
Chapter 2: Instructions: Language of the Computer
2.1 – 2.3 Introduction, Operations and Operands,

2.4 – 2.5 Signed and Unsigned Numbers, Representing Instructions in
the Computer

ITSC 3181, Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Chapter 2: Instructions: Language of the Computer

• Lecture
– 2.1 Introduction
– 2.2 Operations of the Computer

Hardware
– 2.3 Operands of the Computer

Hardware
• Lecture

– 2.4 Signed and Unsigned
Numbers

– 2.5 Representing Instructions in
the Computer

• Lecture
– 2.6 Logical Operations
– 2.7 Instructions for Making

Decisions
2

☛ • Lecture
– 2.8 Supporting Procedures in Computer

Hardware
– 2.9 Communicating with People
– 2.10 RISC-V Addressing for Wide Immediate

and Addresses
• Lecture
– 2.11 Parallelism and Instructions:

Synchronization
– 2.12 Translating and Starting a Program

• We covered before along with C Basics
– 2.13 A C Sort Example to Put It All Together
– 2.14 Arrays versus Pointers

• We covered most before along with C
Basics

– 2.15 Advanced Material: Compiling C and
Interpreting Java

– 2.16 Real Stuff: MIPS Instructions
– 2.17 Real Stuff: x86 Instructions
– 2.18 Real Stuff: The rest of RISC-V
– 2.19 Fallacies and Pitfalls
– 2.20 Concluding Remarks
– 2.21 Historical Perspective and Further

Reading

Instruction Set

• The repertoire of instructions of a computer
• Different computers have different instruction sets

– But with many aspects in common
• Early computers had very simple instruction sets

– Simplified implementation
• Many modern computers also have simple instruction sets

3

§2.1 Introduction

RISC-V and X86_64 Assembly Example

4

The RISC-V Instruction Set

• Used as the example throughout the book
– We will use and study only three classes of instructions for a handful of ins
– Sufficient for most programs.

• Developed at UC Berkeley as open ISA
• Now managed by the RISC-V Foundation (riscv.org)
• Typical of many modern ISAs
– See RISC-V Reference Data tear-out card

• Similar ISAs have a large share of embedded core market
– Applications in consumer electronics, network/storage, cameras, printers, …

• Other Instruction Set Architectures:
– X86 and X86_32: Intel and AMD, main-stream desktop/laptop/server
– ARM: smart phone/pad
– RISC-V: emerging and free ISA, closer to MIPS than other ISAs
• The same textbook in RISC-V version

– Others: Power, SPARC, etc

5

RISC vs. CISC

• Design “philosophies” for ISAs: RISC vs. CISC
– CISC = Complex Instruction Set Computer

• X86, X86_64 (Intel and AMD, main-stream desktop/laptop/server)
• X86* internally are still RISC

– RISC = Reduced Instruction Set Computer
• ARM: smart phone/pad
• RISC-V: free ISA, closer to MIPS than other ISAs, the same textbook in RISC-V version
• Others: Power, SPARC, etc

• Tradeoff:

• RISC:
– Small instruction set

• Easier for compilers
– Limit each instruction to (at most):

• three register accesses,
• one memory access,
• one ALU operation
• => facilitates parallel instruction execution (ILP)

– Load-store machine: minimize off-chip access

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

6

We Will Study Three Classes of Instructions

1. Arithmetic-logic instructions
– add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
– lw and sw: Load/store word
– ld and sd: Load/store doubleword

3. Control transfer instructions (changing sequence of
instruction execution)

– Conditional branch: bne, beq
– Unconditional jump: j (
– Procedure call and return: jal and jr

7

Components of a Computer

8

Main Memory I/O Processor
ALU

Control Unit

IR PC

MARMBR

Data Bus

Control Bus

Address Bus

Input
Output

CPU or Processor

Arithmetic Operations (of the First Class Instrs)

• Add and subtract, three operands
– Two sources operands: provide input or source data
– One destination operand: where result goes to.

add a, b, c //sum of b and c is placed in a

• All arithmetic operations have this form
– Three operands, two sources and one destination
– 3-operands instructions

• Design Principle 1: Simplicity favors regularity
– Regularity makes implementation simpler
– Simplicity enables higher performance at lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

9

Arithmetic Example

• C code:

f = (g + h) - (i + j);

• Compiled RISC-V code:

add t0, g, h // temp t0 = g + h
add t1, i, j // temp t1 = i + j
sub f, t0, t1 // f = t0 - t1

• What are those symbols (t0, g, h, …) and where are their values are
stored?

– Recall variables refers to memory locations

– Registers: super-fast small memory/storage used inside a CPU chip

10

Registers in CPU

• Registers are super-fast small memory/storage used in CPU.
– General-purpose registers, program counter, instruction register,

status register, floating-point register, etc
– 32 GP Registers in RISC-V CPU, 32-bit or 64-bit size for each
• Data and instructions need to be loaded to memory and

then register in order to be processed.

11

§2.3 O
perands of the C

om
puter H

ardw
are

Register Operands

• Arithmetic instructions use register operands
– add <dest>, <src1>, <src2>
• 64-bit RISC-V has 32 64-bit general purpose registers

– The storage for all GP registers is called a register file
• It is storage, i.e. to store data

– Use for frequently accessed data
– Numbered x0 to x31

• the “memory address” for register

– 64-bit data is called a ”doubleword”
– 32-bit data called a “word”

• Design Principle 2: Smaller is faster
– c.f. main memory: millions of locations

12

RISC-V 32 64-Bit Registers, x0 to x31

• Usage convention for most programs:
– x0: the constant value 0

– x1: return address of a function
– x2: stack pointer of a functon
– x3: global pointer
– x4: thread pointer
– x5 – x7, x28 – x31: temporaries
– x8: frame pointer
– x9, x18 – x27: saved registers
– x10 – x11: function arguments/results
– x12 – x17: function arguments

13

Register Operand Example

• C code:
f = (g + h) - (i + j);
– f, …, j values are already loaded in x19, x20, …, x23

• Compiled RISC-V code, all are register operands
– Three operands: the first operand is destination, last two are

source operands
add x5, x20, x21 // x5 = x20 + x21
add x6, x22, x23 // x6 = x22 + x23
sub x19, x5, x6 // x19 = x5 – x6

14

Second Class Instr: Memory Access

• Main memory used for composite data
– Arrays, structures, dynamic data
• To apply arithmetic operations

– Load values from memory into registers
– Store result from register to memory

• Memory is byte addressed
– Each address identifies an 8-bit byte
• RISC-V is Little Endian

– Least-significant byte at least address of a word
– c.f. Big Endian: Most-significant byte at least address

15

To store number 12345678

Memory Access Example

• C code:
double A[N]; //double size is 8 bytes

A[12] = h + A[8];
– h in x21, base address of A in x22

• Compiled RISC-V code:
– Index 8 requires offset of 64
– A[8] right-val, A[12]: left-val

ld x9, 64(x22) // load doubleword
add x9, x21, x9
sd x9, 96(x22) // store doubleword

16
64(x22) and 96(x22) are memory operands, in contrast to register operands (x9)

Load and Store Instructions

Format: ld rd, offset(rs1)

Example: ld x9, 64(x22) // load doubleword to x9

• ld: load a doubleword from a memory location whose address is
specified as rs1+offset (base+offset, x22+64) into register rd (x9)
– Base should be stored in an register, offset MUST be a constant number
– Address is specified similar to array element, e.g. A[8], for ld, the address is

offset(base), e.g. 64(x22)
Format: sd rs2, offset(rs1)

Example: sd x9, 96(x22) // store a doubleword

• sd: store a doubleword from register rs2 (x9 in the example) to a
memory location whose address is specified as rs1+offset(base+offset,
x22+96). Offset MUST be a constant number.

• Load and store are the ONLY two instructions that access memory
• lw: load a word from memory location to a register
• sw: store a word from a register to a memory location

17

More Load/Store Examples: Addressing Memory

• int A[100]; base address (A, or &A[0]) is in x23, int is 4 bytes
Format: lw rd, offset(rs1)

Example: lw x6, 16(x23) // load word from A[4] to x6

Format: sw rs2, offset(rs1)

Example: sw x7, 32(x23) // store a word from x7 to A[8]

• L/S A[0]: address can be specified as 0(x23).

• A scalar variable (e.g. int f;) can be considered as one-element
array (e.g. int f[1]) for load/store its value between mem and reg
– L/S a variable’s (e.g. int f) 32-bit value stored in a specific memory

address which is stored in register x6 to register x8
• lw x8, 0(x6) //offset is 0
• sw x8, 0(x6)

18

A[8] = A[10], base is in x23, each element 4 bytes

• Lw x6, 40(x23)
• Sw x6, 32(x23)

• The context of the terms we use: base and offset
– For array/variable: base: &A[0], offset: bytes between A[0] and A[i];
– For LW/SW: base: base register, offset: the constant in the instr

– If you have address of A[4] in x9
• LW x5, 0(x9): load A[4]
• SW x5, 8(x9): store to A[6]
• SW x5, -8(x9): store to A[2]

• Lab 02 helps you step-by-step for address
19

More Load/Store Examples: Addressing Memory
B[i], i is NOT constant

int B[N], B2[N]; // int type, 4 byptes
B2[i] = B[i];

• Base address for B and B2 are in register x22 and x23. i is stored in
register x5
– We need load B[i] to a register, e.g. x9, and then store x9 to B[2]
– Need to use the address for B[i] and B2[i] in load and store
• base+offset: B+i*4, and B2+i*4

– But i*4 is not constant, cannot be the offset of load and store
– Solution: Calculate the address of B[i] and B2[i] and store in registers as

base for LW/SW, and then use 0 as offset in L/S

slliw x6, x5, 2 // x6 now store i*4, slliw is i<<2 (shift left logic)
add x7, x22, x6 // x7 now stores address of B[i].
lw x9, 0(x7) // load a word from memory location (x7+0), which is B[i], into

// reg x9
add x8, x23, x6 // x8 now stores the address of B2[i]
sw x9, 0(x8) // store a word from register x9 to memory location (x8+0)

// which is B2[i] 20

Registers vs. Memory

• Registers are faster to access than memory
– ~100x faster, ~10 more expensive, and takes more space
• Operating on memory data requires loads and stores

– More instructions to be executed
• Compiler must use registers for variables as much as possible

– Only spill to memory for less frequently used variables
– Register optimization is important!

21

Constant or Immediate Operands

• Constant data specified in an instruction
addi x22, x22, 4

• No subtract immediate instruction
– Just use a negative constant
addi x2, x1, -1

• Design Principle 3: Make the common case fast
– Small constants are common
– Immediate operand avoids a load instruction

22

The Constant Zero

• RISC-V register x0 is the constant 0 always
– Cannot be overwritten

• Useful for common operations
– E.g., move between registers
add x9, x5, x0

addi x9, x5, 0

23

Two Classes of Instructions so Far

• Arithmetic instructions
– Three operands, could be either register or immediate (for source

operands only)
• add x10, x5, x6; sub x5, x4, x7
• addi x10, x5, 10;

• Load and store (L/S) instructions: Load data from memory to
register and store data from register to memory
– Remember the way of specifying memory address (base+offset)
– ld x9, 64(x22) // load doubleword
sd x9, 96(x22) // store doubleword

• With these two classes instructions, you can implement the
following high-level code, and different ways of combining them
– f = (g + h) - (i + j);
– A[12] = h + A[8];

– For L/S: Left-value (of =) to Store, Right-value of (=) to Load 24

Psuedo-instructions Used in RARS

• Are NOT machine instructions
• Are assembly instructions that help programmers

– Translated to machine instructions by assembler
• For example

– mv x6, x7 //move/copy value from x7 to x6
• Machine instruction: add x6, x7, x0 //since x0 is always 0
• Machine instruction: addi x6, x7, 0

– li x8, 100 //set the value of a register to be an immediate (load
immediate)
• Machine instruction: addi x8, x0, 100

– la x10, label //load address of label to register
• Need two machine instructions
– auipc x8, xxx
– addi x0, x0, xxx

25

Clarifying the Terms

• For ALU to access register
– Fetch and set

• For move data between mem and register
– Load and store

• For move data between storage and mem
– Read and write

26

Chapter 2: Instructions: Language of the Computer

• Lecture
– 2.1 Introduction
– 2.2 Operations of the Computer

Hardware
– 2.3 Operands of the Computer

Hardware
• Lecture

– 2.4 Signed and Unsigned
Numbers

– 2.5 Representing Instructions in
the Computer

• Lecture
– 2.6 Logical Operations
– 2.7 Instructions for Making

Decisions
27

☛

• Lecture
– 2.8 Supporting Procedures in Computer

Hardware
– 2.9 Communicating with People
– 2.10 RISC-V Addressing for Wide Immediate

and Addresses
• Lecture
– 2.11 Parallelism and Instructions:

Synchronization
– 2.12 Translating and Starting a Program

• We covered before along with C Basics
– 2.13 A C Sort Example to Put It All Together
– 2.14 Arrays versus Pointers

• We covered most before along with C
Basics

– 2.15 Advanced Material: Compiling C and
Interpreting Java

– 2.16 Real Stuff: MIPS Instructions
– 2.17 Real Stuff: x86 Instructions
– 2.18 Real Stuff: The rest of RISC-V
– 2.19 Fallacies and Pitfalls
– 2.20 Concluding Remarks
– 2.21 Historical Perspective and Further

Reading

Unsigned (Positive) Binary Integers

• Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= -

-
-

- !

n Range: 0 to +2n – 1
n 3 digits for 000 to 111 (0 to 23-1)
n 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

n Using 32 bits
n 0 to +4,294,967,295

§2.4 Signed and U
nsigned N

um
bers

28

Representing Signed (Positive and Negative) Numbers:
Two’s Complement

• The most significant bit indicates the sign (1 = negative, 0 = positive)
– 0111: +710
– 1010: -610

• Positive numbers: SignMagnitude
– 0111: +710

• Negative numbers: Special, NOT SignMagnitude format
– 1010 is -610, why it is “1 010”
– 1110 is NOT -610 (110 is binary 6)

• Given a 2’s-complement binary number, what is its decimal value:
– Look at the most significant bit for the sign of the number:

• 1 = negative, 0 = positive
– Positive: most significant bit is 0, the absolute value is the value of the binary number

• 0111 = +710, 0 is sign (+), 111 is 7, so it is +7

– Negative: most significant bit is 1, the absolute value is the inverted bits of the
number + 1. inverting/flipping bit: 0 à 1, 1 à 0
• 1010 = (-1) (0101+1) = (-1)(0110) = -610 (inverting 1010 yields 0101)
• 1110 = (-1) (0001+1) = (-1) (0010) = -210

29

Two’s Complement ExamplesWhat is the decimal value of the two’s
complement number 10012?

• 10012 is negative,
• For the absolute value: invert it, which is 0110, and then plus

1:
0110
+ 1
01112 = 710, so 10012 = -710

• For computer, the value of a 2’s complement number can be
calculated using regular position binary form recognizing the
sign bit
– 1001 = (-1) * 23 + 0 + 0 + 1*20 = -7

30

Representing using 2’s-Complement Binary

• Given a decimal number, what is its 2’s-complement binary
representation?

• Positive: its binary representation
– 710 = 01112, most significant big MUST be 0 to indicate it is

positive

• Negative: invert bits of the binary representation of the
absolute value of the number and add up 1
– -3 = xxxx2
– Flip bits of 310 (00112)

= 1100
+ 1
11012 = -310

31

2’s-Complement Binary Representation of -610

• 610 = 01102, then invert +1
1001
+ 1
10102 = -610

32

Rang of Two’s Complement Numbers

• 4-digit 2’s-complment numbers:
• Most positive 4-bit number: 0111, 7
• Most negative 4-bit number: 1000, -8

• 1111 is -1

• Range of an N-bit two’s comp number:

[-(2N-1), 2N-1-1]

33

2’s-Complement Signed Integers (32 bits)

• Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++-= -

-
-

- !

n Range: –2n – 1 to +2n – 1 – 1
n Example

n 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

n Or do invert+1: -(0011+1) = -(0100) = -410
n For 32 bits

n –2,147,483,648 to + 2,147,483,647
34

2s-Complement Signed Integers of 32 Bits
• Bit 31 is sign bit
– 1 for negative numbers
– 0 for non-negative numbers

• Range: [-(232-1), 232-1-1]

• 2n – 1 can’t be represented
– 1000… is negative now
• Non-negative numbers have the same unsigned and 2s-

complement representation

• Some specific numbers
– 0: 0000 0000 … 0000
– –1: 1111 1111 … 1111
– Most-negative: 1000 0000 … 0000, which is –2,147,483,648
– Most-positive: 0111 1111 … 1111, which is 2,147,483,647

35

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++-= -

-
-

- !

Signed Negation

• Complement and add 1
– Complement means 1 → 0, 0 → 1

36

x1x

11111...111xx 2

-=+

-==+

n Example: negate +2
n +2 = 0000 0000 … 00102
n –2 = +2 +1 = 0000 0000 … 00102 + 1

= 1111 1111 … 11012 + 1
= 1111 1111 … 11102

• Add 6 + (-6) using two’s complement numbers

• Add -2 + 3 using two’s complement numbers

37

+
0110
1010

+
1110
0011

Add Two 2’s Complement Numbers: Just Bit-wise
Addition

Add Two 2’s Complement Numbers:
Just Bit-wise Addition, no need to recognize positive/negative number, easier to

implement in hardware

• Add 6 + (-6) using two’s complement numbers

• Add -2 + 3 using two’s complement numbers

38

+
0110
1010
10000

111

+
1110
0011
10001

111

Sign Extension
• Representing a number using more bits
– E.g. char a = -5; int b = a;
• A char variable takes 1 byte of memory, and an int variable takes 4 bytes.
• How to fill in the bits of the 4 bytes of memory for an int variable with a 8-bit

number?
– Preserve the numeric value

• Replicate the sign bit to the left
– c.f. unsigned values: extend with 0s
– 1011 (-5 with 4 bits) è 1111 1011 (-5 in 8 bits char)
– 11111011 (-5 in char) è 11111111 11111111 11111111 11111011 (-5 in 32-bits int)

• More examples: 8-bit to 16-bit
– +2: 0000 0010 => 0000 0000 0000 0010
– –2: 1111 1110 => 1111 1111 1111 1110

• In RISC-V instruction set
– addi: extend immediate value
– lb,lh,lw,ld: extend loaded byte/halfword/word/doubleword
– lbu, lhu, lwu, ldu: zero extend loaded byte/halfword/word/doubleword
– beq, bne: extend the displacement

39

Three Classes of Instructions

1. Arithmetic-logic instructions
– add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
– lw and sw: Load/store word
– ld and sd: Load/store doubleword

• Control transfer instructions (changing sequence of
instruction execution)
– Conditional branch: bne, beq
– Unconditional jump: j (
– Procedure call and return: jal and jr

40

Representing Instructions

• Instructions are encoded in binary
– Using binary numbers to represent

operations, operands, and immediate
– Called machine code
• RISC-V instructions

– Each instruction is encoded as a 32-bit instruction word
– Small number of formats encoding operation code (opcode),

register numbers, …
– Regularity!

• Instructions use 32 registers:
– We need 5 bit to identify 32 registers (0 to 31)
– 00000 to 11111

§2.5 R
epresenting Instructions in the C

om
puter

41

Hexadecimal

• Base 16 format to easily show binary number
– Compact representation of bit strings
– 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

n Example: eca8 6420
n 1110 1100 1010 1000 0110 0100 0010 0000

42

RISC-V R-Format Instructions

• R-Format: Operands are all from Registers
• Arithmetic and logic instructions that use registers for ALL

operands. Format: op rd, rs1, rs2.

• Instruction fields
– opcode: operation code
– rd: destination register number
– funct3: 3-bit function code (additional opcode)
– rs1: the first source register number
– rs2: the second source register number
– funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

32 bits

43

R-Format Encoding Example 1

add x9,x20,x21 (add rd, rs1, rs2)

x21, x20, x9 add

0000 0001 0101 1010 0000 0100 1011 0011two =
015A04B316

5 bits for rd, rs1 and rs2 because we have 32 registers,
thus only needs 5 bit to address a register

0 21 20 90 51

0000000 10101 10100 01001000 0110011

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

44

R-Format Encoding Example 2

add x6, x10, x6 (add rd, rs1, rs2)

x6, x10, x6 add

0000 0000 0110 0101 0000 0011 0011 0011two =
0065033316

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 6 10 60 51

0000000 00110 01010 00110000 0110011

45

Opcode (51), funct3 (0) and funct7(0) for each
instruction are defined by the ISA standard.

R-Format Instruction Encoding
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

46

RV32I Base Instruction Set

RV64I Base Instruction Set (in addition to RV32I)Ar
ith

m
et

ic
 in

st
ru

ct
io

ns
Lo

gi
c

in
st

ru
ct

io
ns

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

RISC-V I-Format Instructions

• I-Format: The second source operand is an Immediate, the first
source operand is register, destination operand is register.

• Immediate arithmetic/logic, and load instructions (NOT store
instruction)
– addi x22, x22, 4; Format: addi rd, rs1, #immediate
– ld x9, 64(x22); Format: ld|lw, rd, #immediate(rs1)
– rs1: source or base address register number
– immediate: constant operand, or offset added to base address

• 2s-complement, sign extended

– NOT for store: because destination for store is the memory location (not a register),
thus no rd for store.

• Design Principle 3: Good design demands good compromises
– Different formats complicate decoding, but allow 32-bit instructions

uniformly
– Keep formats as similar as possible

47

immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits

I-Format Instruction Encoding
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

48

immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits

Immediate arithmetic/logic load instructions

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Shift Operation Encoding

• Use immediate operands, I-Format
– Immediate: slli, sri, srai, etc

• If use registers for all operands, R-Format
– Sll, sri, sra

49

rs1 rdfunct3 opcode
6 bits 7 bits5 bits 5 bits3 bits

funct6 immed
6 bits

funct7 rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

rd

RISC-V S-Format Instructions

• S-Format: instructions that use two source register operands and
NO destination operand register (rd), only store instruction

• Format: sd|sw, rs2, #immediate(rs1)

• Different immediate format for store instructions
– sd x9, 96(x22);

– rs1: base address register number (x22)
– rs2: source operand register number (x9), which provide the value to be

stored to memory
– immediate: offset added to base address

• Split so that rs1 and rs2 fields always in the same place as for R- or I-Format

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

50

51

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]

S-Format Instruction Encoding
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf#page=116

Store instructions

http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

More Examples from Textbook 2.5

52

More Examples from Textbook 2.5

53

Stored Program Computers

• Instructions represented in
binary, just like data
• Instructions and data stored in

memory
• Programs can operate on

programs
– e.g., compilers, linkers, …
• Binary compatibility allows

compiled programs to work on
different computers
– Standardized ISAs

The BIG Picture

54

