
Chapter 1: Computer Abstractions and Technology
1.6 – 1.7: Performance and power

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/


Lectures for Chapter 1 and C Basics
Computer Abstractions and Technology

• Lecture 01: Chapter 1
– 1.1 – 1.4: Introduction, great ideas, Moore’s law, abstraction, 

computer components, and program execution
• Lecture 02: Chapter 1 and Memory/Binary System

– 1.6 – 1.7: Performance, power and technology trends
– Memory and Binary Systems

• Lecture 03: C Basics
• Lecture 03/4: Number System, Compilation, Assembly, 

Linking and Program Execution
• Lecture 05:

– 1.8 - 1.9: Multiprocessing and benchmarking
2

☛



Defining Performance

• Which airplane has the best performance?

3

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

§1.6 Perform
ance



Response Time and Throughput

• Response time çè Latency
– How long it takes to do a task

• Throughput çè Bandwidth
– Total work done per unit time

• e.g., tasks/transactions/… per hour

• How are response time and throughput affected by
– Replacing the processor with a faster version?
– Adding more processors?

• We’ll focus on response time for now…
4



Relative Performance

• Define Performance = 1/Execution Time
• “X is n time faster than Y”, i.e. speedup

5

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program
n 10s on A, 15s on B
n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n So A is 1.5 times faster than B



Below Your Program
Program Performance is impacted by many things

• Program, i.e. Application software
– Written in high-level language
• System software

– Compiler: translates HLL code to machine 
code

– Operating System: service code
• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

• Hardware
– Processor, memory, I/O controllers

6

Main Memory I/O Processor
ALU

Control Unit

IR PC

MARMBR

Data Bus

Control Bus

Address Bus

Input
Output

CPU



Measuring Execution Time 1/3

• Wall clock time, response time, real time
– Total response time, including all aspects

• CPU Time + I/O + OS overhead + idle time
• printf consume OS/system and I/O time

• Execution time (time cmd from terminal)

7

https://passlab.github.io/ITSC3181/exercises/su
m/sum_full.c

https://passlab.github.io/ITSC3181/exercises/sum
https://passlab.github.io/ITSC3181/exercises/sum/sum_full
https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c


Measuring Execution Time 2/3

• Wall clock time, response time, real time (time cmd)
• CPU time

– Time spent processing a given job
• Not including I/O time, other jobs’ shares

– Comprises user CPU time and system CPU time
– Different programs are affected differently by CPU and system
– “time” command in Linux

8

Main Memory I/O Processor
ALU

Control Unit

IR PC

MARMBR

Data Bus

Control Bus

Address Bus

Input
Outp
ut

CPU



Understanding time command output
• Real is wall clock time - time from start to finish of the call. This is all elapsed 

time including time slices used by other processes and time the process 
spends blocked (for example if it is waiting for I/O to complete).

• User is the amount of CPU time spent in user-mode code (outside the 
kernel) within the process. This is only actual CPU time used in executing the 
process. Other processes and time the process spends blocked do not count 
towards this figure.

• Sys is the amount of CPU time spent in the kernel within the process. This 
means executing CPU time spent in system calls within the kernel, as 
opposed to library code, which is still running in user-space. Like 'user', this is 
only CPU time used by the process. See below for a brief description of 
kernel mode (also known as 'supervisor' mode) and the system call 
mechanism.

9



Measuring Execution Time of Specific Operations 
3/3

• Elapsed time of the sum function: use timer

10

https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

https://passlab.github.io/ITSC3181/exercises/sum
https://passlab.github.io/ITSC3181/exercises/sum/sum_full
https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c


CPU Frequency and Clocking

• CPU Frequency can be obtained by checking /proc/cpuinfo
– Intel Xeon ® W-2133 CPU @ 3.60 GHz
– From Intel official website: 

https://ark.intel.com/content/www/us/en/ark/products/125040
/intel-xeon-w-2133-processor-8-25m-cache-3-60-ghz.html

11

https://ark.intel.com/content/www/us/en/ark/products/125040/intel-xeon-w-2133-processor-8-25m-cache-3-60-ghz.html


CPU Clocking

• Operation of digital hardware governed by a constant-
rate clock, alternating high-low voltage (0 and 1 binary 
state)

12

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period: duration of a clock cycle
n e.g., 250ps = 0.25ns = 250×10–12s

n Clock frequency (rate): cycles per second
n e.g., 4.0GHz = 4000MHz = 4.0×109Hz

n Clock period, or cycle time is 1/Frequency



About the Unit 

13



CPU Time

• Performance improved by
– Reducing number of clock cycles
– Increasing clock rate
– Hardware designer must often trade off clock rate against cycle 

count

14

CPU Time(𝑠) = # CPU Clock Cycles × Clock Cycle Time (𝑠)

=
# CPU Clock Cycles
Clock Rate (𝐻𝑧)



CPU Time Example

• Computer A: 2GHz clock, 10s CPU time to execute a program
• Designing Computer B

– Aim for 6s CPU time to execute the same program
– Can do faster clock, but causes to have 1.2 X of clock cycles of A

• How fast must Computer B clock be?

15

1. Clock Rate! 𝐻𝑧 = # #$%&' #(&$)*!
#+, -./)!

= 0.2 × # #$%&' #(&$)*"
4*

2. # Clock Cycles5 = CPU Time5 × Clock Rate5
= 10s × 2GHz = 20 × 106

3. Clock Rate!(𝐻𝑧) =
0.2 × 27 × 07#

4*
= 28 × 07#

4*
= 4GHz

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: CPU Time(𝑠) = # CPU Clock Cycles × Clock Cycle Time (𝑠)

=
# CPU Clock Cycles
Clock Rate (𝐻𝑧)



Instruction Count and CPI

• Hardware/CPU executes a program instruction by instructions

• Instruction Count for a program
– Determined by program, ISA and compiler
• Average cycles per instruction (CPI)
– Determined by CPU hardware
– If different instructions have different CPI
• Average CPI affected by instruction mix 16

CPU Time 𝑠 = # 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝑪𝒐𝒖𝒏𝒕 × # 𝑪𝑷𝑰 × Clock Cycle Time (𝑠)

=
# 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝑪𝒐𝒖𝒏𝒕 × # 𝑪𝑷𝑰

Clock Rate (𝐻𝑧)

# 𝐂𝐏𝐔 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔 = # Instruction Count × # Cycles per Instruction (𝐶𝑃𝐼)

CPU Time(𝑠) = # 𝑪𝑷𝑼 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔 × Clock Cycle Time (𝑠)

=
# 𝑪𝑷𝑼 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔
Clock Rate (𝐻𝑧)



CPI Example

• Computer A: Cycle Time = 250ps, CPI = 2.0
• Computer B: Cycle Time = 500ps, CPI = 1.2
• Same program and same set of instructions (ISA)
• Which is faster, and by how much?

17
1.2

500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this much

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: CPU Time(𝑠) = # CPU Clock Cycles × Clock Cycle Time (𝑠)

=
# CPU Clock Cycles
Clock Rate (𝐻𝑧)



CPI in More Detail

• If different instruction classes take different numbers of 
cycles

18

å
=

´=
n

1i
ii )Count nInstructio(CPICycles Clock

n Weighted average CPI

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency

# 𝐂𝐏𝐔 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆𝒔 = # Instruction Count × # Cycles per Instruction (𝐶𝑃𝐼)



CPI Example

• Alternative compiled code sequences using instructions 
in classes A, B, C

19

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5

å
=

´=
n

1i
ii )Count nInstructio(CPICycles Clock



Performance Summary

• Performance depends on
– Algorithm: affects IC, possibly CPI
– Programming language: affects IC, CPI
– Compiler: affects IC, CPI
– Instruction set architecture: affects IC, CPI, Tc

20

The BIG Picture

CPU Time(𝑠) =
# Instructions
Program

×
# Clock cycles
Instruction

×
Seconds
Clock cycle



Questions in HW and Tests

• CPU Time = # Clock Cycles * Cycle Time (s) = # Clock 
Cycles/ClockRate (Hz)

• # Clock Cycles = # Instruction Count * Cycles Per Instruction 
(CPI)

• Most questions give you two cases (two computers, e.g.) and 
some known parameters, and you solve the unknown based 
on the questions 

21



Download, Compile and Execute sum_full.c for Lab 03

• wget https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

• gcc sum_full.c
• gcc -save-temps sum_full.c -o sum
• ./sum 100000
• time ./sum 10000000

• Checkout sum_full.c and sum_full.s
• Generate assembly code by yourself
– X86 assembly code is generated using gcc
• gcc -c -save-temps sum.c

– https://godbolt.org/

22

https://godbolt.org/


Using Perf for Lab 03

23

http://www.brendangregg.com/perf.html

http://www.brendangregg.com/perf.html


Use perf to collect cycle information for lab 03

• perf stat ./sum 0
– To collect non-sum instructions profiles as baseline

• perf stat ./sum 1000000
– To collect instruction profiles that include sum and non-sum ins
– Instructions and cycles each can be subtracted, but not CPI
– E.g. for sum 10000000
• Cycles = 596,350,910 – 308,987
• Instructions = 1,620,168,612 - 162,870

– If N=10000000 is huge, baseline can be ignored
– Notice the differences of CPU frequency (1.058 GHz vs 3.730 GHz)

24



Using PAPI

• perf only profiles the 
whole program execution

• PAPI can read hardware 
counter of a specific part 
of a program
– Hardware counter records 

# cycles, # instructions, 
etc during program 
execution

25
https://passlab.github.io/ITSC3181/resources/#papi
https://passlab.github.io/ITSC3181/resources/papi_example.c

https://passlab.github.io/CSCE212/resources/
https://passlab.github.io/ITSC3181/resources/papi_example.c


Power and Energy

• Problem:  
– Get power in and distribute around
– get power out: dissipate heat 
• Revisit Moore’s Law

– Transistor density double every 2 years
– Translate to frequency till ~2005

26

§1.7 The Pow
er W

all



Dynamic Energy and Power

• Dynamic energy
– Transistor switch from 0 -> 1 or 1 -> 0

• Dynamic power

• Reducing clock rate reduces power, not energy
• The capacitive load:

– a function of the number of transistors connected to an output 
and the technology, which determines the capacitance of the 
wires and the transistors. 

27



An Example from Textbook

• Suppose a new CPU has
– 85% of capacitive load of old CPU
– 15% voltage and 15% frequency reduction

28

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=



Technology Trends

• Electronics technology 
continues to evolve
– Increased capacity and 

performance
– Reduced cost

29

Year Technology Relative performance/cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit (IC) 900
1995 Very large scale IC (VLSI) 2,400,000
2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§1.5 Technologies for Building Processors and M
em

ory



Semiconductor Technology

• Silicon:  semiconductor
– How to turn sand into gold
• Add materials to transform properties:

– Conductors
– Insulators
– Switch

30



Manufacturing ICs

• Yield: proportion of working dies per wafer

31



Intel Core i7 Wafer

• 300mm wafer, 280 chips, 32nm technology
• Each chip is 20.7 x 10.5 mm

32



Silicon Valley

33


