
Chapter 2: Instructions: Language of the Computer
2.8 – 2.10 Procedure, String and Addressing for Wide

ITSC 3181 Introduction to Computer Architecture
Fall 2021

https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Chapter 2: Instructions: Language of the Computer

• Lecture
– 2.1 Introduction
– 2.2 Operations of the Computer

Hardware
– 2.3 Operands of the Computer

Hardware
• Lecture
– 2.4 Signed and Unsigned

Numbers
– 2.5 Representing Instructions in

the Computer
• Lecture
– 2.6 Logical Operations
– 2.7 Instructions for Making

Decisions
2

☛• Lecture
– 2.8 Supporting Procedures in Computer

Hardware
– 2.9 Communicating with People
– 2.10 RISC-V Addressing for Wide Immediate

and Addresses
• Lecture
– 2.11 Parallelism and Instructions:

Synchronization
– 2.12 Translating and Starting a Program

• We covered before along with C Basics
– 2.13 A C Sort Example to Put It All Together
– 2.14 Arrays versus Pointers

• We covered most before along with C
Basics

– 2.15 Advanced Material: Compiling C and
Interpreting Java

– 2.16 Real Stuff: MIPS Instructions
– 2.17 Real Stuff: x86 Instructions
– 2.18 Real Stuff: The rest of RISC-V
– 2.19 Fallacies and Pitfalls
– 2.20 Concluding Remarks
– 2.21 Historical Perspective and Further

Reading

Three Classes of Instructions We Will Focus On:

1. Arithmetic-logic instructions
– add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
– lw and sw: Load/store word
– ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of
instruction execution)

– Conditional branch: bne, beq
– Unconditional jump: j

– Procedure call and return: jal and jr
3

Procedure Call: sum_full.c

4https://passlab.github.io/ITSC3181/exercises/sum

§2.8 Supporting Procedures in C
om

puter H
ardw

are

https://passlab.github.io/ITSC3181/exercises/sum

Procedure Call

• Control is transferred when there is procedure call and return
• Steps required

1. Place parameters in registers
2. Transfer control to procedure
3. Acquire storage for procedure
4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call

5

Sum Example, sum_full_riscv.s

6

Args for
sum call

https://passlab.github.io/ITSC3181/exercises/sum

Store return address in
reg and call transfer to
sum

Return to caller with return
value stored in register

https://passlab.github.io/ITSC3181/exercises/sum

Procedure Call Instructions

• Procedure call: jump and link
jal x1, ProcedureLabel
– Address of following instruction put in x1
– Jumps to target address
• Procedure return: jump and link register
jalr x0, 0(x1)
– Like jal, but jumps to 0 + address in x1
– Use x0 as rd (x0 cannot be changed)
– Can also be used for computed jumps
• e.g., for case/switch statements

7

Memory Layout of a Process

• Text: program code
• Static data: global variables
– e.g., static variables in C, constant arrays and strings
– x3 (global pointer) initialized to address allowing ±offsets into

this segment
• Dynamic data: heap
– E.g., malloc in C, new in Java
• Stack: automatic storage

8

Local Data on the Stack

• Local data allocated by callee
– e.g., C automatic variables
• Procedure frame (activation record)
– Used by some compilers to manage stack storage

9

Stack Memory Used for Function Calls

• Stack is Last-In-First-Out (LIFO) data structure to
store the info of each function of the call path
– Main() calls foo(), foo() calls bar(), bar() calls tar()
– Call in: push function to the stack top
– Return: pop function from the top
• Stack frame, function frame, activation record
– The memory and the data of the info for each

function call

10

main()
foo()
bar()
tar()

push pop

top

Stack Frame (Activation Record) of a Function Call

• Information:
– Parameters
– Local variables
– Return address
– Location to put return value

when function exits
– Control link to the caller’s

activation record
– Saved registers
– Temporary variables and

intermediate results
– (not always) Access link to the

function’s static parent
• Frame pointer (fp register):

the starting address of AR
• Stack pointer (sp register):

the ending address of AR
11

Leaf Procedure Example

• Leaf procedure
– A procedure does not call other procedures
• Thinking of procedure calls as a tree

• C code:
long long int leaf_example (
long long int g, long long int h,
long long int i, long long int j) {
long long int f;
f = (g + h) - (i + j);
return f;

}
– Arguments g, …, j in x10, …, x13
– f in x20
– temporaries x5, x6
– Need to save x5, x6, x20 on stack

12

Local Data on the Stack

• Stack before, during and after the function call
– SP (stack pointer) is the register that store the address of the

current function call

13

int main (…) {
…
long long int result = leaf_example(…);
…

}

If caller uses x5, x6 or x20, we have to preserve them. They are preserved in the callee stack.

• RISC-V code:
leaf_example:

addi sp,sp,-24

sd x5,16(sp)

sd x6,8(sp)

sd x20,0(sp)

add x5,x10,x11

add x6,x12,x13

sub x20,x5,x6

addi x10,x20,0

ld x20,0(sp)

ld x6,8(sp)

ld x5,16(sp)

addi sp,sp,24

jalr x0,0(x1)

Leaf Procedure Example

Save x5, x6, x20 on stack

x5 = g + h
x6 = i + j
f = x5 – x6
copy f to return register

Resore x5, x6, x20 from stack

Return to caller
14

Adjust stack to make room for 3 items

Adjust back to return memory for 3 items

Register Usage

• x5 – x7, x28 – x31: temporary registers
– Not automatically preserved by the callee
• x8 – x9, x18 – x27: saved registers
– If used, the callee saves and restores them

15

Non-Leaf Procedures

• Procedures that call other procedures
• For nested call, caller needs to save on the stack:
– Its return address
– Any arguments and temporaries needed after the call
• Restore from the stack after the call

16

Non-Leaf Procedure Example

• C code:
long long int fact (long long int n)
{
if (n < 1) return n;
else return n * fact(n - 1);

}
– Argument n in x10
– Result in x10

• It is a recursive function.

17

• RISC-V code:
fact:

addi sp,sp,-16

sd x1,8(sp)

sd x10,0(sp)

addi x5,x10,-1

bge x5,x0,L1

addi x10,x0,1

addi sp,sp,16

jalr x0,0(x1)

L1: addi x10,x10,-1

jal x1,fact

addi x6,x10,0

ld x10,0(sp)

ld x1,8(sp)

addi sp,sp,16

mul x10,x10,x6

jalr x0,0(x1)

Leaf Procedure Example

Save return address and n on stack

x5 = n - 1

Else, set return value to 1

n = n - 1

if n >= 1, go to L1

call fact(n-1)

Pop stack, don’t bother restoring values
Return

Restore caller’s n
Restore caller’s return address
Pop stack
return n * fact(n-1)
return

move result of fact(n - 1) to x6

18

Save the argument n

Adjust stack for two items

Character Data

• Byte-encoded character sets
– ASCII: 128 characters
• 95 graphic, 33 control

– Latin-1: 256 characters
• ASCII, +96 more graphic characters

• Unicode: 32-bit character set
– Used in Java, C++ wide characters, …
– Most of the world’s alphabets, plus symbols
– UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith People

19

ASCII Characters

• Each character is represented by a 8-bit byte è max 256

20

Byte/Halfword/Word Operations
• RISC-V byte/halfword/word load/store
– Load byte/halfword/word: Sign extend to 64 bits in rd
• lb rd, offset(rs1)
• lh rd, offset(rs1)

• lw rd, offset(rs1)

– Load byte/halfword/word unsigned: Zero extend to 64 bits
in rd
• lbu rd, offset(rs1)
• lhu rd, offset(rs1)

• lwu rd, offset(rs1)

– Store byte/halfword/word: Store rightmost 8/16/32 bits
• sb rs2, offset(rs1)
• sh rs2, offset(rs1)

• sw rs2, offset(rs1)

21

String Copy Example

• C code:
– A string is an array of characters with` \0` as the last character
• char x[100]; a string of 100 character
• char * x2; is used for refer to a string

– Null-terminated string
void strcpy (char x[], char y[])
{ size_t i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}
– Base address for x and y are in x10 and x11
– i is in x19

22

• RISC-V code:
strcpy:

addi sp,sp,-8 // adjust stack for 1 doubleword
sd x19,0(sp) // save x19
add x19,x0,x0 // i=0

L1: add x5,x19,x10 // x5 = addr of y[i]
lbu x6,0(x5) // x6 = y[i]

add x7,x19,x10 // x7 = addr of x[i]
sb x6,0(x7) // x[i] = y[i]
beq x6,x0,L2 // if y[i] == \0 then exit
addi x19,x19,1 // i = i + 1
jal x0,L1 // next iteration of loop

L2: ld x19,0(sp) // restore saved x19
addi sp,sp,8 // pop 1 doubleword from stack
jalr x0,0(x1) // and return

String Copy Example

23

32-bit Constants

• Most constants are small
– I-format instructions have only 12 bits for immediate
• E.g. addi x6, x0, 1024

– 12-bit immediate is sufficient most of the time
• For the occasional 32-bit constant
lui rd, constant (load upper immediate)
– Copies 20-bit constant to bits [31:12] of rd
– Extends bit 31 to bits [63:32]
– Clears bits [11:0] of rd to 0

24

0000 0000 0011 1101 00000000 0000 0000 0000
lui x19, 976 // 0x003D0

§2.10 R
ISC

-V Addressing for W
ide Im

m
ediates and Addresses

addi x19,x19,128 // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000

Now x19 has 976*212 + 128

SB-Format Encoding for Branch Instr (e.g. beq)
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

• Branch instructions, e.g. ”beq x3, x4, EXIT”, specify
– Opcode, two source registers (rs1 and rs2), target address as imm
– Most branch targets are near branch, Forward or backward
• SB-Format instructions: beq x8, x9, 4

• PC-relative addressing
– Branch target address is encoded as the offset off the the address of

the branch instruction itself
– Target address = PC (Branch address) + immediate × 2

25

rs2 rs1 funct3 opcodeimm
[10:5]

imm
[4:1]

imm[12] imm[11]

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

imm of beq instruction is the offset between the address of beq
instruction and the target address (page 115 of the text book)

• The Exit offset of the bne is encoded as 6 (..0110)
– Offset is 6*2 = 12 bytes, i.e. 3 instr forward
– Exit’s address = bne’s address (80012) + 12 = 80024 (Exit)
• The Loop offset of the beq is encoded as -10 (..110110)
– Offset is -10*2 = -20 bytes, i.e. 5 instr backward
– Loop’s address = beq’s address (80020) + -20 = 80000 (Loop)
• imm[11] is the sign bit of the imm à help decoding
• To calculate the imm for beq: (target-PC)/2 26

Jump Addressing

• Jump and link (jal) target uses 20-bit immediate for larger
range

• UJ format:

27

n For long jumps, eg, to 32-bit absolute
address
n lui: load address[31:12] to temp register
n jalr: add address[11:0] and jump to target

rd opcode
7 bits5 bits

imm[11]imm[20]

imm[10:1] imm[19:12]

Summary of RISC-V Addressing (How Operands are Specified or
Provided)

28

RISC-V Encoding and Decoding: Encoding Format

29

RISC-V Encoding and Decoding: Opcode/Funct

30

To Decode an Instruction Word

• To decode an instruction word: 00578833hex

1. Convert to binary: 0000 0000 0101 0111 1000 1000 0011 0011
2. Determine the opcode, the rightmost 7 bits: 011 0011
3. It is R-type arithmetic instruction
4. Decode the rest, func3 and funct7 and then rs1, rs2, rd

5. Add x16, x15, x5
31

