] ALU operation
register thea<11 | > MemWrite
Regd ata MemtoReg
register 2
Registers ALU
Write 2 Read re':AsLullJt Address Rdeaig gt
register data 2 u
Write X
data
_| write Data
RegWrite " |data memory
32 64 MemRead
_| Imm
—t
Gen

42

Full Datapath - 0xOFFE1230: add x6, x12, x13
0XOFFE1234: Iw x6, 24(x12)

Study Goals 0XOFFE1238: sw x13, 24(x12)

* Know what each component Ox0FFE123C: beq x12, x13, offset
does

— PC, two adders, IM, Registers,
Mux, ALU, DM, Imm-Gen

* Know what each line does and

Add Sum

their width —
— Data path =] x

— Control path

® Given an instruction, mark the +»Read R
lines that the inst uses -
nstruction Write Registers go.q

address
- Ad d/a N d i, EtC Instruction register data 2

memony Write

- IW a nd SW data ‘ Write Data

RegWrite‘ "| data memory
— Beq 32 m 64 MemRead
Imm

® Given a control signal, know
what instructions assert it

— RegWrite, MemRead,
MemWrite, ALUSrc, etc 43

MemWrite
MemtoReg

Read data 1

register 2

d

Address Read —>
data

Chapter 4: The Processor

* Lecture
— 4.1 Introduction
— 4.2 Logic Design Conventions
— 4.3 Building a Datapath

J@ Lecture
— 4.4 A Simple Implementation Scheme
* Lecture

— 4.5 An Overview of Pipelining

— 4.6 Pipelined Datapath and Control
— 4.7 Data Hazards: Forwarding versus Stalling
— 4.8 Control Hazards

—4.C FExconitons

* Lecture (Advanced pipeline techniques and real-world CPU examples)
— 4.10 Parallelism via Instructions
— 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
— 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
— 4.15 Concluding Remarks

44

How Those Control Signals are Set Correctly:

* 1 4-bit control: ALU operation

* 6 1-bit control: PCSrc, ALUSrc, RegWrite, MemRead,
MemWrite, MemtoReg

M
Add u
X
4 — Add Sum
‘ .
Read ALU operation
Read . 4 P
— PC ro—> address register 1 Read I
Read data 1
Instruction register 2
Write Re9IStrS Read | | Address F;eaat:
Instruction register data 2
memory
| Write o
data]
| Write Data
"| data memory
32 64
»| Imm
Gen
45

ALU Operation Control

Ox0FFE1230: add x6, x12, x13
OxOFFE1234: Iw x6, 24(x12)
OxOFFE1238: sw x13, 24(x12)

O0xO0FFE123C: beq x12, x13, offset
— R-type: Func depends on funct field

* ALU used for

— Load/Store: Func = add
— Branch: Func = subtract

ALU operation

ALU operation control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

* How to generate those control signals
— Based on the opcode, func3 and func? fields of an instruction word

— Encoding Review:

46

R-Format Instruction Encoding (AL Instructions)

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

[Arithmetic instructions}

[Logic instructions }

RV32l Base Instruction Set

0000000 rs2 rsl 000 rd 0110011 | ADD }

| 0100000 rs2 rsl 000 rd 0110011 | SUB
0000000 rs2 rsl 001 rd 0110011 | SLL)
0000000 12 rsl 010 rd 0110011 | SLT
0000000 rs2 rsl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 | XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR

\ 0000000 rs2 rsl 111 rd 0110011 | AND

RV64lI Base Instruction Set (in addition to RV32lI)
0000000 rs2 sl 000 rd 0111011 ADDW]
0100000 rs2 rsl 000 rd 0111011 SUBW
0000000 rs2 rsl 001 rd 0111011 | SLLW
0000000 rs2 rsl 101 rd 0111011 | SRLW
0100000 rs2 rsl 101 rd 0111011 SRAW
RV32M Standard Extension

% 0000001) rsl 000 rd 0110011 | MUL
0000001 rs2 rsl 001 rd 0110011 | MULH
0000001 rs2 rsl 010 rd 0110011 | MULHSU
0000001 rs2 rsl 011 rd 0110011 | MULHU
0000001 rs2 rsl 100 rd 0110011 | DIV

0000001 rs2 rsl 101 rd 0110011 | DIVU /

- rs2 - funct3 rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

47

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

I-Format Instruction Encoding (AL and Load)

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

[Immediate arithmetic/logic]

load instructions]

immediate rs1 funct3 rd opcode
12 bits 5 bits 3 bits 5 bits 7 bits
~ imm[11:0] rs1 000 rd | 0000011 | LB
imm|11:0] rsl 001 rd 0000011 LH
imm[11:0] rsl 010 rd 0000011 | LW
imm|[11:0] rsl 100 rd 0000011 | LBU
imm[11:0) rsl 101 rd 0000011 | LHU
~ imm[11:0] TSl 000 Td 0010011 | ADDI\
imm[11:0] rsl 010 rd 0010011 | SLTI
imm[11:0] rsl 011 rd 0010011 | SLTIU
imm|11:0] rsl 100 rd 0010011 XORI
imm[11:0] rsl 110 rd 0010011 ORI
imm[11:0] rsl 111 rd 0010011 | ANDI
0000000 shamt rsl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 | SRLI
N 0100000 shamt rsl 101 rd 0010011 SR
imm[11:0 sl 110 rd 0000011 | LWU
imm/11:0 rsl 011 rd 0000011 LD
imm[11:0] rsl 000 rd 0011011 | ADDIW |

48

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

S-Format Instruction Encoding (Store)

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

imm[11:5] rs2 rs1 funct3 | imm[4:0] | opcode
7 bits S bits S bits 3 bits S bits 7 bits
imm[11:5] | rs2 rsl 000 imm[4:0] 0100011 | SB)
imm|[11:5] rs2 rsl 001 imm|4:0] 0100011 SH
imm[11:5] | rs2 rsl 010 imm[4:0] 0100011 SW
imm([11:5] | rs2 rsl 011 | imm[4:0] | 0100011 | SD

[Store instructions]

* Same opcode

* Func3 are different for different sizes of data
— Byte, half-word, word, doubleword

49

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

SB-Format Encoding for Branch Instr (e.g. beq)

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

® Branch instructions specify
— Opcode, two registers, target address
— Most branch targets are near branch, Forward or backward

* SB-Format instructions: beq x8, x9, 4

imm

imm

A [10:5] rs2 rs1 funct3 [497 |,| opcode
| |
imm([12] imm[11]

imm|[12]10:5] rs2 rsl 000 | imm[4:1|11] 1100011 BEQ
imm|[12]10:5] rs2 rsl 001 | imm[4:1]|11] 1100011 BNE
imm[12[10:5] rs2 rsl 100 imm[4:1]11] 1100011 BLT
imm|[12]10:5] rs2 rsl 101 | imm|4:1|11] 1100011 BGE
fmm|[12[10:5] rs2 rsl 110 | imm[4:1[11] | 1100011 | BLTU
1mm[12|10 5] rs2 rsl 111 1mm[4 1]11] 1100011 BGEU

— Same opcode func3 are different for different branch instr

* PC-relative addressing

— Branch target address is encoded as the offset off the the address of
the branch instruction itself

— Target address = PC (Branch address) + immediate % 2 50

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Observation

* Opcode are the same for each basic function category
— R-format 32-bit AL
— R-format 64-bit AL
— |-format AL
— Load (I-Format)
— Store (S-Format)
— Branch (SB-Format)

* Func3 and func7 are different for different operations with
each categories

— To determine the ALU action for the instructions
 Add, sub, AND, or, etc.

Four Formats of Instruction

4 ALU operation
—

Zero —
ALU ALy

result

——

* ALU Control input = ALUOp + ALU action
2-bit ALUOp determined by opcode
— ALU action determinded by bit[30, 14-12] of func3/func?

Name Fields
(Bit position) 31:25 24:20 19:15 14:12 11:7
(@) R-type funct7 rs2 rsi funct3 rd opcode
(b) Itype immediate[11:0] rsi funct3 rd opcode
(c) Stype immed[11:5] rs2 rsi funct3 immed[4:0] opcode
) SB-type immed[12,10:5] rsi funct3 | immed[4:1,11] opcode

ALU control
input

Desired
ALU action

Instruction Funct3
opcode ALUOp operation field

ALU control lines m
load doubleword XXXXXXX | XXX add 0010
0000 AND
sd 00 store doubleword XXXXXXX | XXX add 0010 0001 OR
beq 01 branch if equal XXXXXXX | XXX subtract 0110 0010 add
R-type 10 add 0000000 | 000 add 0010 0110 subtract
R-type 10 sub 0100000 | 000 subtract 0110
R-type 10 and 0000000 |111 AND 0000
R-type | 10 or 0000000 |110 OR) 0001

52

The Truth Table for ALU Operation

* Control signals derived from instruction opcode/func3/func?
— Nothing to do with operands (register or immediate)

Instruction Desired ALU control
opcode operation ALU action input

load doubleword XXXXXXX 0010
sd 00 store doubleword XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 | 000 add 0010
R-type 10 sub 0100000 | 000 subtract 0110
R-type 10 and 0000000 | 111 AND 0000
R-type 0000000 0001

ALUOpl ALUOpO I[31] I[30] I[29] I[28] 1[27] 1[26] 1[25] I[14] I[13] I[12] | Operation

0 0) X X X X X X X X X X 0010
X 1 X X X X X X X X X X 0110
1 X 0) o) 0 0) 0 0 0) 0] 0] 0 0010
1 X 0) 1 0 0) 0 0 0] 0] 0 0 0110
1 X 0) 0] 0 0) 0 0 0) 1 1 1 0000
1 X 0) 0] 0 0) 0) 0 0) 1 1 0 0001

* The design of those logics can be done with PLA £3

Name Fields

D d t ad p ad t h W it h (Bit position) 31:25 24:20 19:15 14:12 11:7

co nt rOI (@) R-type funct7 | rs2 | rsl funct3 | rd opcode |
OxO0FFE1230: add X6, X12, x13) Itype immediate[11:0] | rsi funct3| rd opcode |
O0xOFFE1234: Iw x6, 24(x12) © st E——p |f : *| . ppwe | E——— y |
c) S-type imme : rs rs unc immed[4: opcode
O0xOFFE1238: sw x13, 24(x12)
0xO0FFE123C: beq X12, X13! offset (d) SB-type | immed[12,10:5] L rs2 | rsi funct3 ||immed[4:1,11] opcode l
— PCSrc
> >0
M
Add | . u
X
4 — Add Sum 1
RegWrite >
¢
Read .
L |PC &> aRc?c?r%ss register 1 . . MemWrite
Read data 1 "
instruction register 2 ALUSrc Zero MemtoReg
[31-0] . Read ALUA LU Read
Write »(0 Address (1
Instruction register data 2 M result data M
memory u
Write %‘] 6
data Registers Data
data
MemRead

54

Six Control

Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is
written with the value on the Write data input.
Si n a IS ALUSrc The second ALU operand comes The second ALU operand is the sign-extended,
5 from the second register file output | 12 bits of the instruction.
(Read data 2).
PCSrc The PC is replaced by the output of | The PC is replaced by the output of the adder
the adder that computes the value | that computes the branch target.
of PC + 4.

MemRead None. Data memory contents designated by the
address input are put on the Read data
output.

MemWrite None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write | The value fed to the register Write data input

data input comes from the ALU. comes from the data memory.
PCSrc
N (0 OxOFFE1230: add x6, x12, x13
M
v~ OxOFFE1234: lw x6, 24(x12)
4 — Add Sum 1 .
OxOFFE1238: sw x13, 24(x12)
RegWrite >
0x0FFE123C: beq x12, x13, offset
Road Instruction [19-15] Read MemWrit
PC ea ™ register 1 A0S
| address Instruction [2420] | Reaq deiey - |
Instruction ™| register 2 ALUSrc Zero MemtoReg
31-0] [1 . , ALUALU Read
Instru[ctiori Instruction [11-7] \r/ggitster dzteaaczj .- I(\)II result (9| Address deaata —>
memory u ¥
| Write g 0
data Registers Wit Data
> rie
data memory
Instruction [31-0] 32 [1mm 64 ;
Gen MemRead

Instruction [30,14-12]

ALUOp

55

Control Signals

®* 6 1-bit control:
— PCSrc: Mux input to select PC+4 or PC+offset, for beq instruction to select next instruction
— ALUSrc: Mux input to select input from rs2 or immediate, for R/I-type ALU and load instr

— RegWrite: enable signal to enable write to register, for ALU, and load instr (write to
register)

— MemRead: enable signal to enable read from memory, for load instr
— MemWrite: enable signal to enable write to memory, for store instr

— MemtoReg: Mux input to select input to write to register from memory or ALU, for ALU and
load instr

* 1 4-bit control: ALU operation

— 2-bit ALUOp: for enabling certain input (Ainvert, Binvert, etc) of the ALU
— 2-bit ALU Action: AL operation (add. AND. etc) to be performed bv ALU

0 e

Read
Read —> :
| PC*> agdress register 1 theaz1j
ata
< Read

. register 2 zero
Instruction 4 Registers po

4 ALU operation

Read

Write data

Instruction | register data 2
memory

> Address

xc =2

Write
data

Write ~ Data
data memory

Gen ‘ 56

Setting of the 2-Bit ALUOp and the 6 1-bit Controls

* Are completely determined by the instruction opcode

— Check Fiiure 4.18 of the description

R-format 0 0 1 0 0 0 1 0
|d 1 1 1 1 0 0 0 0
sd 1 X 0 0 1 0 0 0
beq 0] X 0 0 0 1 0 1
Effect when deasserted Effect when asserted rE
RegWrite None. The register on the Write register inp
written with the value on the Write de I M
ALUSrc The second ALU operand comes The second ALU operand is the sign- 4 x
from the second register file output | 12 bits of the instruction.
(Read data 2). @
PCSrc The PC is replaced by the output of | The PC is replaced by the output of t _
the adder that computes the value | that computes the branch target. Read ?e‘;?stem roag | | S e operaten _
£PC + 4. address b tea1 MemWrite
O , | Read ata MemtoReg
MemRead None. Data memory contents designated b Instruction reg_'sirezisters Read Read
address input are put on the Read d Instruction | | reqeter data2 Address - gata
output. memory Write
MemWrite None. Data memory contents designated b data Write Data
address input are replaced by the va RegWrite data memory
the Write data input. 2 [, | e pEE=— d|
MemtoReg The value fed to the register Write | The value fed to the register Write de Gen
data input comes from the ALU. comes from the data memory.

5/

Datapath

With

Control

0xOFFE1230: add x1, x2, x3
0xOFFE1234: Iw|sw x1, 32(x2)

0xOFFE1238: beq x1, x2, offset (d) SB-type

(Bit position) 31:25

(a) R-type _| rs2 | rsi
(b) Itype immediate[11:0] [st
(c) S-type immed[11:5] | rs2 | rsi

| immed[12,10:5] rs2 | rsi

-

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [6-0]

Branch

(. —

J T

Add Sum

MemRead

| rd opcode
|
| rd opcode
immed[4:0] opcode
[immed[4:1,11] opcode
Instruction Word:

e Operation: opcode, func3 and
func7) =» control logic

* Operands: register or immediate
operands =¥ data path

MemtoReg

ALUOp
MemWrite

ALUSrc

Read »(0

register data 2 I\LIII

| Write) 1x
"| data Registers

Zero
ALU ALy

result

Read

Address data

Write
data

Data
memory

Oxec=—

Truth Table for the
Control Logic

The “Control” logic derives the 2-bit

ALUOp and other six 1-bit controls,

solely based on Instruction[6-0] bits,
which is the opcode of an instruction

word. [N I P I N
output Signal name

Instruction [6-0]

Branch

MemRead

MemtoReg

Control ALUOp

MemWrite

/ ALUSrc

RegWrite

Inputs

I[0]

Outputs

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

oO/p|IO|O|IO|P|O|O|P|P|O|IOC|F|H|O

o|lo|0oO|O|Pr|P|IPIRPIRPLIPIOOOO|O

oO|lo|0O|pr|O|O|X|P|P|PIOOC|O|Hr|O

PO OIOC|O|X|O|RP | P|IO|IOC|O|RL|F

59

R-, I-, S and SB- 0xO0FFE1230: add x6, x12, x13
Inst ti O0x0FFE1234: Iw x6, 24(x12)
nstruction OXOFFE1238: sw x13, 24(x12)

e Study and test goals: O0xO0FFE123C: beq x12, x13, offset

— Understand the data and control path

— Given an instruction and the processor diagram, specify the
values in EACH datapath and control path

* Exercise in HW4 and test questions

— Datapath flow -
. Add |
* Slide 38-42
iae .
— Control path
\ MemRead
Instruction [6-0
M [60] Control\ lelrJnéoReg
[) P
Sllde 46_60 MemWrite
| ALUSIc
RegWrit;
— I |
Exercise today B N
L-|PC |e>| 62 register 1
address) Read
Instructi 24-20
nstruction [;] Read data 1
Instruction L ¢ register 2
[31-0] .) Read
Instruction [11-7] Write ea
Instruction register data 2
memory
Wity
data Registers
Instruction [31-0] 32 @ 64
n

60

Instruction [30,14-12]

PCnext .
Diagram
- e -©1| with
M
Add Pc > u
x| datapath
4 — BerffS(\e\t*Z 1 d I
IW:Imm, Y BeqTarget an ContrO
BeqOffset '
path labeld
? Branch |
\ MemRead
Instruction [6-0] MemtoReg
PCnext >
INS6-0, Opcode | CONtrol FATUOD(2 bits)
MemWrite
PC | ALUSrc
RegWrite
Instruction [19-15] Read
>|PC e RdeC?d ! INS19-13, RS1 g regiSter1 Read | rsipalue, ALUin1
address Instruction [24-20] Reag data S
. INS24-20, RS2 - e?t 2 NL
Instruction register ALU attolk mmemadd MReadData
[31-0] /| Instruction [11-7] | Write Read | R2Yaluefy ALU Addressr\:jeaatg 1
|nstructi0n ,' INS11-7, RD o register dataz M ALUin2 M
memory |
' | Write 1x _—] _ Ox
;, > data Registers ALUOp(EtI (4 bits) . Data
! WriteData o Write
" > data memory
Instruction [31-0]
ALUout
Iw
|
Instruction [30,14-12]
INS30,14-12, Func WriteBackData

0NV B WN B

00NV A WN B

Specifying Values for Each Datapath

Answer sheet: https://passlab.github.io/ITSC3181/HW4/Homework 4 AnswerSheet.xlsx

A B & E F G H | J K L M N (0]
Datapath
Instructions Instruction Fetch (IF) Instruction Decoding and Register Fetch (ID/F)
Address |InstrWord |Instruction Format (R{PC PC+4 IW (Instruct]INS6-0, Opcode[INS19-15, RS1 [INS24-20, RS2 [INS11-7, RD|INS30,14-12, FundRS1Value, ALUin1 |RS2Value |IW:Imm, BeqOffset Al
4194304 0x003100b3 ADD x1,x2,x3 R 4194304 | 4194308|0000000040110011 2 3 1({0,000 4096 X
4194308 0x02012083 LW x1,32(x2) load 4194308 | 4194312|000000100000011 2(x 110,001 4096 |x 32
4194312 0x02112023 SW x1,32(x2) store 4194312 | 4194316(00000010Q0100011 2 1[x 0,001 4096 1024 32
4194316 0x00208a63 beq x1,x2,10 beq 4194316 | 4194320(0000 000071100011 1 2|x 0,000 1024 4096 10
4194320 0x00100193 ADDI x3,x0,1 I 4194320 | 4194324|0000 00000010011 0|x 310,000 0|x 1
A B (& D E F G P Q S T U \% w X
Datapath
Instructions Instruction Fetch (IF) Execution and Branch Target Calculation (EXE) Memory Read/Write Access (MEM) Write Back(WB)
Address |Instr Word [Instruction Format (R{PC PC+4 IW (InstructifALUin2 [ALUOut BeqOffset*2 |BeqTarget |PCNext MemAddress [WriteData MEMReadData | WriteBackData
4194304 0x003100b3 ADD x1,x2,x3 R 4194304 | 41943080000 0000 (2 4098 |x X 4194308 |x X X 4098
4194308 0x02012083 LW x1,32(x2) load 4194308 | 41943120000 0010 (32 4128x X 4194312 4128|x 8 8
4194312 0x02112023 SW x1,32(x2) store 4194312 | 41943160000 0010 (32 4128]x X 4194316 4128 1024 |x X
4194316 0x00208a63 beq x1,x2,10 beq 4194316 | 4194320{00000000¢(| 4096 3072 20| 4194336] 4194320]x X X
4194320 0x00100193 ADDI x3,x0,1 i 4194320 | 41943240000 0000 (1 11x X 4E+07 [x 1
PCnext
Register Num |Value Mem Address|Value
— PC+4 0 0
. 1 1024 1024
Add 2 4096 1028 3
BeOffsat*2 3 2 1032
4 eq stit 4 254 1036
IW:imm, 5 4100 1040
Beqoffset_> P 6 0
7 1
Branch 3 2 2096 0
i | MemRead 9 3 2100 1
PCnext Instruction [6-0] Cont I\ MemtoReg 10 1028 4104 2
INS6-0, Opcode ©Ontrol "ATUOD(bits) 11 2 2108 3
MemWrite 12 4112 4
PC | ALUSrc 13 4116 5
RegWrite 14 4120 6
] 15 4124 7
Read) Instruction [19-15] Read 16 4128 8
L pC [6s-| REA TNS19-15, RST register 1 17 4132 9
address Instruction [24-20] | dead | msy 18
Instruction s INS24-20, Rs2 register 2 :2
[31-0] i | Instruction [11-7] Write Read t';&nag?gdsrs%e;g (1 21
Instruction |; $7ns117, rD register data2 M >
memory |)‘: 23
i 9 ; Write Data 2
W data memory| 56
Instruction [31-0] 32 ® 64 ;;
w Gen /iwimm Autost 29
30
31
Instruction [30,14-12] 6 2
WriteBackData

https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx

Specifying Values for Each Control

Answer sheet: https://passlab.github.io/ITSC3181/HW4/Homework 4 AnswerSheet.xlsx

Address
4194304
4194308
4194312
4194316
4194320
4194324

AananAn

[Instr word

Instruction

0x003100b3 ADD x1,x2,x3
0x02012083 LW x1,32(x2)
0x02112023 SW x1,32(x2)
0x00208a63 beq x1,x2,10
0x00100193 ADDI x3,x0,1
0x10007213 ANDI x4,x0,256

A ff_AAmAan ARKT __a __a

Control Signal
Format (R{Branch [MemRead [MemtoReg |ALUOp(2 bits) |MemWrite ALUSrc RegWrite |ALU Action ALUOpCtl (4 bits) |Zero
R 0 0 0|10 0 0 1|add 0010 0
load 0 1 1{00 0 1 1|add 0010 0
store 0 0 000 1 1 0|add 0010 0
beq 1 0 001 0 0 0|sub 0110 0
L 0 0 010 0 1 1|add 0010 0
.
PCnext
— PC+4
Add Pc
4 —
Branch
| MemRead
PCnext Instruction [6-0] Control MemtoReg
INS6-0, Opcode ontrol AT UOp(z bits)
MemWrite
PC | ALUSrc
RegWrite
Read Instruction [19-15] Read
PCes| 68 QLS EE TS register 1
address . Read
Instruction [24-20
INS24-20, RS2 [] Read data 1
Instruction | | register 2 MEMReadata
= v . , MemAddr
[31-0] i | Instruction [11-7] Write Read 1A ressteaatg 1
Instruction |/ ¥ ins117, ro register data?2 M
memory | X
j Write) 0
data Registers ALUOpGt! (4 bits)
: WriteData
w

@ IW:imm

Instruction [30,14-12]
INS30,14-12, Func

Instruction [31-0]
w

ALU
control

AlUout |

WriteBackData

63

https://passlab.github.io/ITSC3181/HW4/Homework_4_AnswerSheet.xlsx

Homework 4
https://passlab.github.io/ITSC3181/HW4/Homework 4.pdf

* Homework 4
— Work out the datapath and control for I-type AL instruction
e Addi, ANDi

— Fill in the sheet for the datapath and control value for other
instructions

— Pipeline execution diagram (following sections)

0
M
u

4 — & 1
Branch .
Instruction [6-0] |

]
Instruction [19-15] Read
pC s aRgfriss register 1 Reg,
Instruction [24-20
uction [] Read data
register 2

Instruction
[31-0]

d
1
|4
Instruction [11-7] Read
Instruction data 2

memory
b
Instruction [31-0] | 32 @ 64

https://passlab.github.io/ITSC3181/HW4/Homework_4.pdf

Lab 11 and 12 Add | ’\ ?\).g
https://passlab.github.io/ITSC3181/notes/Lab_11 12 SingleCycleCPU.pdf ‘= o Add Sum——={
. Instruction [6-0] o |\\ L\?Ff;;adg
* Create the processor diagram K
RegWrit
M M : truction [19- a I
using Digital e
Read
. . . Instruction | | register 2
— Close to realistic design, but not A R N C
Writ) X
need to make it work T ~
Instru t'on[31-0]H 32 |Gme,:

— We have most components:
* Instr/Data Mem, ALU, Mux, Register, Adder
— We need to add
e PC: a 32-bit register

e Control, ALU control, Imm Gen, and Shift left 1:

— Create fake logics that have the required input and outputs and use them
— Make sure the bitwidth of the input and output are correctly set

e Decoder: to split 32-bit instruction word into instruction[6-0],
instruction[19-15], instruction[24-20], instruction[11-7],
instruction[30], and instruction[14-12],

65

https://passlab.github.io/ITSC3181/notes/Lab_11_12_SingleCycleCPU.pdf

Performance Issues

Longest delay determines clock period
— Critical path: load instruction

— Instruction memory — register file - ALU — data memory —
register file

Not feasible to vary period for different instructions
Violates design principle

— Making the common case fast

We will improve performance by pipelining

66

Chapter 4: The Processor

* Lecture
— 4.1 Introduction
— 4.2 Logic Design Conventions
— 4.3 Building a Datapath

* Lecture
— 4.4 A Simple Implementation Scheme
IW@F” Lecture

— 4.5 An Overview of Pipelining

— 4.6 Pipelined Datapath and Control
— 4.7 Data Hazards: Forwarding versus Stalling
— 4.8 Control Hazards

—4.C FExconitons

* Lecture (Advanced pipeline techniques and real-world CPU examples)
— 4.10 Parallelism via Instructions
— 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
— 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
— 4.15 Concluding Remarks

67

Pipelining Analogy

e AOEEED

°* Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, fold, and put away
— Washer takes 30 minutes
— Dryer takes 30 minutes
— "Folder” takes 30 minutes
— “Putter” takes 30 minutes

* Oneload: 120 minutes

30 minutes

30 minutes

30 minutes

30 minutes

68

Pipelining: Its Natural!

* Pipelined laundry: overlapping execution

= ism improv rforman
Parallelis proves performance « Four loads:

Ti 6 PM 7 8 9 10 11 12 1 2 AM
R e e = Speedup
Task _ =8/3.56=2.3
» B0 _ = Non-stop:
; Bosl_
] .%l = Speedup
Slez =2n/0.5n+1.5=4
° S . = number of stages
Ti 6 PM 7 8 9 10 11 12 1 2 AM
ime —W | | | | |
Task Important to note
order . .
» o=l [Each laundry still takes 120 minutes.
8 - [®E2 [Improvement are for 4 load throughput.
c ..%. = More complicated if stages take different
D ..%. amount of time 69

RISC-V Pipeline

Five stages, one step per stage
1. IF: Instruction Fetch from memory

2. ID: Instruction Decode & register read

3. EX: Execute operation or calculate address
4. MEM: Access memory operand

5. WB: Write result Back to register

Instruction Execution

]

Processor

PC

HO»-|

4
Add
Data
Register #
Address Instruction Registers ALU Address
] Register # Data
Instruction memor
memory Register # v
> Data

* The instruction word is decoded so source operands (register numbers) are

OxOFFE1230: add x1, x2, x3
O0xOFFE1234: Iw|sw x1, 32(x2)
0x0FFE1238: beq x1, x2, offset

Processor loads an instruction word from instruction memory
— PC — register to store address to access instruction memory to fetch instruction

Processor- Memory Interface

know, and then registers are read to have source operand values ready

— Register numbers — register file, read registers

¢ x2 and x3 for add; x2 and x1 for Iw|sw, x1 and x2 for beq

Use ALU to calculate
— Depending on instruction class
e Arithmetic result: x2 + x3
¢ Memory address for load/store: 32+x2, add operation

¢ Branch condition: x1 ?= x2 =»x1-x2 and check result is 0 or not
LW |SW: access data memory: load/store from/to x1
Branch: PC < target address or PC + 4: pc = pc+offset*2 if branch is take™ |

Write result to register

— Arithmetic (add): write result (x1) back to the register file

— Load: write x1 to register

mmmmm

WWWWW

‘‘‘‘‘

data 1

cccccc

Graphical Representation of Instruction Pipeline

. 200 400 600 800
Time T T T T

add x1, x2, x3 IF —': ID >EX MEM

IF: Instruction Fetch from memory
— Box representing instruction memory
— Right-half shade representing usage of IM at the second halfc

ID: Instruction Decode & register read
— Box representing register
— Right-half shade representing usage (read) of Register at the second half of the
cycle
EX: Execute operation or calculate address
— Shade representing usage

MEM: Access memory operand (only for load/store)
— White background representing NOT used by add instruction in this example

WB: Write result Back to register (only for load and AL instructions)
— Box representing register
— Left-half shade representing write to register at the first half of the cycle

71

Classic 5-Stage Pipeline for a RISC

* In each cycle, hardware
Iinitiates a new instruction

and executes some part of

five different instructions:

1. IF: Instruction Fetch from memory

2. ID: Instruction Decode & register read

3. EX: Execute operation or calculate address
4. MEM: Access memory operand

5. WAB: Write result Back to register

One Clock
TPeriod™

= Simple - — — {1 |

Time 2(|)0 4(|)O 6(|)0 8(.)0 1OIOO X
add x1, x2, x3 IF —': ID >EX MEM WB
Clock number
Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB
Instruction i+1 IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB
Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB 72

Pipeline Performance

* Assume time for stages is

— 100ps for register read or write
— 200ps for other stages

* Compare pipelined datapath with single-cycle datapath

Register ALU Data Register
read operation | access write

Load doubleword (200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store doubleword (sd) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, 200 ps 100 ps 200 ps 100 ps 600 ps
and, or)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

73

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution . _ 200 400 600 800 1000 1200 1400 1600 1800 2400ps
order
(in instructions) I I l
Id x1, 100(x4) lnsftgtfr:ion Reg| ALU ag?;zs Reg
Id x2, 200(x4) 800 ps NSO Reg | ALU | D% | Reg
Instruction
Id x3, 400(x4) 800 ps fetch
: : - oo — VS
Pipelined (T,= 200ps) 800 ps
Program
execution Time 200 400 600 800 1000 1200 1400
order ' ' ' I I I |
(in instructions) I l I | I ‘ | I I | ‘ |
Id x1, 100(x4) e eenion Reg| ALU | %% |Reg
Id x2, 200(x4) 200 ps | "Sston Reg| ALU | D% IReg OOPS
Id X3, 400(x4) 200 ps Insft:f;:ion Reg| ALU agféis Reg

200 ps 200 ps 200 ps 200 ps 200 ps

* For large number of instructions, say 1M, the speedup will be
— ~=800ps/200ps = 4 74

Pipeline Speedup

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

* Execute billions instructions, so throughput is what matters.
* Pipelining doesn’t help latency of single instruction
* Potential speedup = number pipeline stages;

Time between instruction i elined

Time between instructions ;;,ejineq =

Number of pipe stages

* Unbalanced lengths of pipeline stages reduces speedup;

75

Pipelining and ISA Design

* RISC ISA designed for pipelining
— All instructions are 32-bits
e Easier to fetch and decode in one cycle
» c.f. x86: 1- to 17-byte instructions

— Few and regular instruction formats
* Can decode and read registers in one step

— Load/store addressing
 Can calculate address in 37 stage, access memory in 4t" stage

— Alignment of memory operands
* Memory access takes only one cycle

76

Hazards

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i+/ IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

Situations that prevent starting the next instruction in the

next cycle

Structure hazards

— Arequired resource is busy

Data hazard

— Need to wait for previous instruction to complete its data

read/write

Control hazard because of branch or jump
— Deciding on control action depends on previous instruction

77

Structure Hazards

Time
|
* Conflict for use of a resource W

Task

— Find a situation in laundry example? order s
e R L
* In RISC-V pipeline if with a single memory | B0
- IF and WB conflict c B0
— Load/store requires mem access D .%.

— Instruction fetch would have to stall for
that cycle] J
* Would cause a pipeline “bubble”

* Hence, pipelined datapaths require L J

> Address Instruction

separate instruction/data memories
— Or separate instruction/data caches

Data
memory

Instruction
memory

Register #

Data

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
LOad or store Instruction i IF ID EX MEM WB

Instruction i+/ IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+3 m IF D EX MEM WB /8
L o

S =+ W0 S H

s oOas QO

One Memory Port->Structural Hazards

Time (clock cycles)

Cycle 1 §Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 '

Ifetch I ,

79

S =+ W0 5 H

One Memory Port/Structural Hazards

Time (clock cycles)
Cycle 1 §Cycle. 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 '

Ifetch I :

S 0O a0

How do you “bubble” the pipe? > No-Op

80

Summary of Structure Hazard

* To address structure hazard, have separate memories for
instructions and data

* However, it will increase cost

— E.g.: pipelining function units or duplicated resources is a high
cost;

T If the structure hazard is rare, it may not be
worth the cost to avoid it.

81

* Aninstruction needs data produced

by a previous instruction gl o=

— Read-After-Write (RAW) data dependency |

add x1, x2, x3
sub x4, x1, x5

Instruction
mmmmm

RN

Cycle 1 éCycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 (

add Xl, X2, X3 Ifetch

Reg

SUb X4’ Xl’ X5 Ifetch .2 DMem

— Sub would read old value of x1 at cycle 3

82

Data Hazards and Solution #1: Interlocking

* Aninstruction needs data produced by a previous instruction
— Read-After-Write (RAW) data dependency

add x1, x2, x3 a
sub x4, x1, x5 # =S} 1@

* Interlock: Hardware detect their dependency, and
— Insert no-op instructions, e.g. “add $0,50,50”, as bubble

— Waste 400: two instructions in between since sub needs to
wait for two stages for add to write the result x1 to register

. 200 400 600 800 1000 1200 1400 1600
Time | T T T T T T >

add x1, x2, x3) _:,D— } |
bubble bubble bubble o) bubble

@ O O O
bubble bubble bubble bubble

© © @ O

sub x4, x1, x5 —E'D_ } 4@5 83

Two cycles delay!

Solution #2: Forwarding (aka Bypassing)

* Use result right after when it is computed instead of waiting for it to be stored
in a register
— add produces the result at the end of its EXE stage

— sub uses the result at the beginning of its EXE stage, which is right after the
cycle for add’s EXE

— Requires extra connections in the datapath

Program

execution _ 200 400 600 800 1000
order Time
(in instructions)
add x1, x2, X3 EB |
sub x4, x1, x5 MEM 4| WB

84

Load-Use Data Hazard

* Load produce the results after the MEM stage
— Sub use the result at the beginning of the EXE stage, which is in
the same cycle as load’s MEM, thus, not possible to forward
* Can’t avoid stalls by forwarding for load-use
— |f value not computed when needed
— Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time . . : . I . .
(in instructions) I

Id x1, 0(x2) IF —E ID SEX—MEM WB | One cycle delay!

bubble bubble bubble bubble bubble
O O O
sub x4, x1, X5 IF _: ID SEX{—{MEM—— WB o

Code Scheduling to Avoid Stalls (Software
Solution)

* Reorder code to avoid use of load result in the next
instruction

* Ccodefora = b + e; c=b + f;

1d x1, 0(x31) 1d x1, 0(x31)

1d (x31
-—>add x3, X1,

sd x3, 24(x31)
1d (x4,)16(x31)

B 2dd x5, x1,(x4)

sd x5, 32(x31) sd x5, 32(x31)

13 cycles 11 cycles

86

To Check Cycles Delayed and How Forward Works
in Different Cases

* In the 5-stage pipeline, check whether the results can be

generated before it is being used

— |If so, forwarding
— If not, stall

* |Load-Use

®* Produce-Store
— sw rs2, offset(rs1)

* sw needs rsl to be ready at the EXE swage

Store Datapath

|im;nt[)j1;51| sriz [5ri1 |fun.ct3|imm[4:0]| opode | 0xOFFE1230: add x1, x2, x3
0x0FFE1234: Iw|sw x1, 32(x2)

2 x1 x " OxOFFE1238: beq x1, x2, offset

add .
4 JJALU operation

32

* sw needs rs2 to be ready at the MEM stage

add x9, x7, x8

sw x10, 32(x9)
2-cycle delay if no forwarding
No delay with forwarding
(Forwarding from EXE to EXE)

add x9, x7, x8
sw x9, 32(x31)

2-cycle delay if no forwarding
No delay with forwarding

(forwarding from EXE to MEM)
87

Control Hazards

* Branch determines flow of control
— Fetching next instruction depends on branch outcome

— Pipeline might fetch incorrect instruction in the next cycle after a
beq instru is fetched

e Still working on ID stage of branch

* In RISC-V pipeline
— Need to compare registers and compute target early in the
pipeline
— Add hardware to do it in ID stage

88

Stall on Branch

* Wait until branch outcome determined before fetching next

Instruction
— One cycle stall (bubble) if branch condition is determined at ID

stage
— Two cycles stall if branch condition is determined at EXE stage

Program
execution . 200 400 600 800 1000 1200 1400
Time | | | | | | |

order
(in instructions)

One cycle delay!

add x4, x5, x6 ~ |"Sricton Reg| ALU a'gj;is Reg
bea 51,5040 el Te] wu | 2o e
'or X7, X8, x9 = 100 Insructlon) Data Reg
pS fetch access o6

Branch Prediction

* Longer pipelines can’t readily determine branch outcome
early
— Stall penalty becomes unacceptable

* Predict outcome of branch
— Only stall if prediction is wrong
* In pipeline
— Can predict branches not taken
— Fetch instruction after branch, with no delay

90

Prediction
correct

Prediction
incorrect

RISC-V with Predict Not Taken

Program
execution
order

(in instructions)

add x4, x5, x6
beq x1, x0, 40

Id x3, 400(x0)

\

Program
execution
order

(in instructions)

add x4, x5, x6

beq x1, x0, 40

Time

Time

200 400 600 800 1000 1200 1400 R
T T T T T T T o
Instruction Data
fetch Reg ALU access Reg
oo eon)regl A | 2% g
200 ps
~— | Instruction Data
200 ps| fetch Reg| ALU access | <9
200 400 600 800 1000 1200 1400
T T T T T T T >
Instruction Data
fetch Reg ALU access Reg
el eggl w222 Jreg
200 ps

—or x7, X8, x9

bubble/(bubble/(bubble/(bubble/(bubble
@ @ @

>
I

A

400 ps

Instruction

fetch

Reg

ALU

Data
access

Reg

91

More-Realistic Branch Prediction

* Static branch prediction
— Based on typical branch behavior

— Example: loop and if-statement branches

* Predict backward branches taken
* Predict forward branches not taken

* Dynamic branch prediction

— Hardware measures actual branch behavior
* e.g., record recent history of each branch

— Assume future behavior will continue the trend
* When wrong, stall while re-fetching, and update history

92

Pipeline Summary

* Pipelining improves performance by increasing instruction
throughput

— Executes multiple instructions in parallel
— Each instruction has the same latency

* Subject to hazards
— Structure, data, control

* Instruction set design affects complexity of pipeline
implementation

93

Pipeline Execution Diagram: Steps

1. Identify RAW dependencies between two instructions that are one after the other or
there is one instruction in between

— AL-Use: 2-cycle delay without forwarding, no delay with forwarding
— Load-Use: 2-cycle delay without forwarding, 1 cycle delay with forwarding

* With forwarding, we can reschedule load to eliminate the 1 cycle delay even with
forwarding

— No need to looking for RAW dependency between instructions that are far from each other
(>=1 instructions in between)

* Thus only check for the two instructions that could be executed one after another or
has one other instruction in between

2. Identify branch instruction
— 1 cycle delay (or two cycles delay) depending on the implementation (question)
3. Pipeline diagrams (4 situations)
— a) No pipeline at all, one cycle per stage, no overlap
— b) Pipeline with no forwarding, 2 cycle delay for AL-USE, Load-USE, beq (EXE outcome)

— ¢) Pipeline with forwarding, 1 cycle delay for Load-use, and 2 cycle-delay for beq

— d) Pipeline with forwarding and load-use rescheduling: reschedule the instruction to
eliminate the 1-cycle delay for load-use

* No any two instructions can be in the same stage in the same cycle
— Structural hazard

94

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

* Base address B and B2 are in register x22 and x23. i is stored in

Using beq (==) for (<)

add x5,x0,1 //i=0 to exit
add x22, x4, -1 //loop bound x22 has M-1

register x5, M is stored in x4.

95

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

®* Base address B and B2 are in register x22 and x23. i is stored in
register x5, M is stored in x4.

Using beq (==) for (<)

1. add x5, x0, 1 to exit
2. add x22, x4, -1

[]
RAW Dependencies
reads the register register | between use
1

beq x5, x22, Exit x5

Instruction that
writes the register
add x5, x0, 1

add x22, x4, -1 beq x5, x22, Exit x22 0
add x7, x22, x6 X6 0
add x7, x22, x6 Iw x9, 0(x7) X7 0
add x7, x22, x6 Iw x10, -4(x7) X7 1
add x9, x10, x9 x9 1 Y
add x9, x10, x9 x10 0 Y
add x9, x10, x9 x10 0 Y
sw x9, 0(x8) x9 1
sw x9, 0(x8) x8 0
beq x5, x22, Exit x5 1

96

1 1 1 1 1 1 1 1 1l 1 1 1 1l 1
Cycles Needed for the whole loop of 1000 iterations| |
a) no 60000 |Each iteration has 12 instructions, 5 cycles to finish each instruction. Thus each iteration needs 12*5 cycles, for total 1000 iterations, it needs 60000 plus the 10 cycles for the very first two instructions.
b) pip 26000 |Each iteration needs 26 cycles, thus 26000 cycles for 1000 iterations. 26006 is the actual number of cycles if we count the starting 2 cycles and the ending 4 cycles.
c) pip! 17000|First iteration takes 16 cycles, other iterations each takes 17 cycles. 17005 is the actual number of cycles if we count the starting 2 cycles and the ending 4 cycles.
d) pip| 15000(First iteration takes 14 cycles, other iterations each takes 15 cycles. 15005 is the actual number of cycles if we count the starting 2 cycles and the endingl I I I I I I I I I

add x7, x22, x6 Iw x9, 0(x7) X7 0
add x7, x22, x6 Iw x10, -4(x7) X7 1
Iw x9, 0(x7) add x9, x10, x9 x9 1 Y
Iw x10, -4(x7) add x9, x10, x9 x10 0 Y
Iw x10, 4(x7 add x9, x10, x9 x10 oyees 0 Y
a) no pipeli 1 2 3 4 |5 7 8 (91011 |12(13|14|15|16 (17 |18 |19 |20 (21|22 |23 |24 (25|26 |27 |28 (29|30|31|32]33
add x5, x0, 1 IF | ID | EX [ME|WB
add x22, x4, -1 IF | ID [EX | ME |WB
LOOP|beq x5, x22, Exit IF | ID | EX [ME [WB
slliw x6, x5, 2 IF | ID [EX | ME |WB
add x7, x22, x6 IF | ID | EX [ME|WB
lw x9, 0(x7) IF | ID [EX | ME |WB
Iw x10, -4(x7) IF | ID | EX
add x9, x10, x9
lw x10, 4(x7)
add x9, x10, x9
start
b) pipelinenoforwarding 1 | 2 | 3 |4 (5|6 |7 |8 |9 (10(11]|12]13|14[15(16|17|18|19[20(21|22)|23|24|25(26|27|28|29|30(31|32]33
add x5, x0, 1 IF | ID | EX [ME [WB
add x22, x4, -1 IF WB
Two cycles delay because RAW hazard from add to beq for x22 LOOP| beq x5, x22, Exit \\&\
Two cycles delay because of beq slliw x6, x5, 2
Two cycles deplay because of RAW hazards from slliw to add for x6 add x7, x22, x6
Two cycles delay because of RAW hazard from add to lw for x7 Ilw x9, 0(x7)
lw x10, -4(x7)
Two cycles delay because Load-Use RAW hazard from Iw to add for x10 [add x9, x10, x9 \
lw x10, 4(x7)
Two cycles delay because Load-Use RAW hazard from lw to add for x10 |add x9, x10, x9 \\\\\\\\\\\\\\‘\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\ &1&\
I | [addx8, x23, x6 \\ \‘v
Two cycles delay because of RAW hazard from add to sw for x8 s:vdx9, 0(x8) \\\\ \\ \\\
addi x5, x5, 1
beq x0, x0, LOOP

Two cycles delay because of beq beq x5, x22, Exit
slliw x6, x5, 2

add x7, x22, x6

lw x9, 0(x7)

I x10, -4(x7) The first iterati

add x9, x10, x9 /////////////////
Iw x10, 4(x7) -

add x9, x10, x9
add x8, x23, x6
sw x9, 0(x8)
addi x5, x5, 1
beq x0, x0, LOOP

.
o s e
-
e
e

second iteration

Cycles Needed for the whole loop of 1000 iterations

J. 70000

1 1 1 1 1 1 1
Cycles Needed for the whole loop of 1000 iterations

a)no

60000 | Each iteration has 12 instructions, 5 cycles to finish each instruction. Thus each iteration needs 12*5 cycles, for total 1000 i soo00

b) pip 26000 |Each iteration needs 26 cycles, thus 26000 cycles for 1000 iterations. 26006 is the actual number of cycles if we count the s’
) pip| 17000 |First iteration takes 16 cycles, other iterations each takes 17 cycles. 17005 is the actual numher of cucles if we count the star sco0
d) pip 15000 |First iteration takes 14 cycles, other iterations each takes 15 cycles. 15005 is the ac' Vertical (Value) Axis g count the stai

40000

83
84
85
86
87
88
89
90
51"
92
03
94
85!
96
a7
98
59
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
1721
122
123
124
125
126
127
128
129
130
ilehl
132
133
134
135
136
137

30000

20000

<)

pipeline with forwar{ 1

13 (14

15

16 (17 | 18

19 (20 | 21 | 22 | 2 000

add x5, x0, 1

3
ID | EX [ME|WB

add x22, x4, -1

IF [ID | EX [ME

LOOP|

beq x5, x22, Exit

Two cycles delay because of beq

slliw x6, x5, 2

NN
\\

add x7, x22, x6

l

Iw x9, 0(x7)

/

load-use hazard, 1

Iw x10, -4(x7)

cycle delay

add x9, x10, x9

load-use hazard, 1

Iw x10, 4(x7)

cycle delay

add x9, x10, x9

add x8, x23, x6

/////

sw x9, 0(x8)

addi x5, x5, 1

beq x0, x0, LOOP

2 cycles delay because ofbeq
2 cycles delay because of beq

beq x5, x22, Exit

WB

N\

L
A AN
AN
N NN
AN AR RN
ALA IR
A\ AR RN
AARIIHTIIIHIITIIAEIAIETEEERORNTANS
I ™ * * £ £ GGG e
111110 NN

NN
\\\\\\\\\\\\\\\\\\\\\ \ \

\\\\\\\\\\\\
e

slliw x6, x5, 2

add x7, x22, x6

N EX | ME[wB

0

and load-use scheduling

a)no pipeline b) pipeline with no forwarding) pipeline with full forwarding ~d) pipeline with full forwarding

N N N N A I

I

—

he second iteration, and the rest ..., 17 cycles

N N N

l

1

WB

lw x9, 0(x7)

lw x10, -4(x7)

add x9, x10, x9

The

first ite

ration, 16 cycles

-
////////////////

\

lw x10, 4(x7)

. __

add x9, x10, x9

. | |

add x8, x23, x6

//

\

sw x9, 0(x8)

. __ __ __ __

second iteration

addi x5, x5, 1

///////////////////////////////////,///////////////////////

beq x0, x0, LOOP

/////////////5///;////////

%\

WB

ME

WB

ME

WB

d)

pipeline with forwar{ 1

13 (14

15

16 (17 | 18

19 (20|21 (22|23 (24|25 (26|27 |28 |29 |30|31|32|33|34

35

36

37

38

39

40

41

42

add x5, x0, 1

ID | EX [ME|WB

add x22, x4, -1

IF [ID | EX [ME

LOOP|

beq x5, x22, Exit

N\

slliw x6, x5, 2

//

add x7, x22, x6

lw x9, 0(x7)

The four instructions are rescheduled

Iw x10, -4(x7)

so we have two loads first and then

Iwx11, 4(x7)

two add, we will need to use one

add x9, x10, x9

register x11 to help on this

add x9, x11, x9

add x8, x23, x6

sw x9, 0(x8)

addi x5, x5, 1

beq x0, x0, LOOP

2 cycles delay because ofbeq
2 cycles delay because of beq

beq x5, x22, Exit

WB

\\‘\\\\§\ X

\\\\\\\\\\\\\\\\
ALLAIMIHIIITIINNNRY
Al A L IIIIIANINS
Ll
Al A AN
ALAMIIIIIIAINNTRTNIRY -
L
AR RTRRE
A AL AT AR TR
1.1

N\
N

//

/

L

L
e
e

///

The second iteration, and the rest ..., 15 cycles

slliw x6, x5, 2

WB

L \§§‘I\\\\\\ NN

add x7, x22, x6

lw x9, 0(x7)

Ilw x10, -4(x7)

The

first ite

ration, 14 cycles

R

N\
\\\\\\\\\\\\\\ N NN

L L

////

L

/

\\\\\\\\\\

lwx11, 4(x7)

add x9, x10, x9

ALA AL I IIIHITITITHIIITIINTRY
AL A I IIITHIIIMaag

add x9, x11, x9

AR
-

id iteration

add x8, x23, x6

B e

PR

Chapter 4: The Processor

* Lecture
— 4.1 Introduction
— 4.2 Logic Design Conventions
— 4.3 Building a Datapath

* Lecture
— 4.4 A Simple Implementation Scheme
* Lecture

— 4.5 An Overview of Pipelining

— 4.6 Pipelined Datapath and Control
— 4.7 Data Hazards: Forwarding versus Stalling
— 4.8 Control Hazards

—4.C FExconitons

* Lecture (Advanced pipeline techniques and real-world CPU examples)
I@™ 4.10 Parallelism via Instructions

— 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines

— 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply

— 4.15 Concluding Remarks

99

Instruction-Level Parallelism (ILP)

* Pipelining: executing multiple instructions in parallel

Clock number

4

5 6

7

8

9

MEM

WB

N
— — Instruction num ber
Instructi ion i

X MEM WB

D

EX MEM WB

* Toincrease |LP e

IF

ID EX MEM WB

EX MEM WB

— Deeper pipeline by having more stages
* Less work per stage = shorter clock cycle

— Multiple issue
* Replicate pipeline stages = multiple pipelines

e Start multiple instructions per clock cycle IF

ID

EX

MEM

WB

ID

EX

MEM

WB

IF
* Performance of Multiple issue I

1

— E.g., 4GHz 2-way multiple-issue -
— IPC (Instruction Per Cycle): 2

 peak CPI=0.5

* Instr/Second: 4*10° * 2 = 8*%10°
— But dependencies reduce this in practice

* Pipeline hazards for single issue happen

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF
IF

ID
ID

EX

EX

MEM
MEM

WB
WB

* Not always have two instruction to be issued per cycle

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

100

Multiple Issue

IF

* Static multiple issue F

ID
ID

EX
EX

MEM
MEM

WB

WB

— Compiler groups instructions to be Jﬁ

issued together .
— Packages them into “issue slots”
— Compiler detects and avoids hazards

°* Dynamic multiple issue
— CPU examines instruction stream and
chooses instructions to issue each cycle
— Compiler can help by reordering
instructions
— CPU resolves hazards using advanced
techniques at runtime

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF
IF

ID
ID

EX

EX

MEM

MEM

WB
WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

IF

ID
ID

EX
EX

MEM| WB
MEM| WB

High-end processors
(desktop, server) use
dynamic multiple issue

101

Speculation

* “Guess” what to do with an instruction
— Start operation as soon as possible

— Check whether guess was right
* |f so, complete the operation
* If not, roll-back and do the right thing

* Common to static and dynamic multiple issue

Program
execution 200 400 600 800 1000 1200 1400
* Examples T S
(in instructions)
add x4, x6,x6 |"gen | |Res| AW | 255 |Reg
— Speculate on branch outcome o] ol w0 2w
. . . Id x3, 400(x0) 200 ps nstruction) | geg| ALU | D22 |Reg

* Roll back if path taken is different

Speculate on load
execution 1, 200 400 600 800 1000 1200 1400

* Roll back if location i dated (i

O aC I Oca |On IS Up a e (in instructions)

add x4,x5,x6 "G |Reg| AW | OER | Reg
beq ><1,><O,40‘ m'”sf‘;‘tf:"" Reg| AU | Do IReg Kill load and
Id x3, 400(x0) S roll-back
'l L—or x7, x8, x9 W‘Insftrijcﬁon‘ ‘Rg‘ ALU ‘ascaetss Reg

102

Compiler/Hardware Speculation

* Compiler can reorder instructions
— e.g., move load before branch
— Can include “fix-up” instructions to recover from incorrect guess

* Move lw to remove load-use cycle delay in RAW hazards
* Schedule delayed slot

* Hardware can look ahead for instructions to execute
— Buffer results until it determines they are actually needed
— Flush buffers on incorrect speculation

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

72 |w $4, 50($7)

40 beq $1, $3, 28 E—‘F_ﬁé’:
| i

[

-
—E}Reg

Pt
Il

[

m

BiigiE
ig

|
[~

s

-
<l
I_

Flush these three
instructions
(Set control
values to 0)

R

A TR 104

Static Multiple Issue

* Compiler groups instructions into “issue packets”
— Group of instructions that can be issued on a single cycle
e 2|PC: ALU/BEQ + LW/SW

— Determined by pipeline resources required

* Think of an issue packet as a very long instruction
— Specifies multiple concurrent operations

— = Very Long Instruction Word (VLIW)

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

105

Scheduling Static Multiple Issue

* Compiler must remove some/all hazards

— Reorder instructions into issue packets

— No dependencies with a packet

— Possibly some dependencies between packets
* Varies between ISAs; compiler must know!

— Pad with nop if necessary

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

106

RISC-V with Static Dual Issue

* Two-issue packets
— One ALU/branch instruction
— One load/store instruction
— 64-bit aligned
 ALU/branch, then load/store
* Pad an unused instruction with nop

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

107

RISC-V with Static Dual Issue

®* Double resources
— 2 set of register R/W ports
— 2 ALUs
* Top for Load/store
* Bottom for AL and BE

‘7 [

g)(x:

Ll s Registers u
1C090000 - . Instruction :: | | ¢ o X
memory I o -
> —>| Write
data
/ Data
Imm ALU |—=] I
| Gen imm memory
N/ Gen
U Address

108
Figure 4.66

Hazards in the Dual-Issue RISC-V

* More instructions executing in parallel

* EX data hazard

— Forwarding avoided stalls with single-issue
— Now can’t use ALU result in load/store in same packet

* ad d X 10) $ S O) $ S 1 ALU or branch instruction IF D | EX | MEM WB

'| o) ad $ S 2 O (X 10) Load or store instruction F | D | Ex | MEM | wB
) ALU or branch instruction IF ID EX MEM
PY 1+ 1 1 Load or store instruction IF ID EX MEM

Split into two packets, effectively a stall ~ peadorsioehstucton A

Load or store instruction IF ID EX

o Loa d - u Se h a Za rd ALU or branch instruction IF ID
Load or store instruction IF ID

— Still one cycle use latency, but now two instructions

* More aggressive scheduling required

109

. for (1=1000;1!=0;1--)
Scheduling Example AL1] += a;

Each element is 8 bytes

* Schedule this for dual-issue RISC-V

Loop: 1c x31, 0(x20) # x31l=array element
add x31, x31, x21 # add scalar 1n x21
SC x31, 0(x20) # store result
addi $20, x20, -8 # decrement pointer

blt x22, x20, Loop # compare to loop Iimit
branch 1f x20 > x22

- ALU or branch instruction Data transfer instruction m

Loop: o _~1d x31,0(x20) 1
addi x20,x20,-8 NN~ 2

add x31,x31,x21€___ 3

b1t x22,x20,Loop T T—sd x31,8(x20) 4

= addi and Id CANNOT be in one cycle Figure 4.67

=« Load-use (ld-add) hazard: 1 cycle delay
» IPC =5/4 =1.25 (c.f. peak IPC = 2) 110

Loop Unrolling

Unrolling with factor 2
for (i=1000;1!=0;i--) for (1=1000;1!=0;1-=2) {
A[i] += a; Ali] += aj;;
A[1-1] += a;
h

* Replicate loop body to expose more parallelism
— Reduces loop-control overhead
— For two calculations, e.g. Ali]+=a
e 2beqvs1beq;2i-1vs1i-2
* Use different registers per replication
— Called “register renaming”
— Avoid loop-carried “anti-dependencies”
e Store followed by a load of the same register

 Aka “name dependence”
— Reuse of a register name 111

Unrolling with factor 4
Loop Unrolling Example for (i=1000;1!=0;1i-=4){
A[i] += a;
A[1-1] += a
Ali-2] += a
A[1—3' += a

- ALU or branch instruction Data transfer instruction m

* Load-use hazard
— 1 cycle use delay

Loop: addi x20,x20, o 8,0(x20) 1
P,* | 1d x29,24(x20) 2

add x28,x28,x21 \\A*//r 1d x30,16(x20) 3

add x29,x29, %21y 1d x31,8(x20) 4

add x30,x30, x2 1 € ardie sd x28,32(x20) 5

add x31,x31,x21 T~sd x29,24(x20) 6

\\\sd x30,16(x20) 7

b1t x22,x20,Loop T~sd x31,8(x20) 8

* IPC=14/8=1.75 Figure 4.68

— Closer to 2, but at cost of registers and code size

112

Summary for Four Iterations of the Loop
Unrolling with factor 4
for (i=1000:1!=0:7--) for (1=1000;1!=0;1-=4){

A[i] += ai 1] += a3

A ;
|| Atuorbranchinstruction | Data transfer instruction | Clock cycle | A 1 1: += 4,
Loop: 1d x31,0(x20) 1] -
: addi x20,x20,-8 2 A :-! 2: + a' y
add x31,x31,x21 3 —]
b1t xgé,xié,Liop sd x31,8(x20) 4 A 1 3 += a y
¢ Or|g|na| version + Slngle ISSUe | Loop: addi x20.x20. 32 1d x28,0(x20) 1
. . 1d x29,24(x20) ?
— Total 20 instructions =2 200 %25 28 21 T4 x30.16(x20) 3
~ . add x29,x29,x21 1d x31,8(x20) 4
5 cycles/calculation 260 x30.x30. 2] 54 x28.320:20) 5
. . . e . add x31,x31,x21 sd x29,24(x20) 6
* QOriginal version + multi-issue 50 x30.160:20 7
. b1t x22,x20,Loop sd x31,8(x20) 8
— About 4 cycles/calculation
* Unrolling by 4 + single issue Static Multiple Issue

— 14 instructions = 3.5 cycles/calculation (14/4] i e e

J — Group of instructions that can be issued on a single cycle
* 2IPC: ALU/BEQ + LW/SW

(] U I | 1 I 1 - i — Determined by pipeline resources required
n ro I n g + m u t I I SS u e ® Think of an issue packet as a very long instruction
° — Specifies multipl rrent rations
— About 2 clocks/calculation (8/4) e Nery gt ARy

| imstructiontype | Pipestages _______|
ALU or branch instruction
d tion

IF ID EX MEM WB
IF ID EX MEM WB 1 1 3
IF D EX M WB
IF D EX WB
IF ID EM wB

Dynamic Multiple Issue

* “Superscalar” processors

* CPU decides whether to issue 0, 1, 2, ... each cycle
— Avoiding structural and data hazards

* Avoids the need for compiler scheduling
— Though it may still help
— Code semantics ensured by the CPU

114

Dynamic Pipeline Scheduling

* Allow the CPU to execute instructions out of order to avoid
stalls
— But commit result to registers in order

* Example
1d x31, 0(x21)
add x1l, x31, x2
sub x23,x23, x3
andi x5, x23, 20

— Can start sub while add is waiting for Iw

115

Dynamically Scheduled CPU

Instruction fetch , /

R

Reservation | | Reservation Reservation || Reservation| <
station station e station station \
Funct-ional Integer Integer Flogting Load- | out-of-order execute
units T point store

E—

- N i \ it
unit

116

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?

Not all stalls are predicable
— e.g., cache misses

Can’t always schedule around branches
— Branch outcome is dynamically determined

Different implementations of an ISA have different latencies

and hazards

118

Does Multiple Issue Work?

* Yes, but not as much as we’d like
* Programs have real dependencies that limit ILP

* Some dependencies are hard to eliminate
— e.g., pointer aliasing

* Some parallelism is hard to expose
— Limited window size during instruction issue

* Memory delays and limited bandwidth
— Hard to keep pipelines full

* Speculation can help if done well

119

Power Efficiency

* Complexity of dynamic scheduling and speculations requires
power

* Multiple simpler cores may be better

Pipeline Out-of-Order/ Cores/
Microprocessor Year Clock Rate Stages Speculatlon Chlp

Intel 486 1989 25 MHz 1 W
Intel Pentium 1993 66 MHz 5 2 No 1 10 W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 | W
Intel Core 2006 2930 MHz 14 4 Yes 2 75 W
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 2-4 87 W
Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W

120

Cortex A53 and Intel i7

Market

Thermal design power

Clock rate

Cores/Chip

Floating point?

Multiple issue?

Peak instructions/clock cycle
Pipeline stages

Pipeline schedule

Branch prediction
15t level caches/core
2"d |level caches/core

3rd |level caches (shared)

Personal Mobile Device

100 milliWatts
(1 core @ 1 GHz)

1.5 GHz
4 (configurable)
Yes
Dynamic
2
8

Static in-order

Hybrid
16-64 KiB |, 16-64 KiB D
128-2048 KiB
(platform dependent)

Server, cloud

130 Watts

2.66 GHz
4
Yes
Dynamic
4
14

Dynamic out-of-order
with speculation

2-level
32 KiB 1,32 KiB D
256 KiB (per core)
2-8 MB

ARM Cortex-A53 Pipeline

* Used as the basis for several tablets and cell phones

— Dual-issue, statically scheduled superscalar with dynamic issue
detection = 0.5 CPIl ideally

| Processor | _____ARMAS3 |

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
*{ ALU pipe 0 '—»
Integer
AGU | Register
+ i ALU pipe 1
Instruction Predictor
Cache " *‘ MAC pipe Writeback
Indirect
T Predictor

Divide pipe

Market Personal Mobile Device
Thermal design power 100 milliWatts (1 core @ 1 GHz)
Clock rate 1.5 GHz
Cores/Chip 4 (configurable)
Floating point? Yes

Multiple Issue? Dynamic

Peak instructions/clock cycle 2

Pipeline Stages 8

Pipeline schedule Static In-order

Branch prediction Hybrid

1st level caches/core

16-64 KiB |, 16-64 KiB D

2nd level cache/core

128-2048 KiB (shared)

3rd level cache (shared)

(platform dependent)

Issue Load pipe

> Store pipe

|

Instruction Decode Floating Point execute
NEON ‘ MUL/DIV/SQRT pipe ‘
13-Entry . .
Early X Main Late Register
| Decode Instruction Decode Decode file .
Queue ‘ ALU pipe ‘
D1 D2 D3 F1 F2 F3 F4 F5

Figure 4.72

122

ARM Cortex-A53 Performance using SPEC2006

* |deal CPI: 0.5 since it is 2-way multi-issue (IPC=2)
— Best case 1.0, median case 1.3, worst 8.6
— 60% stalls due to pipelining hazards
— 40% stalls due to the memorv hierarchv

10.00
B Memory hierarchy stalls
9.00 —— Pipeline stalls 856
M |deal CPI
8.00
7.00
6.00
5.00
4.00 Figure 4.73
3.37
3.00
2.14
2.00 1.75 1.76
»
104 107 117 122 = . .
1.00 0_97 — - = — |
o il 1 H H N A B B BB 123
hmm h264ref libquantum perlbench jeng gobmk xalanchi gcc r omnetpp mcf

Intel Core i7

* Aggressive out-of-order

speculative

* 14 stages pipeline,

®* Branch mispredictions costing

17 cycles.

* A48 load and 32 store buffers.

* Six independent functional units

— 6-wide superscalar

| Processor | Intel Core i7 920

Market Server, Cloud

Thermal design power 130 Watts

Clock rate 2.66 GHz

Cores/Chip 4

Floating point? Yes

Multiple Issue? Dynamic

Peak instructions/clock cycle 4

Pipeline Stages 14

Pipeline schedule Dynamic Out-of-order with Speculation
Branch prediction 2-level

1st level caches/core

32 KiB 1,32 KiBD

2nd level cache/core

256 KiB (per core)

3rd level cache (shared)

2-8 MiB

124

Core i7 Pipeline: IF

* Instruction fetch — Fetch 16 bytes from the | cache

— A multilevel branch target buffer to achieve a balance between
speed and prediction accuracy.

— A return address stack to speed up function return.
— Mispredictions cause a penalty of about 15 cycles.

125

Core i7 Pipeline: Predecode

* Predecode —16 bytes instr in the predecode | buffer

— Macro-op fusion: Fuse instr combinations such as compare followed
by a branch into a single operation.

— Instr break down: breaks the 16 bytes into individual x86 instructions.

* nontrivial since the length of an x86 instruction can be from 1 to 17
bytes and the predecoder must look through a number of bytes
before it knows the instruction length.

— Individual x86 instructions (including some fused instructions) are
placed into the 18-entry instruction queue.

126

Core i7 Pipeline:

Micro-op decode

* Micro-op decode — Translate Individual x86 instructions into micro-
ops.
— Micro-ops are simple MIPS-like instructions that can be executed
directly by the pipeline (RISC style)
* introduced in the Pentium Pro in 1997 and has been used since.

— Three simple micro-op decoders handle x86 instructions that translate
directly into one micro-op.

— One complex micro-op decoder produce the micro-op sequence of
complex x86 instr;

* produce up to four micro-ops every cycle

— The micro-ops are placed according to the order of the x86
instructions in the 28- entry micro-op buffer.

127

Core i7 Pipeline:
loop stream detection
and microfusion

* Jloop stream detection and microfusion by the micro-op buffer
preforms

If there is a sequence of instructions (less than 28 instrs or 256 bytes
in length) that comprises a loop, the loop stream detector will find the
loop and directly issue the micro-ops from the buffer

* eliminating the need for the instruction fetch and instruction decode
stages to be activated.

Microfusion combines instr pairs such as load/ALU operation and ALU
operation/store and issues them to a single reservation station, thus
increasing the usage of the buffer.

e Study comparing the microfusion and macrofusion by Bird et al.
[2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive
impact on integer performance and little impact on FP.

128

Core i7 Pipeline: Issue

® Basic instruction issue
— Looking up the register location in
the register tables
— renaming the registers
— allocating a reorder buffer entry
— fetching any results from the

registers or reorder buffer before sending the micro-ops to the
reservation stations.

* 36-entry centralized reservation station shared by six
functional units

Up to six micro-ops may be dispatched to the functional units
every clock cycle.

129

Core i7 Pipeline: EXE
and Retirement

Store
& load

* Micro-ops are executed by the individual function units

— results are sent back to any waiting reservation station as well as to
the register retirement unit, where they will update the register state.
The entry corresponding to the instruction in the reorder buffer is
marked as complete.

® Retirement

— When one or more instructions at the head of the reorder buffer have
been marked as complete, the pending writes in the register
retirement unit are executed, and the instructions are removed from
the reorder buffer.

130

Core i7 Performance running SPEC2006 INT

* |deal CPI: 0.25
* Best 0.44, median 0.79, worst 2.67;

CPI

-~ — - m e ..
Stalls, misspeculation
267
|
25 _________I(_i_e_a_I_C_I_D_I ____________________________________ Branch misprediction % m Wasted work %
40%
212
Y Y S 35% A
30% A
1 RO 25% +
1.23 20% -
1.06
1_-..._........._._..._._...._._.._._._...._._..._._.__.._J'Oz _______________ 15% +
074 077 082 0
0.59 0.61 065 10% ~
0_5_-Q~44.__ Ll _ N _ - —— - - _— 59
0- K
&
N N ¥
0@ ‘Ql Q} (‘9 \Qq’ @*' i QQ ((*. \’é 00 \QQ &0
D &S N9 > o 2 S 2
S A0 @ » >
X 0 & ¢ O o » &
F v S & S &
& @ P o
N4 Q +

131

Concluding Remarks

* |SA influences design of datapath and control
* Datapath and control influence design of ISA

* Pipelining improves instruction throughput
using parallelism
— More instructions completed per second
— Latency for each instruction not reduced

®* Hazards: structural, data, control

* Multiple issue and dynamic scheduling (ILP)

— Dependencies limit achievable parallelism
— Complexity leads to the power wall

132

Slides and Chapter Sections that are
not covered for Fall 2020.

133

Chapter 4: The Processor

* Lecture
— 4.1 Introduction
— 4.2 Logic Design Conventions
— 4.3 Building a Datapath

* Lecture
— 4.4 A Simple Implementation Scheme

* Lecture
— 4.5 An Overview of Pipelining

|
— 4.6 Pipelined Datapath and Control

— 4.7 Data Hazards: Forwarding versus Stalling
— 4.8 Control Hazards

—4.C FExconitons

* Lecture (Advanced pipeline techniques and real-world CPU examples)
— 4.10 Parallelism via Instructions
— 4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines
— 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply

— 414 Fallacies-and-Pitfalls
— 4.15 Concluding Remarks

134

MIPS Pipelined

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB
D a t a a t h Instruction i+7 IF ID EX MEM WB
nstruction
Instruction i+3 IF ID EX MEM WB
Instruction i+4 IF 1D EX MEM WB

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

4—		
Add T T		
	ADD Sum t	
	Shift	
	left 1	
0		
M : »	Read Read : : :	
u PC Address	register 1 data 1	Zero f——»
X Read		
1 : register 2 : AL ALlﬂ Address :		
i resu		
Instruction —:—0 Registers i 0 R:je;:		
Write Read	M Data	
Instruction I register data 2	u memory —	
X		
memory	Write	
I data I Write		
I I >	data	
p		
32 |
AN

135

Clock number

P b I b g Instruction number 1 2 3 4 5 6 7 8 9
I p e I n e reg I Ste rs Instruction i IF ID EX MEM WB
Instruction i+7/ IF ID EX MEM WB
Instruction i+3 IF ID EX MEM WB
® Reg|ste rs between Stages Instruction i+4 IF ID EX MEM WB

— For each instruction, hold information produced in previous stage/cycle and pass on
— Each register set (IF/ID, ID/EX, EX/MEM, MEM/WB) has the information for each of the
instructions that are in the pipeline

IF/ID ID/EX EX/IMEM MEM/WB

Add > > \‘
Add Sum £

4 — >
Shift
left 1
[

(0
M s
u PC Address b5 _ | Read
X 2 " | register 1 Read & >
-\ 1 @ data 1
c
= _ | Read Zero > >
Instruction _ register2 . ALU ALy Read
memary > | ¢ ~ Registers pegq R w5 it > > Address data 1
Write data 2 > > resu ata
o—> ister ata M /
regis
Q u Data
Write X memory
data o>\ 1
_ _ | Write
g " | data
32\ [Imm 64 =
| Gen

136

Pipeline Operation

* Cycle-by-cycle flow of instructions through the pipelined
datapath
— “Single-clock-cycle” pipeline diagram
* Shows pipeline usage in a single cycle
* Highlight resources used
— c.f. “multi-clock-cycle” diagram
e Graph of operation over time

* We'll look at “single-clock-cycle” diagrams for load & store

137

IF for Load, Store, ...

| 'W | LW $4, 32($5)

| Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB
>Add > > >
¢ 9 esal
Shift
left 2
-
c
PC @ Address -.g Read
= register 1 Read > >
‘g data 1
i Read Zero > —>—
Instruction register2 ALU A
> Registers Roaq ALU > ead L
memory) ea - > ~@—>-| Address 0
ante data 2 > e OM result data M
reglster u Data u
Write X memory X
data 1 1
- | Write
o 7| data
16 : »
X [Sign- >
v 7| extend

Instruction word and PC+4 are in the IF/ID pipeline register 138

ID for Load, Store, ...

Iw
I

Instruction decode

LW $4, 32($5)

PC

Y

IF/ID

ID/EX

aj

—@—»| Address

Instruction
memory

Y

/

Add Add

result

\

c
-% _ | Read
2 " | register 1 Read >
‘g, data 1
= Read
l register 2
Registers po g _
Write data 2 '
register
Write
data

16 :
X . | Sign- 32
v | extend

.

ALU AU

\

EX/MEM
Zero > e
. Read
result o ®->| Address data
Data
memory
o _ | write
o 7| data

MEM/WB

Value of $5, 32, and others are in ID| EX pipeline register
Similar info of the following instruction are now in IF|ID register

139

EX for Load

| lw
| Execution
IF/ID ID/EX EX/MEM
Add > >
4 — AdgAdd
result
PC Address c Read Read
% register 1 ea > >
S data 1
I Read Zero—>
Instruction 2 register 2 ALU AU Read
> — Registers »
memory Write 9 Read > result Address data
register data 2 Data
Write memory
data
Write
> > data
1 .
6\5 _ [Sign- 32
V| extend

LW $4, 32($5)

MEM/WB

Y

“x c =2°

Value of $5+32, and others are in EX| MEM pipeline register

140

MEM for Load

LW $4, 32($5)

Memory

IF/ID ID/EX EX/MEM MEM/WB

>Add > > >
4 — Add Add
Shift result
left 2

PC —@-»|Address Read
register 1 Read > >
data 1
Read Zero

. register 2 ALu
Instruction Registers poqq ey

Add fead

memory . ress >

Write data 2 B & Bl OM result data
register u / Data

4

A 4

| Instruction

L

\ 4

Write x memory
data 1

Write
data

16 Sign- 32
% extend

\

Value of MEM[S$5+32], and others are in MEM | WB pipeline register for WB 141

WB for Load

LW $4, 32($5)

Y

IF/ID

ID/EX

L/

Y

o | Read

Instruction

Read

>Add |—@
4 —
- 0
M
u PC Address
X
-\
Instruction
memory

Wrong

register number, which is
from one of the following
instructions that is in the

ID stage.

Write

rite
data

" |register 1

register 2
isters poaq

register

Read

Addg Add
result

EX/MEM

data 1

Y

data 2

7]

. . | Sign-
| extend

32

Zero
ALU ALU

result

Yy

Y

Address

memory

Write
data

lw
Write back

MEM/WB

\/

Value of MEM[$5+32], and others are in MEM | WB pipeline register for WB 14>

Corrected Datapath for Load

LW $4, 32($5)

u PC

IF/ID ID/EX EX/MEM
>Add > > >
¢ i >
Shift
left 2
c
Address % .| Read
- i Read
=4 register 1 > >
g ’ data 1 \
= | Read Zero > e
Instruction _ | reglster% ist ALU Ay
memory > egisters Read ; ~e result > ~@—>| Address
o | Write data 2 o
" | register M /
u
Write X
data 1
o | Write
g " | data

Sign-
extend

Y

Data
memory

Read
data

MEM/WB

4

Y

Y

LW completes and exits from the pipeline.

143

EX for Store

., SW$6,64($5)

Execution
IF/ID ID/EX EX/MEM MEM/WB
Add > >
Shift result
left 2
0
M
u PC Address c . | Read R
X 2] 7 |register 1 ead > >
—- 1 8 data 1
= Read Zero - >
Instruction _ IS register 2 ALU ALyl Read 5
memory - Write FlegistersRea d > result > —@—>| Address data > —> M

register data 2 Data u

Write memory 1X

data

_ _ | Write
. ~ | data
1 i >
? _ [Sign- 32 - >
V| extend

Value of $5+64 and $6 are in EX| MEM pipeline register 144

MEM for Store

SW $6, 64($5)

I > |
| Memory |
IF/ID ID/EX EX/MEM MEM/WB
>Add > - \‘
“ = A i -
Shift
left 2
—p-{ 0
M c
u PC @ Address % Read
X 2 register 1 Read > >
1 ‘g data 1
- Read Zero > i
Instruction _ register2 ALU Read
memory o _ Registers peaq > > 0 r:sbli: > @—>| Address dZ?a Rl 0
Write data 2 ' M M
register u / N .
Write X memory 1x
data 1
o | Write
o | data
16 : 32 »
X . | Sign- >
T | extend

S6 is written to MEM[$S5+64] 145

WB for Store

SW $6, 64(S5)

Y

>Add

u PC

Address

Instruction

memory

Addg Add

Y

ﬂ

EX/MEM
Zero > >
ALU
ALU o Read
result o ®->-| Address data
/ Data
memory
_ | Write
o 7| data

IF/ID ID/EX
Shift
left 2
c
-% .| Read
2 " | register 1 Read >
® data 1
£ Read
register 2
> Registers Rgaq
Write data 2 -
register M
u
Write X
data
16 ¢
. . | Sign-
T 7| extend

’ Write-back

MEM/WB

]

Nothing to do for SW in WB stage and SW completes

146

Multi-Cycle Pipeline Diagram

* Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

\

CC 1 CC?2 CC3 CC4 CC5 CCe6 CC7 cCs8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access

147

* State of pipeline in a given cycle

Single-Cycle Pipeline Diagram

add $14, $5, $6

Iw $13, 24 ($1)

| add $12, $3, $4

sub $11, $2, $3

| Iw $10, 20($1) |

Instruction fetch Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
> Add > -
4 —p Adg Add
result
(0
M
u PC Address Read
X 5 register 1 Read >
L\ 1 8 data 1
2 Read Zero > —>
g °
Instruction £ register2 ALU
> 4 Registers po. g R ALU > > Add Read L 0
memory | write data 2 > result ress data M
register Data Y
Write memory x
data 1
Write
o data
1 : >
Ei Sign- 32 |
extend

148

Multi-Cycle Pipeline Diagram

* Form showing resource usage

Time (in clock cycles) >
CC1 cC2 CC3 CC4 CC5 CC6 CcC7 cCs8 CCH9

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

149

Pipelined Control (Simplified)

Add

Address

Instruction
memory

IF/ID

\

PCSrc
ID/EX EX/MEM MEM/WB
Adgh%d .
Shift L Branch
RegWrite
|
.5 . | Read |
g > register 1 dR:tgd1 - > MemWrite
B3 |
_EI—P 2%?;{& o ALUSrC Add Zero > MemtoReg
i ALU Read
Registers >
_ | Write 9 gketad2 - OM result ~@—>| Address data B 1|v|
> | register ata
g. u / Data :
Write X memory 0
data 1
o _ | Write
i o " | data
Instruction
(15-0) 1? Sign- 32 6 >~
[2 >
) extend MemRead
Instruction
(20-16)
¢ > 0) ALUOp
M > .
Instruction :
(15-11) 1
> -
RegDst

150

Pipelined Control

* Control signals derived from instruction
— As in single-cycle implementation

WB

Instruction >

EX WB

]
<

IF/ID ID/EX EX/MEM MEM/WB

151

Pipelined Control

PCSrc
ID/EX
wB LfX/MEM
> Control M wB | MEM/WB
EX M WB [
IF/ID
Add > \
4 —> Add Add >
Shift result Branch
£ left 2 [|
= ALUSrc
(2]
S |
0 o 2
" Add § g
u PC ress S Read £
X 2 | register 1 Read > 2 g
L4 3 data 1 g
B - Rez.adt » ZeroH1> — =
Instruction = register ALU 5Ly Read
memory Write Te91Sters Read e result [T >| Address data >0
™! register data 2 " "
Wq u 1 Data u
rite X memory 1
data o>\1
_ _ | Write
~ "~ | data
Instruction
[15-0] 16 sign- | 32 6
> extend ——\> MemRead
Instruction
[20-16] A ALUOp
M >
Instruction u o
[15-11] X
RegDst

152

Data Hazards in ALU Instructions

* Consider this sequence:

sub $2, $1,9%3
and $12,%2,$5
or $13,9%6,%2
add $14,%2,9%2
sw $15,100(%2)

* Called Read After Write (RAW) hazards

* We can resolve hazards with forwarding
— How do we detect when to forward?

153

Data Dependency 2> Data Hazards

Time (in clock cycles) >
Value of CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CC9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

(in instructions) - - -

sub $2, $1, $3 IM ILR—eEI: :D— —[DM— Ee—gj:
___ :____ ://:/ —
e M -
and $12, $2, $5 M Reg_|[> /T_DJM_G Reg

— i — — q — _
: or $13, $6, 52 = —%Reé B >\~ DM Reg
' Read old value of $2 from register file) - =1 =

\edl

S|

| — — |
V' sw $15, 100(52) M FReg _> DM Reg

add $14, $2,52 1\

y
L:«:_E
|
E

Solution #1: Handling RAW Hazards by Forwarding

' Forwar

Time (in clock cycles)

e

Value of CC1 CC2 CC3 CC4

register $2: 10 10 10 10
Program
execution
order
(in instructions) - - —
-
sub $2,$1,$3 [IM LFieg’ :D- DMl
and $12, $2, $5 IM{— Reg_| /
i =
or $13, $6, $2 IM — —E{Re
 the latest $2 via data path i |
add $14, $2,%2 IM —

CC5

10/-20

. sw $15, 100($2)

CC6
-20

1L

\egd

CC7

-20

—Reg

L ——

CC8

-20

\edl

S|

DM

CC9

-20

Regl

S—

155

Solution #2: Insert stalls

Time (clock cycles

IF ID/RF EX MEM WB

SUb $2, $1’ $3 [fetch

’

(94
=
®
=1

Two cycles delay!

S

|\

fetch

0/G

and $12, $2, $5

]
c

o
S

—-

—~

and $12, $2, $5

CEAC R B

_h

[\]

—’-
‘Q\
G5 3¢
| Ny
’

/f/

and $12, $2, $5

—L (¥
_h
‘g\“ S
S ® =
-

—

7

e
-’

oY

or $13, $6, $2

_h
‘N\
-+
(o)
—
—h
N\ :
-+
(2]
|

K

add $14, $2,$2

sw $15, 100($2) E

nsuuLuvIND)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Ly

IF/ID

PC—

Instruction
memory

Datapath for Forwarding

* Forwarding happens in two
consecutive cycles

[Instruction

\/

IF/ID.RegisterRs Rs
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt Rt
IF/ID.RegisterRd | |Rd

c=
Y

xc =S

Forwarding

ID/EX
’_’WB EX/MEM
- M ~|WB MEM/WB
L EX > M > \WB—
n
> U >
> X
Registers ALU | -

Data
memory

-

EX/MEM.RegisterRd

MEM/WB.RegisterRd

!

\/

xc=s

Detecting RAW Hazards

* Current instruction being executed in ID/EX register
* Previous instruction is in the EX/MEM register
* 2" Previous is in the MEM/WB registet 5 ex MEM we

ADD R1, R2, R3 #2" Previousin MEM/WB ffer IB]I '2

SUB R R4, R5 #Previousin EX/MEM [fetch

[fetch

AND R7, R1, R6 #CurrentinID/EX

* Forwarding happens in the same cycle

ADD R1, R2, R3 #2"dPreviousin MEM/WB

SUB R R4, R5 #Previousin EX/MEM

AND R7, R1, R6 #CurrentinID/EX

[fetch

[fetcH

MEM/WB
WB—

[fetcH

Data
memory

>

EX/MEM.RegisterRd

MEM/WB.RegisterRd —‘

ID/EX
|” B EX/MEM
—{ Control M WB
IF/ID L EX M
]] M |
M
u
- x
c
kel -/
g Registers }
3 -
pC Instruction <] L M)
memory M
> u
X
IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt
IF/ID.RegisterRd Rd
Forwarding
unit i

[fetch

159

ADD R1, R2, R3 #2"d Previousin MEM/WB
SUB R6,\R4, R5 #Previousin EX/MEM

R1S®»R6 #CurrentinID/EX

AND R7,

* Pass register numbers along pipeline

Detecting RAW Hazards

Ly
L]

— ID/EX.RegisterRs = register number for Rs in ID/EX (Rsl)
— ID/EX.RegisterRt = register number for Rt in ID/EX (Rs2)
— ID/EX.RegisterRd = register number for Rd in ID/EX

e RAW Data hazards when

1a. EX/MEM.RegisterRd =
1b. EX/MEM.RegisterRd =
2a. MEM/WB.RegisterRd =
2b. MEM/WB.RegisterRd =

ID/EX.RegisterRs
ID/EX.RegisterRt

ID/EX.RegisterRt

ID/EX.RegisterRs

~

.

/

-

/

Fwd from
EX/MEM
pipeline reg

MEM/WB
pipeline reg

160

Detecting the Need to Forward

* But only if forwarding instruction will write to a register!
— EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not RO
— EX/MEM.RegisterRd # 0

— MEM/WB.RegisterRd # 0
IF

ADD R1, R2, R3 #2" Previousin MEM/WB ffet

SUB R R4, R5 #Previousin EX/MEM

AND R7, R1, R6 #CurrentinID/EX

[fetch

Forwarding Conditions

* Detecting RAW hazard with Previous Instruction

— if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01 (Forward from EX/MEM pipe stage)

— if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01 (Forward from EX/MEM pipe stage)

ID/EX

"’E EX/MEM
—{ Control M WB MEM/WB
LE L» M L»wa—
u

—

—

[@

1

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

T
a§|§|o:9

162

Forwarding Conditions

* Detecting RAW hazard with Second Previous

— if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10 (Forward from MEM/WB pipe stage)

— if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10 (Forward from MEM/WB pipe stage)

ID/EX

"’E EX/MEM
—+{Contral M |—>WB VEMWE
L_ L» M L»WB =

M
u
| X
Registers ALUL~ (M\
[u
X
M Data
> u
X memory
-
IF/ID.RegisterRs s H

IF/ID.RegisterRt
IF/ID.RegisterRt

.RegisterR
— M ¢
IF/ID.RegisterRd | ol u
L b'e E— -
Forwarding {2 | | MEM/WB.RegisterRd
| | \ unit

ns)
CL§|z|=°

163

Control Signals During Forwarding:
Those Light Blue lines

ADD R1, R2, R3 #2" Previousin MEM/WB ffe IB IDE PMeny

SUB R R4, R5 #Previousin EX/MEM ffeteh
AND R7, R1, R6 #CurrentinID/EX hhtla
IIEX
’—’E EX/MEM
—{ Control M E MEM_/WB
IF/ID L EX M WB—
i] —~ _— —
M
™ : [fetch
S _
S Registers
@ >
Instruction <
memory B >] Data
memory
IF/ID.RegisterRs Rs > L
IF/ID.RegisterRt Rt
IF/ID.RegisterRt [Rt] EX/MEM.RegisterRd
IF/ID.RegisterRd | [Rd T
MEM/WB.RegisterRd
i 164

RAW Hazards with Load/Store

° LW Rt, 20(Rs): load a word from memory @ [Rs]+20 into Rt
— |ID/RF: Read register Rs: [Rs] (rs select)
— EX: Calculate effective address: [Rs] +20 IF ID/RF EX MEM WB

— MEM: Memory read from [Rs]+20
* Data is available in MEM | WB Elﬂ
* Unlike ALU: data is available in EX| MEM

— WAB: data write back to Rt (rt select)

* SW Rt,12(Rs): store a word in Rt in the memory @ [Rs]+12
— |ID/RF: Read register Rs and Rt (rs and rt select, no rd)
* Rsis needed in EX, and Rt is needed in MEM
— EX: Calculate effective address: [Rs] + 12
— MEM: Memory write to [Rs]+12
* Need Rt to be available
* Unlike ALU, data needs to be available in ID|EX
— No need WB

165

Load-Use RAW Data Hazard

Time (in clock cycles) >

CC 1 cc2 cc3 CC 4 CC5 CC6 CC7 ccs8 CC9
exeaution after MEM stage, forwarding
(in instructions) _ from MEM to EXE between

- two instructions will not work.
Iw $2, 20($1) IM Reg
and $4, $2, $5 M | [2Reg
or $8, $2, $6 IM
add $9, $4, $2 _E;@;l
| slt$1,$6, $7 IM — —E}rﬁeg B DM Re_g]
- - 166

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CcC8 CC9 CC10

Program
execution
order

(in instructions) _ _

lw $2, 20($1) IM Reg DM by -
- ® “ e Stall inserted here

and becomes nop IM — —E:F;eg @ I\/
L i
and $4, 52, $5 N FRég %}

or $8, $2, $6 IM —EiRe

e

DM Reg!
=4 167

add $9, $4, $2 IM

Stall/Bubble in the Pipeline

-

Time (in clock cycles)
CC 1 CC2 CC3 CC4 CC5 CCeo CC7 CC8

Program
execution
order

(in instructions) = r

w $2, 20($1) IM EGE[$

and becomes nop IM — F5Re

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

e

add $9, $4, $2

\ Or, more DM

accurately...

CC9

Reg:

—

L

CC 10

168

Load-Use Hazard Detection

* Check when using instruction is decoded in ID stage

* ALU operand register numbers in ID stage are given by
— IF/ID.RegisterRs, IF/ID.RegisterRt

®* |oad-use hazard when

— ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

* |f detected, stall and insert bubble

ime (in clock cycles)
CC1 cc2 CcC

execution

nnnnnnnnnnnnn

169

How to Stall the Pipeline

* Force control values in ID/EX register to O
— EX, MEM and WB do hop (no-operation)

* Prevent update of PC and IF/ID register
— Using instruction is decoded again
— Following instruction is fetched again
— 1-cycle stall allows MEM to read data for 1w
* Can subsequently forward to EX stage

170

Datapath with Hazard Detection

Hazard

PCWrite

H,

Instruction
memory

IF/DWrite

ID/EX.MemRead

detection <

\ B

\ unit /

A

»(Control

| Instruction

Registers

ID/EX
wB EX/MEM
M »\WB
EX > M
ALU

IF/ID.RegisterRs

IF/ID.RegisterRt

Yy Y VY VY

Data
memory

MEM/WB
WB—
| M
u
| X

(xe2) r(x:g)F(x:g)

IF/ID.RegisterRt Rt
IF/ID.RegisterRd Rd. >
ID/EX.RegisterRt

Rs Forwarding

Rt unit)=

<

171

Compiler Scheduling for Removing Load-Use Stall

* Compilers can schedule code in a way to avoid load = ALU-use stalls
a=b+c d=e—f;

* Slow code: 2 stall cycles

lw r10,(rl) #rl=addrb Fast code: No Stalls
lw ri11, (r2) # r2 = addr c
(r2) lw rl10, O(rl)

stall
add r12,r10,ril #b+c w ril, O(r2)
lw ri3, O(r4)

sw riz2, (r3) #r3=addra

lw ri3, (r4) #rd4=-addre % lw ri4, O(r5)

lw ri14,(r5) #rb5=addrf add r12, r10, ril

stall sw ri2, 0(r3)
sub r15,ri3,r14 #He-f sub ri5, r13,ri4
sw ri5, (ré) #ré = addr d sw r15, O(ré)

172

Stalls and Performance

* Stalls reduce performance
— But are required to get correct results

* Compiler can arrange code to avoid hazards and stalls
— Requires knowledge of the pipeline structure

173

Control Hazards Because of Branches

* Branch outcome determined in MEM

40

44

48

52

72

beq $1, $3, 28

and %$12, $2, $5

or $13,%6, $2

add $14, $2, $2

lw $4, 50($7)

174

Control Hazards

* Branch outcome determined in MEM

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CcCe6 cCc7 ccs CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28 EI.—I—D

44 and $12, $2, $5
Flush these three
instructions

48 or $13, $6, $2 (Set control
values to 0)

52 add $14, $2, $2

—

| 72 Iw $4, 50($7)

175

Reducing Branch Delay

* In general, branch could cause 3 cycle delay
— Since branch outcome is determined at MEM stage

* Move hardware to determine outcome at ID stage = 1 cycle

delay ; _ : .
. . Instruction | Instr. Decode ': Execute | Memory i Write
— BEQZ instruction Fetch Re gich.i Addr. Calc | Access i Back

Next PC

WB Data

— For BEQ: add target address adder and Register comparator in the ID
stage 176

Reducing Branch Delay

* Move hardware to determine outcome to ID stage 2 1
cycle delay

— Add Target address adder and Register comparator

* Example: branch taken

36

s
48
52
56

/2

sub $10, $4. $8
and $12., $2. $5
or $13, $2, %6
add $14. $4. $2
s1t $15. $6, $7

Tw $4, 50($7)

177

36
. 40
Example: Branch Taken hy
48
* Addis already fetched when beq outcome is determined gg
and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1>
/2
IF.Flush !
Hazard
detection
unit
" 28 MEI\.L/WB
IFJD 44@ ’—’— wel

Regi

sub
beq
and
or

add
sit

Data

Forwarding
unit J

memory ‘

Clock 3

xXc=s

$].O,

$1, §

$12,
$13,
$14,
$15,

$4, $8

3, 7 #

$2,
$2,
$4,
$6,

$5
$6
$2
$7/

Tw $4, 50($7)

178

Example: Branch Taken

* Add won’t enter ID stage and branch target (Iw) is fetched

Iw $4, 50($7)

IF.Flush

Bubble (nop)

beq $1, $3, 7

MO0 o 1w $4. 50($7)

Hazard

detection

Y

_ unit /

EX/MEM
wal

Registers

bl RA LSS

Clock 4

Data
memory

36 sub
40 beq
44 and
48 or

52 add
5o st

1
MEM/WB

Forwarding

unit i
Il |

$].O,

$1, §

$12,
$13,
$14,
$15,

$4, $8

3, 7 #

$2, $5
$2, $6
$4, $2
$6, $7

St?ill one ciycle delay!

179

Four Branch Hazard Alternatives

* #1: Stall until branch direction is clear
* #2: Predict Branch Not Taken

— Execute successor instructions in sequence

— “Squash” instructions in pipeline if branch actually taken
— Advantage of late pipeline state update

— 47% MIPS branches not taken on average

— PC+4 already calculated, so use it to get next instruction

* #3: Predict Branch Taken

— 53% MIPS branches taken on average

— But haven’t calculated branch target address in MIPS
 MIPS still incurs 1 cycle branch penalty

e Other machines: branch target known before outcome

180

Four Branch Hazard Alternatives

* #4: Schedule Branch Delay Slots

— Exec an instruction in that delay slot regardless whether branch
will be taken or not

A. From before branch B. From branch target C. From fall through
add $1,$2,83 sub $4,55,56 “ add $1,$2,83
if $2=0 then — if $1=0 then —

add $1,$2,S$3
if $1=0 then —

— sub $4,S85,56%+—
becomes 1 becomes 1 becomes 1
add $1,5%2,$3
if $2=0 then — — if $1=0 then —
add $1,$2,$3 sub $4.,%$5,%6

add $1,$2,S$3
if $1=0 then —

D sub $4,%5,%6

A

181

Exceptions and Interrupts

* “Unexpected” events requiring change
in flow of control
— Different ISAs use the terms differently

* Exception
— Arises within the CPU

* e.g., undefined opcode, overflow, syscall, ...

® Interrupt
— From an external |/O controller

* Dealing with them without sacrificing performance is
hard

182

Handling Exceptions

* In MIPS, exceptions managed by a System Control
Coprocessor (CPO)

* Save PC of offending (or interrupted) instruction
— In MIPS: Exception Program Counter (EPC)

* Save indication of the problem
— |In MIPS: Cause register

— We’ll assume 1-bit
* 0 for undefined opcode, 1 for overflow

* Jump to handler at 8000 00180

183

An Alternate Mechanism

* Vectored Interrupts
— Handler address determined by the cause

* Example:
— Undefined opcode: C000 0000
— Overflow: C000 0020

— . CO00 0040

* |nstructions either
— Deal with the interrupt, or
— Jump to real handler

184

Handler Actions

Read cause, and transfer to relevant handler
Determine action required

If restartable
— Take corrective action
— use EPC to return to program

Otherwise
— Terminate program
— Report error using EPC, cause, ...

185

Exceptions in a Pipeline

* Another form of control hazard

* Consider overflow on add in EX stage
add $1, $2, $1

— Prevent S1 from being clobbered

— Complete previous instructions

— Flush add and subsequent instructions
— Set Cause and EPC register values

— Transfer control to handler

* Similar to mispredicted branch
— Use much of the same hardware

186

Pipeline with Exceptions

EX.Flush
IF.Flush
ID.Flush
/ Hazard \
detection |- '
unit / Yy
A M
ID/EX u
4
=l " Al =
Control > M M > \WB

M
u u MEM/WB
> X I Cause X — | .
|F '|D 0 EX (O = M WB —e

y " Shift
4 left 2 R -

Registers o R

Y R .
N M > ALU > |\L/I|
80000180 u lelpclly| Instruction | || | - u

memory - Data N

] - > o memory —

\

Yy

\

Y
Y

-
A
¥

187

Exception Properties

* Restartable exceptions
— Pipeline can flush the instruction
— Handler executes, then returns to the instruction
» Refetched and executed from scratch

* PCsaved in EPC register
— |dentifies causing instruction
— Actually PC + 4 is saved
* Handler must adjust

188

* Exception on add in

40 sub

44 and

48 or

4C add

50 slt

54 1w
* Handler

Exception Example

$11,
$12,
$13,
$1,

$15,
$16,

80000180 sw
80000184 sw

$2, %4
$2, $5
$2, %6
$2, $1
$6, $7
50($7)

$25, 1000(%$0)
$26, 1004(5$0)

189

Exception Example

Iw $16, 50($7) : slt $15, $6, $7 : add $1, $2, $1 : or$13,... | and $12,..
| | EX.Flush 1 :
IF.Flush X : : :
Y ID.Flush : : :
; Hazard "\ ! : !
detection : ! !
___unit / ! X :
MEM/WB
1
80000180 = - Data l
memory

12

Clock 6 : :

190

Exception Example

sw $25, 1000($0) bubble (nop) : bubble . bubble , or $13,
: | EX.Flush | |
IF.Flush ! \ i "
| ID.Flush : ! !
! Hazard | ! !
detection : v | !
__unit / ! Nﬂ : :
u—s :
0 x 1 I
0 W EX/MEM !
e E 000 u — MEM/WB
Cause !
58 EPC 0 X
80000180 N\
5 :
left — u
N -| X
| 13 T ALU :'
()
80000180 = M
804 lu Data
memory
m - X
Sign-
O -
m 13
u
: X :
Clock7 5 : ﬁ?‘“‘“’ :
| ! /1 |
I !] 1
| I 1 |

191

Multiple Exceptions

* Pipelining overlaps multiple instructions
— Could have multiple exceptions at once

* Simple approach: deal with exception from earliest
Instruction

— Flush subsequent instructions
— “Precise” exceptions

* In complex pipelines
— Multiple instructions issued per cycle

— QOut-of-order completion
— Maintaining precise exceptions is difficult!

192

Imprecise Exceptions

* Just stop pipeline and save state
— Including exception cause(s)

* |Let the handler work out

— Which instruction(s) had exceptions

— Which to complete or flush
* May require “manual” completion

* Simplifies hardware, but more complex handler software

* Not feasible for complex multiple-issue
out-of-order pipelines

193

Data Hazards for Branches

* |f a comparison register is a destination of 2"d or 3
preceding ALU instruction

add $1, $2, $3 IF I ID I EX I MEIVII\I WB
add $4, $5, $6 IF IID IEX \MEI+II WB
\
IF IID Ik\<IME|+|IWB
\\
beq $1, $4, target IF I ID\\I EX I MEI‘{’II WB

= Can resolve using forwarding

194

Data Hazards for Branches

* |f a comparison register is a destination of preceding ALU
instruction or 2"9 preceding load instruction

— Need 1 stall cycle

beq $1, $4, target

Tw $1, addr IF IID I EX I MEMlANB
\
add $4, $5, $6 IF I ID I EX l E I\NB
beg stalled IF I ID I IO IO

ID\\I EX I MEI+II WB

195

Data Hazards for Branches

* If a comparison register is a destination of immediately

preceding load instruction

— Need 2 stall cycles

Tw $1, addr IF

EX

beq stalled
beq stalled

beqg $1, $0, target

WB

196

1-Bit Predictor: Shortcoming

* Inner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., outer

= Mispredict as taken on last iteration of
inner loop

= [hen mispredict as not taken on first
iteration of inner loop next time around

197

2-Bit Predictor

* Only change prediction on two successive mispredictions

Not taken
Predict taker
Taken
Not takenl | Taken
Not taken
(Predict not taken
Taken -

198

Calculating the Branch Target

* Even with predictor, still need to calculate the target address
— 1-cycle penalty for a taken branch

* Branch target buffer
— Cache of target addresses
— Indexed by PC when instruction fetched

* If hit and instruction is branch predicted taken, can fetch target
immediately

199

Dynamic Branch Prediction

* |In deeper and superscalar pipelines, branch penalty is
more significant

* Use dynamic prediction

Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses
Stores outcome (taken/not taken)

To execute a branch

* Check table, expect the same outcome

e Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction

200

Speculation and Exceptions

* What if exception occurs on a speculatively executed
instruction?
— e.g., speculative load before null-pointer check

* Static speculation
— Can add ISA support for deferring exceptions

* Dynamic speculation

— Can buffer exceptions until instruction completion (which may
not occur)

201

Matrix Multiply

B Unrolled C code

1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)
S

6 for (int i = 0; i < n; 1i+=UNROLL*4)

7 for (int §J = 0; J < n; J++) {

8 __m256d c[4];

9 for (int x = 0; x < UNROLL; x++)

10 c[x] = mm256 load pd(C+i+x*4+j*n);

11

12 for(int k = 0; k < n; k++)

13 {

14 ~ m256d b = mm256 broadcast sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)

16 c[x] = mm256 add pd(c[x],

17 mm256 mul pd(mm256 load pd(A+n*k+x*4+1i), b));
18 }

19

20 for (int x = 0; x < UNROLL; x++)

21 ~mm256_ store pd(C+i+x*4+j*n, c[x]);
22}

23 '}

202

Matrix Multiply

B Assembly code:

1
2
3
4
5
6
5
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

vmovapd (%$rll) , $ymm4

mov %rbx, %$rax

XOr %ecx, %ecx

vmovapd 0x20(%rll), $ymm3
o
o

vmovapd 0x40 (%rll), Symm2
vmovapd 0x60 (%rll), $ymml

vbroadcastsd (%rcx,%r9,1), symm0

add $0x8,%rcx # register S%Srcx
vmulpd (%rax), $ymm0, $ymmb
vaddpd %$ymm5, $ymm4, $ymm4
vmulpd 0x20 (%$rax), symm0, $ymm5
vaddpd $ymm5, $ymm3, $ymm3
vmulpd 0x40 (%rax), symm0, $ymm5
vmulpd 0x60 (%$rax), $ymm0, $ymmQ0
add %r8, %rax

cmp %rl0, $rcx

vaddpd %$ymm5, $ymm2, $ymm2
vaddpd %$ymm0O, $ymml, $ymml

jne 68 <dgemm+0x68>

add $0x1, %esi

vmovapd %$ymm4, (%rll)

vmovapd $ymm3, 0x20 (%rll)
vmovapd $ymm2, 0x40 ($rll)
vmovapd %$ymml, 0x60 ($rll)

H H H H= H= H=

H FH H= H H H H= H H H H H H H H FH

Load 4 e
register
register
Load 4 e
Load 4 e

lements
$rax =
%ecx =
lements

lements

of C into
Srbx

0

of C into
of C into

Load 4 elements of C into

Make 4 copies of B element

$rcx + 8

Parallel
Parallel
Parallel
Parallel
Parallel
Parallel
register

compare

% ymm4

Symm3
% ymm2

Fymml

mul %ymml,4 A elements

add Symm5, %ymmé

mul %ymml,4 A elements

add %ymm5, %ymm3

mul %ymml,4 A elements

mul %ymml,4 A elements

(e}

srax =

%r8 to %

$rax + %r8

rax

Parallel add %$ymmb5, %ymm2

Parallel add %$ymm0O, %ymml

Jump 1if

register

not %r8
$ esi =

Store %Symm4 into

Store %Symm3 into

Store %Symm2 into

Store %Symml into

= %rax

% esi + 1

4
4
4
4

C elements
C elements
C elements

C elements

203

GFLOPS

16.0 1

12.0 7

8.0

4.0 -

Performance Impact

unoptimized AVX

AVX+unroll

204

Concluding Remarks

* |SA influences design of datapath and control
* Datapath and control influence design of ISA

* Pipelining improves instruction throughput
using parallelism
— More instructions completed per second
— Latency for each instruction not reduced

®* Hazards: structural, data, control

* Multiple issue and dynamic scheduling (ILP)

— Dependencies limit achievable parallelism
— Complexity leads to the power wall

205

Fallacies

* Pipelining is easy (!)
— The basic idea is easy
— The devil is in the details
* e.g., detecting data hazards
* Pipelining is independent of technology
— So why haven’t we always done pipelining?
— More transistors make more advanced techniques feasible

— Pipeline-related ISA design needs to take account of technology
trends
* e.g., predicated instructions

206

Pitfalls

* Poor ISA design can make pipelining harder
— e.g., complex instruction sets (VAX, 1A-32)
* Significant overhead to make pipelining work
* |A-32 micro-op approach
— e.g., complex addressing modes
* Register update side effects, memory indirection
— e.g., delayed branches
* Advanced pipelines have long delay slots

207

End of Chapter 4

208

Sequential Elements

* Register: stores data in a circuit

— Uses a clock signal to determine when to update the stored
value

— Edge-triggered: update when Clk changes fromOto 1

Clk
D — — Q
D
Clk —> Q

209

Sequential Elements

* Register with write control
— Only updates on clock edge when write control input is 1
— Used when stored value is required later

D — > Q

Write —
Clk —>

210

