
Chapter 2: Instructions: Language of the Computer
2.6 – 2.7 Logical Operations, and Branch Instructions

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Chapter 2: Instructions: Language of the Computer

• Lecture
– 2.1 Introduction
– 2.2 Operations of the Computer

Hardware
– 2.3 Operands of the Computer

Hardware
• Lecture
– 2.4 Signed and Unsigned

Numbers
– 2.5 Representing Instructions in

the Computer
• Lecture
– 2.6 Logical Operations
– 2.7 Instructions for Making

Decisions
2

☛

• Lecture
– 2.8 Supporting Procedures in Computer

Hardware
– 2.9 Communicating with People
– 2.10 RISC-V Addressing for Wide Immediate

and Addresses
• Lecture
– 2.11 Parallelism and Instructions:

Synchronization
– 2.12 Translating and Starting a Program

• We covered before along with C Basics
– 2.13 A C Sort Example to Put It All Together
– 2.14 Arrays versus Pointers

• We covered most before along with C
Basics

– 2.15 Advanced Material: Compiling C and
Interpreting Java

– 2.16 Real Stuff: MIPS Instructions
– 2.17 Real Stuff: x86 Instructions
– 2.18 Real Stuff: The rest of RISC-V
– 2.19 Fallacies and Pitfalls
– 2.20 Concluding Remarks
– 2.21 Historical Perspective and Further

Reading

Three Classes of Instructions We Will Focus On:

1. Arithmetic-logic instructions
– add, sub, addi, and, or, shift left|right, etc

2. Memory load and store instructions
– lw and sw: Load/store word
– ld and sd: Load/store doubleword

• Control transfer instructions (changing sequence of
instruction execution)
– Conditional branch: bne, beq
– Unconditional jump: j
– Procedure call and return: jal and jr

3

Logical Operations

• Instructions for bitwise manipulation

4

n Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Operation C Java RISC-V
Shift left << << Sll, slli

Shift right >> >>> Srl, srli

Bit-by-bit AND & & and, andi

Bit-by-bit OR | | or, ori

Bit-by-bit XOR ^ ^ xor, xori

Bit-by-bit NOT ~ ~

Shift Logic Operation Examples

• Shift Left Logic: slli by i bits: multiplies by 2i

– C/java: int i = 23; int j = i<<1; //46
– RISC-V: If i is in x5, and j is stored in x6:
• slliw x6, x5, 1
• slliw: shift left logic immediate word

• Instruction name
– Carries the operand type it operates
• B: byte, H: half-word, W: word, D: double word

• Shift Right Logic
– Java: int i = 23; int j = i >>> 1; //j=11
– C: int i = 23; int j = i >> 1; //j=11
– RISC-V: if i is in x5, j will be in x6:
• srliw x6, x5, 1

– Fill in 0, not much used for signed

5

Shift Right Arithmetic

• Shift right arithmetic (srai): Format: srai(w) rd, rs, #immediate
– Shift right and fill with sign bit
– srai by i bits: divides by 2i

– Java: i=-105; int j=i>>1; //-53
– RISC-V: if i is in x5, j will be in x6:

• sraiw x6, x5, -1;

6

-105

-53

Summary of Shift Operations

• immed: how many positions to shift

• Shift left logical (sll): Format: ssli(w) rd, rs, #immediate
– Shift left and fill with 0 bits
– slli by i bits: multiplies by 2i

– E.g. int a = b<<2; //a = b * 4 (22)

• Shift right logical (srl): Format: srli(w) rd, rs, #immediate
– Shift right and fill with 0 bits
– srli by i bits: divides by 2i (unsigned only)
– E.g. int a = b>>2; //a = b / 4 (22)

• Shift right arithmetic (sra): Format: srai(w) rd, rs, #immediate
– Shift right and fill with sign bit
– srai by i bits: divides by 2i

rs1 rdfunct3 opcode
6 bits 7 bits5 bits 5 bits3 bits

funct6 immed
6 bits

Shift Operation Encoding

• Use immediate operands, I-Format
– Immediate: slli, sri, srai, etc

• Can use registers for all operands, R-Format
– Sll, sri, sra

8

rs1 rdfunct3 opcode
6 bits 7 bits5 bits 5 bits3 bits

funct6 immed
6 bits

funct7 rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

rd

AND Operations

• Useful to mask bits in a word
– Select only some bits, clear others to 0

and x9,x10,x11

– To only select 4 bits of x10 in the specific positions: Set the bits
of x11 in the same positions 1, and the bits in other positions 0,
and then perform AND and store the result in a new register x9

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000

OR Operations

• Useful to include bits in a word
– Set some bits to 1, leave others unchanged

or x9,x10,x11

– To only set 4 bits of x10 in the specific positions 1: Set the bits of x11
in the same positions 1, and the bits in other positions 0, and then
perform OR and store the result in a new register x9

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000

XOR Operations

• Differencing operation
– E.g. NOT operation

xor x9,x10,x12 // NOT operation, invert bits

– To invert bit (logical NOT) of x10: set all bits of x12 as 1, do xor of x10
and x11, and store the result in x9

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x12

x9

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111 11111111 11111111 11110010 00111111

Conditional Branch
Branch to the labeled instruction if a condition is true, otherwise continue

• beq rs1, rs2, L1
– if (rs1 == rs2, i.e. true) branch to instruction labeled L1 (branch target);
– else continue the following instruction

beq x1, x2, label1

add x5, x6, x7
…
addi …

label1: sub x5, x6, x7
…

• bne rs1, rs2, L1
– if (rs1 != rs2) branch to instruction labeled L1 (branch target);
– else continue the following instruction
• J: unconditional jump (not an instruction)
– beq x0, x0, L1

12

§2.7 Instructions for M
aking D

ecisions

True

beq x1, x2, label1

add x5, x6, x7
…
addi …

label1: sub x5, x6, x7
…

True
False

Translating If Statements 1/2

• C code:

if (i==j) f = g+h;
else f = g-h;

• Compiled RISC-V code:

bne x22, x23, Else //branch if not equal
add x19, x20, x21 //Then path
beq x0, x0, Exit //unconditional

Else: sub x19, x20, x21 //Else path
Exit: …

13

Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using bne (reverse of if (==)) to branch to the Else path b.c. we want the code
following the bne to be the code of the Then path

2. We need “beq x0 x0 Exit”, an unconditional jump, to let Then path terminate since
CPU executes instruction in the sequence if not branching.

Translating If Statements 2/2

• C code:

if (i==j) f = g+h;
else f = g-h;

• Compiled RISC-V code:

beq x22, x23, Then //branch if equal
sub x19, x20, x21 //Else path
beq x0, x0, Exit //unconditional

Then: add x19, x20, x21 //Then path
Exit:

14

Variable f g h i j

Register x19 x20 x21 x22 x23

1. Using beq (for if (==)) to branch to the Then path
2. The instruction that follows the beq is the Else path
3. We need “beq x0 x0 Exit”, a unconditional jump, to let Else path terminate since CPU

executes instruction in the sequence if not branching.

Translating Loop Statement

15

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

for (i=0; i<100; i++) { … }

while (i<100) { …; i++; }

• Do the loop structure first
– Init condition
– Loop condition (using reverse

relationship for branch instr)
– True path (the loop body)
– Loop back
– False path (break the loop)
• Then translate the loop body

Loop: beq/bge x22, x23, Exit
… # loop body

addi, x22, x22, 1
beq x0, x0, loop

Exit:

Translating Loop Statement: for loop

• C code:

for (i=0; i<100; i++) …
– i in x22
• RISC-V code:

addi x22, x0, 0
li x23, 100

Loop: bge x22, x23, Exit //beq works
… …
addi x22, x22, 1 //true,the loop body,i++

beq x0, x0, Loop
Exit: …

16

1. Using bge for (<) to branch to the false/exit path, which breaks the loop
2. The instruction(s) following bge are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

i < 100 ?

i ++Exit

TrueFalse

i = 0;

…

Translating Loop Statement: while loop (textbook 2.7)

• C code:

while (save[i] == k) i += 1;
– i in x22, k in x24
– address of save in x25
• RISC-V code: (save[i] is to be read/loaded)

Loop: slli x10, x22, 3 //x10 has i*8
add x10, x10, x25 //base+offset
ld x9, 0(x10)//save[i] in x9
bne x9, x24, Exit //false
addi x22, x22, 1 //true,the loop body,i=i+1

beq x0, x0, Loop
Exit: …

17

1. Using bne for (==) to branch to the false path, which breaks the loop by going to the Exit
2. The instruction(s) following bne are for the true path, which are for the loop body.
3. beq to jumping back to the beginning of the loop

(save[i]
== k) ?

i += 1Exit

TrueFalse

More Conditional Operations

• blt rs1, rs2, L1
– if (rs1 < rs2) branch to instruction labeled L1

• bge rs1, rs2, L1
– if (rs1 >= rs2) branch to instruction labeled L1

• Example:
if (a > b) a += 1; //a in x22, b in x23

bge x23, x22, Exit // branch if b >= a
addi x22, x22, 1

Exit:

• 1-D stencil: B2[i] = B[i-1] + B[i] + B[i+1]; int type
– Representing a typical program pattern: Need to access a

memory location and its surrounding area

• Converting to assembly
– Similar to while loop
– Do the loop structure first (init, condition, loop back, etc)
– Then do the loop body

19

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

B[3]B[2] B[i-1]B[i-2] B[i+1]B[i] B[i+2] B[N-3]B[N-4]B[1]B[0] B[N-1]B[N-2]

B2[3]B2[2] B2[i-1]B2[i-2] B2[i+1]B2[i] B2[i+2] B2[N-3]B2[N-4]B2[1]B2[0] B2[N-1]B2[N-2]

for (i=1; i<M-1; i++) B2[i] = B[i-1] + B[i] + B[i+1];

• Base address B and B2 are in register x22 and x23. i is stored in
register x5, M is stored in x4.

addi x5, x0, 1 // i=1
addi x21, x4, -1 // loop bound x21 has M-1

LOOP: bge x5, x21, Exit
slliw x6, x5, 2 // x6 now store i*4, slliw is i<<2 (shift left logic)
add x7, x22, x6 // x7 now stores address of B[i].
lw x9, 0(x7) // load B[i] from memory location (x7+0) to x9
lw x10, -4(x7) // load B[i-1] to x10
add x9, x10, x9 // x9 = B[i] + B[i-1]
lw x10, 4(x7) //load B[i+1] to x10
add x9, x10, x9 // x9 = B[i-1] + B[i] + B[i+1]
add x8, x23, x6 // x8 now stores the address of B2[i]
sw x9, 0(x8) // store value for B2[i] from register x9 to memory (x8+0)
addi x5, x5, 1 // i++
beq x0, x0, LOOP

Exit:
20

Using bge (>=) for <, i.e.
reverse relationship, to
exit

Why Use Reverse Relationship between High-level
Language Code and instructions

• To keep the original code sequence
and structure as much as possible.

• High level language
– If (==|>|<, …) true do the following things
– while (==|>|<, …) do the following things
– for (; i<M; …) do the following things

• b* Instructions
– If (true), go to branch target,

• i.e. do NOT the following things of b*

21

L2: addi x5, x5, 1
add x10, x5, x11
beq x5, x6, L1
add x10, x10, x9
sub ….
…

L1: sub x10, x10, x9
add …
…

Signed vs. Unsigned

• Signed comparison: blt, bge
• Unsigned comparison: bltu, bgeu
• Example

– x22 = 1111 1111 1111 1111 1111 1111 1111 1111
– x23 = 0000 0000 0000 0000 0000 0000 0000 0001
– x22 < x23 // signed

• –1 < +1
• “blt x22 x23” true and branch to target

– x22 > x23 // unsigned

• +4,294,967,295 > +1
• “bltu x22 x23” false and not branch

Code Structure of A Program

.globl main #declare main function

.data # The .data section of the program is used to
reserve memory to use for the variables/arrays

.text #The .text section is the actual code
main: #definition of main function

23

Declare An Array

.globl main #declare main function

.data #The .data section, for the variables/arrays
buffer: .space 8 #declare a symbol named "buffer" for

8 bytes of memory.
For a word element, this correspond to "int buffer[2]"
#If you need to declare an array of 100 elements of int,

use "myArray: .space 400
.text #The .text section of the program is the actual code
main: #definition of main function

la t0, buffer # set register t0 to have the address of the buffe[0]
li t1, 8 # Set register t1 to have immediate number 8

24

Random Number Generator

li a0, 0 # for random number seed
li a1, 100 # range of random number
li a7, 42 # rand code
ecall # call random number generator to
generate a random number stored in a0

• Check:
https://github.com/TheThirdOne/rars/wiki/Environment-
Calls

25

https://github.com/TheThirdOne/rars/wiki/Environment-Calls

Memory.s file
.globl main #declare main function
.data #The .data section of the program is used to claim memory to use for the variables/arrays of the program
buffer: .space 8 #declare a symbol named "buffer" for 8 bytes of memory. For a word element, this coorespond to "int buffer[2]"

#This declaration claims 8 bytes of memory.
#If you need to declare an array of 100 elements of word, use "myArray: .space 400

.text #The .text section of the program is the actual code
main: #definition of main function
la t0, buffer # set register t0 to have the address of the buffer variable
li t1, 8 # Set register t1 to have immediate number 8
sw t1, 0(t0) # store a word (4 bytes) of what register t1 contains (8) to memory address 0(t0), which is buffer[0]
lw t2, 0(t0) # load a word from memory address 0(t0) to register t2, i.e. buffer[0] -> t2
bne t1, t2, failure # check whether register t1 and t2 contain the same value or not. If not, branch to failure, else continue the next
instruction
li t3, 56 # set register t3 to have immediate 56
sw t3, 4(t0) # store a word of what register t3 contains (56) to memory address 4(t0), which is buffer[1]
addi t0, t0, 4 # increment register t0 (&buffer) by 4, t0 now contains buffer+4, which is &buffer[1]
lw t4, 0(t0) # load a word from memory 0(t0) (&buffer[1]) to register t4
bne t3, t4, failure # check whether register t3 and t4 contain the same value or not. If not, branch to failure, else continue.
lw t5, -4(t0) # load a word from memory -4(t0) to register t5. -4(t0) address is actually &buffer[0] since register t0 now contains the
address of buffer[1]
bne t5,t1, failure # check whether register t5 and t1 contain the same value or not. They should both contain 8
li t1, 0xFF00F007 # set register t1 to have value 0xFF00F007
sw t1, 0(t0) # store a word of what register t1 contains to memory address 0(t0) (&buffer[1])
lb t2, 0(t0)

26

Example
• Find the minimum of an array

A is in t0, min is in t1, i is in t2, N is in t3

Init condition: i=0
add t2, x0 x0; // li t2, 0
lw t1, 0(t0)

Loop: bge t2, t3, Exit; // (if i >= N) break the loop, the false path

slli t6, t2, 2; //mul t6, t2, 4
add t7, t0, t6
lw t4, 0(t7)
blt t4 t1, TRUE
J FALSE

TRUE: add t1, x0, t4; // copy A[i] to min
FALSE:

addi t2, t2, 1
J loop; //beq x0 x0 loop

Exit: 27

int A[N];
int min = A[0];
for (i=0; i<N; i++) {

if (A[i] < min) min = A[i]; //loop body
}

Switch-case

int i;
switch (i) {

case 0:
a = 0;
break;

case 1:
a = 1;
break;

case 2:
a = 2;
break;

default:
a = i;

}
28

Branch is ”if (…) goto ” of high-level code

29

L2: addi x5, x5, 1
add x10, x5, x11
beq x5, x6, L1
add x10, x10, x9
sub ….
…

L1: sub x10, x10, x9
add …
…

Branch is ”if (…) goto ” of high-level code

• Not directly
If (…) {

…
} else {

…
}

• With branch (if goto), we can implement:
– if … else
– for loop, while loop, do loop
– switch case

30

L2: addi x5, x5, 1
add x10, x5, x11
beq x5, x6, L1
add x10, x10, x9
sub ….
…

L1: sub x10, x10, x9
add …
…

Label in C

• Label (a program symbol) is the symbolic representation of
the address of the memory that the instruction is stored in.

31

Compiling Loop Statements 2/3

• C code:

while (save[i] == k) i += 1;
– i in x22, k in x24
– address of save in x25
• RISC-V code: (save[i] is to be read/loaded)

Loop: slli x10, x22, 3 //x10 has i*8
add x10, x10, x25 //base+offset
ld x9, 0(x10)//newbase in x10
beq x9, x24, Body //True
beq x0, x0, Exit //False

Body: addi x22, x22, 1 //true,the loop body,i=i+1

beq x0, x0, Loop
Exit: …

32

1. Using beq for (==) to branch to the true path, which is the loop body
2. The instruction following beq is the false path, which breaks the loop by jumping to Exit
3. We need another beq to jumping back to the beginning of the loop, i.e. loop back
4. Not as elegant as the previous version, one more instruction in the code. But not necessary

executing more instructions.

(save[i]
== k) ?

i += 1Exit

TrueFalse

