
Chapter 2: Instructions: Language of the Computer
2.13 - 2.14: C sort example and array vs pointer

2.16 – 2.17: X86 and more info for RISC-V
2.20: Conclusion

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Chapter 2: Instructions: Language of the Computer

• Lecture
– 2.1 Introduction
– 2.2 Operations of the Computer

Hardware
– 2.3 Operands of the Computer

Hardware
• Lecture
– 2.4 Signed and Unsigned

Numbers
– 2.5 Representing Instructions in

the Computer
• Lecture
– 2.6 Logical Operations
– 2.7 Instructions for Making

Decisions
2

☛

• Lecture
– 2.8 Supporting Procedures in Computer

Hardware
– 2.9 Communicating with People
– 2.10 RISC-V Addressing for Wide Immediate

and Addresses
• Lecture
– 2.11 Parallelism and Instructions:

Synchronization
– 2.12 Translating and Starting a Program

• We covered before along with C Basics
– 2.13 A C Sort Example to Put It All Together
– 2.14 Arrays versus Pointers

• We covered most before along with C
Basics

– 2.15 Advanced Material: Compiling C and
Interpreting Java

– 2.16 Real Stuff: MIPS Instructions
– 2.17 Real Stuff: x86 Instructions
– 2.18 Real Stuff: The rest of RISC-V
– 2.19 Fallacies and Pitfalls
– 2.20 Concluding Remarks
– 2.21 Historical Perspective and Further

Reading

The Sort Procedure in C
(Textbook Page 133)

• Illustrates use of assembly
instructions for a C bubble sort
function

• Non-leaf (calls swap)
void sort (long long int v[], size_t n) {
size_t i, j;
for (i = 0; i < n; i += 1) {
for (j = i – 1;

j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

– v in x10, n in x11, i in x19, j in x20

§2.13 A C
 Sort Exam

ple to Put It All Together

3

C Sort Example

• Swap procedure (leaf)
void swap(long long int v[],

long long int k)
{
long long int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
– v in x10, k in x11, temp in x5

4

swap:

slli x6,x11,3 // reg x6 = k * 8

add x6,x10,x6 // reg x6 = v + (k * 8)

ld x5,0(x6) // reg x5 (temp) = v[k]

ld x7,8(x6) // reg x7 = v[k + 1]

sd x7,0(x6) // v[k] = reg x7

sd x5,8(x6) // v[k+1] = reg x5 (temp)

jalr x0,0(x1) // return to calling routine

The Procedure Swap

5

The Outer Loop

• Skeleton of outer loop:
– for (i = 0; i <n; i += 1) {

mv x21, x10 // store parameter x10 into x21

mv x22, x11 // store parameter x11 into x22 (not using stack)

li x19,0 // i = 0

for1tst:

bge x19,x11,exit1 //go to exit1 if x19≥x11(i≥n)

(body of outer for-loop)

addi x19,x19,1 // i += 1

j for1tst // branch to test of outer loop

exit1:

6

The Inner Loop

• Skeleton of inner loop:
– for (j = i − 1; j >= 0 && v[j] > v[j + 1]; j − = 1) { swap (v, j); }

addi x20,x19,-1 // j = i −1

for2tst:

blt x20,x0,exit2 // go to exit2 if X20 < 0 (j < 0)

slli x5,x20,3 // reg x5 = j * 8

add x5,x10,x5 // reg x5 = v + (j * 8)

ld x6,0(x5) // reg x6 = v[j]

ld x7,8(x5) // reg x7 = v[j + 1]

ble x6,x7,exit2 // go to exit2 if x6 ≤ x7

mv x10, x21 // first swap parameter is v

mv x11, x20 // second swap parameter is j

jal x1,swap // call swap

addi x20,x20,-1 // j –= 1

j for2tst // branch to test of inner loop

exit2:

7

Preserving Registers

• Preserve saved registers:
addi sp,sp,-40 // make room on stack for 5 regs

sd x1,32(sp) // save x1 on stack

sd x22,24(sp) // save x22 on stack

sd x21,16(sp) // save x21 on stack

sd x20,8(sp) // save x20 on stack

sd x19,0(sp) // save x19 on stack

• Restore saved registers:
exit1:

ld x19,0(sp) // restore x19 from stack

ld x20,8(sp) // restore x20 from stack

ld x21,16(sp) // restore x21 from stack

ld x22,24(sp) // restore x22 from stack

ld x1,32(sp) // restore x1 from stack

addi sp,sp, 40 // restore stack pointer

jalr x0,0(x1)

8

The Full Version

• Check the textbook

9

Arrays vs. Pointers

• Array indexing involves
– Multiplying index by element size
– Adding to array base address

• Pointers correspond directly to memory addresses
– Can avoid indexing complexity

§2.14 Arrays versus Pointers

10

Example: Clearing an Array

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

li x5,0 // i = 0

loop1:

slli x6,x5,2 // x6 = i * 4

add x7,x10,x6 // x7 = address

// of array[i]

sd x0,0(x7) // array[i] = 0

addi x5,x5,1 // i = i + 1

blt x5,x11,loop1 // if (i<size)

// go to loop1

mv x5,x10 // p = address

// of array[0]

slli x6,x11,3 // x6 = size * 4

add x7,x10,x6 // x7 = address

// of array[size]

loop2:

sd x0,0(x5) // Memory[p] = 0

addi x5,x5,8 // p = p + 4

bltu x5,x7,loop2

// if (p<&array[size])

// go to loop2

11

Comparison of Array vs. Ptr

• Multiply “strength reduced” to shift
• Array version requires shift to be inside loop

– Part of index calculation for incremented i
– c.f. incrementing pointer
• Compiler can achieve same effect as manual use of pointers

– Induction variable elimination
– Better to make program clearer and safer

12

The Intel x86 ISA

• Evolution with backward compatibility
– 8080 (1974): 8-bit microprocessor
• Accumulator, plus 3 index-register pairs

– 8086 (1978): 16-bit extension to 8080
• Complex instruction set (CISC)

– 8087 (1980): floating-point coprocessor
• Adds FP instructions and register stack

– 80286 (1982): 24-bit addresses, MMU
• Segmented memory mapping and protection

– 80386 (1985): 32-bit extension (now IA-32)
• Additional addressing modes and operations
• Paged memory mapping as well as segments

§2.17 R
eal Stuff: x86 Instructions

13

The Intel x86 ISA

• Further evolution…
– i486 (1989): pipelined, on-chip caches and FPU
• Compatible competitors: AMD, Cyrix, …

– Pentium (1993): superscalar, 64-bit datapath
• Later versions added MMX (Multi-Media eXtension) instructions
• The infamous FDIV bug

– Pentium Pro (1995), Pentium II (1997)
• New microarchitecture (see Colwell, The Pentium Chronicles)

– Pentium III (1999)
• Added SSE (Streaming SIMD Extensions) and associated registers

– Pentium 4 (2001)
• New microarchitecture
• Added SSE2 instructions

14

The Intel x86 ISA

• And further…
– AMD64 (2003): extended architecture to 64 bits
– EM64T – Extended Memory 64 Technology (2004)
• AMD64 adopted by Intel (with refinements)
• Added SSE3 instructions

– Intel Core (2006)
• Added SSE4 instructions, virtual machine support

– AMD64 (announced 2007): SSE5 instructions
• Intel declined to follow, instead…

– Advanced Vector Extension (announced 2008)
• Longer SSE registers, more instructions

• If Intel didn’t extend with compatibility, its competitors
would!
– Technical elegance ≠ market success

15

Basic x86 Registers

16

Basic x86 Addressing Modes

• Two operands per instruction
Source/dest operand Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

n Memory addressing modes
n Address in register
n Address = Rbase + displacement
n Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
n Address = Rbase + 2scale × Rindex + displacement

17

x86 Instruction Encoding

• Variable length encoding
– Postfix bytes specify

addressing mode
– Prefix bytes modify

operation
• Operand length, repetition,

locking, …

18

Implementing IA-32

• Complex instruction set makes implementation difficult
– Hardware translates instructions to simpler microoperations

• Simple instructions: 1–1
• Complex instructions: 1–many

– Microengine similar to RISC
– Market share makes this economically viable
• Comparable performance to RISC

– Compilers avoid complex instructions

19

More Materials for RISC-V Instruction

• Slides for RISC-V intro and specification:
– https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.

pdf
• RISC-V instruction reference cards:

– https://passlab.github.io/ITSC3181/resources/RISCVGreenCardv
8-20151013.pdf

• Information for learning assembly programming
– https://passlab.github.io/ITSC3181/resources/RISC-

VAssemblyProgramming.html
• Resources from the official website including the standard

– https://riscv.org/

20

https://passlab.github.io/ITSC3181/notes/lectureXX_RISCV_ISA.pdf
https://passlab.github.io/ITSC3181/resources/RISC-VAssemblyProgramming.html

Concluding Remarks

• Instruction Set Architecture are Hardware and Software Interface
• Three major classes of instructions
– Arithmetic and logic instructions
– Load/Store instructions
– Control transfer (branch and jump/link)
– Other helpful instruction, e.g. load immediate, etc.
• High-level language constructs to instruction sequence
– Arithmetic and logic expression => Arithmetic and logic instructions
– Array reference => address calculation and load/store
– If-else/switch-case, for/while-loop => branch and jump
– Function call => jump/link, store and restore registers

• Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Good design demands good compromises
4. Make the common case fast

§2.20 C
oncluding R

em
arks

21

Contents Not Covered.

• struct person { int age; int height;} sam;

• Class:

22

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0
20000
40000
60000
80000

100000
120000
140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

23

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

24

Lessons Learnt

• Instruction count and CPI are not good performance
indicators in isolation

• Compiler optimizations are sensitive to the algorithm
• Java/JIT compiled code is significantly faster than JVM

interpreted
– Comparable to optimized C in some cases
• Nothing can fix a dumb algorithm!

25

MIPS Instructions

• MIPS: commercial predecessor to RISC-V
• Similar basic set of instructions

– 32-bit instructions
– 32 general purpose registers, register 0 is always 0
– 32 floating-point registers
– Memory accessed only by load/store instructions
• Consistent use of addressing modes for all data sizes

• Different conditional branches
– For <, <=, >, >=
– RISC-V: blt, bge, bltu, bgeu
– MIPS: slt, sltu (set less than, result is 0 or 1)

• Then use beq, bne to complete the branch

§2.16 R
eal Stuff: M

IPS Instructions

26

Instruction Encoding

27

Other RISC-V Instructions

• Base integer instructions (RV64I)
– Those previously described, plus
– auipc rd, immed // rd = (imm<<12) + pc

• follow by jalr (adds 12-bit immed) for long jump
– slt, sltu, slti, sltui: set less than (like MIPS)
– addw, subw, addiw: 32-bit add/sub
– sllw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift
• 32-bit variant: RV32I

– registers are 32-bits wide, 32-bit operations

§2.18 The R
est of the R

ISC
-V Instruction Set

28

Instruction Set Extensions

• M: integer multiply, divide, remainder
• A: atomic memory operations
• F: single-precision floating point
• D: double-precision floating point
• C: compressed instructions

– 16-bit encoding for frequently used instructions

29

Fallacies

• Powerful instruction Þ higher performance
– Fewer instructions required
– But complex instructions are hard to implement
• May slow down all instructions, including simple ones

– Compilers are good at making fast code from simple instructions
• Use assembly code for high performance

– But modern compilers are better at dealing with modern
processors

– More lines of code Þmore errors and less productivity

§2.19 Fallacies and Pitfalls

30

Fallacies

• Backward compatibility Þ instruction set doesn’t change
– But they do accrete more instructions

x86 instruction set

31

Pitfalls

• Sequential words are not at sequential addresses
– Increment by 4, not by 1!
• Keeping a pointer to an automatic variable after procedure

returns
– e.g., passing pointer back via an argument
– Pointer becomes invalid when stack popped

32

