Chapter 1: Computer Abstractions and Technology

1.6 — 1.7: Performance and power

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan
vyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Lectures for Chapter 1 and C Basics

Computer Abstractions and Technologx

* Lecture 01: Chapter 1

— 1.1 -1.4: Introduction, great ideas, Moore’s law, abstraction,
computer components, and program execution

e~ Lecture 02: Chapter 1 and Memory/Binary System
— 1.6 - 1.7: Performance, power and technology trends
— Memory and Binary Systems

* Lecture 03: C Basics

* Lecture 03/4: Number System, Compilation, Assembly,
Linking and Program Execution

* Lecture 05:
— 1.8 - 1.9: Multiprocessing and benchmarking

Defining Performance

* Which airplane has the best performance?
l l l l l
Boeing 777 | Boeing 777 |
Boeing 747 Boeing 747 |
BAC/Sud | | BAC/Sud |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 —'—l 8-50 I I I I |
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
| O Passenger Capacity | O Cruising Range (miles) |
I |
Boeing 777 | Boeing 777 |
Boeing 747 | Boeing 747 |
BAC/Sud | BAC/Sud |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 T | 8-50 :
0 500 1000 1500 0 100000 200000 300000 400000
O Cruising Speed (mph) O Passengers x mph 3

Response Time and Throughput

* Response time €= Latency
— How long it takes to do a task

* Throughput €= Bandwidth

— Total work done per unit time
* e.g., tasks/transactions/... per hour

* How are response time and throughput affected by

— Replacing the processor with a faster version?
— Adding more processors?

* We'll focus on response time for now...

Relative Performance

* Define Performance = 1/Execution Time
* “Xisntime faster thanY”, i.e. speedup

Performance, /Performance,
= Execution time,, /Execution time, =

= Example: time taken to run a program
= 10son A, 15son B

= Execution Timeg / Execution Time,
=15s/10s=1.5

s SOAIs 1.5 times faster than B

Below Your Program
Program Performance is impacted by many things

®* Program, i.e. Application software
— Written in high-level language

* System software

— Compiler: translates HLL code to machine
code

— Operating System: service code
* Handling input/output

* Managing memory and storage CPU
* Scheduling tasks & sharing resources Control Unit
l-._—“:“i'Li“:“:' Main Memor InPUt
* Hardware S| e ' Output
— Processor, memory, |/O controllers |mea- mm

& Data Bus l

oooooooooo

ssssssssss

Measuring Execution Time 1/3

* Wall clock time, response time, real time
— Total response time, including all aspects

 CPU Time +1/0 + OS overhead + idle time
e printf consume OS/system and 1/0 time

* Execution time (time cmd from terminal)

[yanyh@fornax ~]$ time ./sum 10000000

Sum 10000000 numbers

Performance: Runtime (ms)

MFLOPS
Sum: 24.999857 800.004578
CPU

real Omo.200s

USE JMY .

Sys omo.020s

https://passlab.github.io/ITSC3181/exercises/su

Control Unit

ALU

e = |

[[po)

MBR J[EKE

m/sum_full.c

Main Memory

Input
Output

mmmmmm

https://passlab.github.io/ITSC3181/exercises/sum
https://passlab.github.io/ITSC3181/exercises/sum/sum_full
https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

Measuring Execution Time 2/3

* CPUtime
— Time spent processing a given job
* Not including I/O time, other jobs’ shares
— Comprises user CPU time and system CPU time
— Different programs are affected differently by CPU and system

— “time” command in Linux cpy

[yanyh@fornax ~]1$ time ./sum 10000000 i§¥ﬁi Input

= — = — = — — _@\E Outp
Sum 10000000 numbers i

Performance: Runtime (ms) MFLOPS

Sum: 24.999857 800.004578

real Oma.200s
user omyd. 1/9s
Sys Omo.020s

Understanding time command output

Real is wall clock time - time from start to finish of the call. This is all elapsed

time including time slices used by other processes and time the process
spends blocked (for example if it is waiting for |/O to complete).

User is the amount of CPU time spent in user-mode code (outside the
kernel) within the process. This is only actual CPU time used in executing the
process. Other processes and time the process spends blocked do not count
towards this figure.

Sys is the amount of CPU time spent in the kernel within the process. This
means executing CPU time spent in system calls within the kernel, as
opposed to library code, which is still running in user-space. Like 'user’, this is
only CPU time used by the process. See below for a brief description of
kernel mode (also known as 'supervisor' mode) and the system call

mechanism.
echanis [yanyh@fornax ~]$ time ./sum 10000000

Sum 10000000 numbers

Performance: Runtime (ms) MFLOPS

Sum: 24.999857 800.004578

real om0.200s
user Om@.179s
Sys 0mo.020s 9

Measuring Execution Time of Specific Operations
3/3

* Elapsed time of the sum function: use timer

elapsed = read timer();
REAL result = sum(N, X, a);
elapsed = (read timer() - elapsed);

https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

[yanyh@fornax ~]$ time ./sum 10000000

Sum 10000000 numbers

Performance: Runtime (ms) MFLOPS

24.999857 800.004578

real Omo.200s
user ®Pm@.179s
Sys omo.020s 10

https://passlab.github.io/ITSC3181/exercises/sum
https://passlab.github.io/ITSC3181/exercises/sum/sum_full
https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

CPU Frequency and Clocking

* CPU Frequency can be obtained by checking /proc/cpuinfo
— Intel Xeon ® W-2133 CPU @ 3.60 GHz
— From Intel official website:
https://ark.intel.com/content/www/us/en/ark/products/125040

/intel-xeon-w-2133-processor-8-25m-cache-3-60-ghz.html

e m—————ey T

T T T TTTOIIY

S18) g wr!ﬂWHWWVN”ﬂnw"wv""u"m
Ty tﬁu%n‘u:-

File Edit View Search Terminal Help

uild Videos

Documents examples.desktop perf_event_paranoid~ Pictures

riscv-gnu-toolchain Templates

itsc3181@ubuntu:~$ cat /proc/cpuinfo

processor
vendor_1id
cpu family
model
model name
stepping
microcode
cpu MHz
cache size
physical id
siblings
core id
Cpu cores
apicid

initial apicid :

: yes
1 yes
T 22
: yes

fpu
fpu_exception
cpuid level
wp

flags

1 9

: Genulnelntel

0

: 85

: Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz
1 4

1 ©x200004d

: 3599.997

: 8448 KB

: fpu vme de pse tsc msr pae mce cx8 aplc sep mtrr pge mca cmov pat pse36 clflush mmx £

https://ark.intel.com/content/www/us/en/ark/products/125040/intel-xeon-w-2133-processor-8-25m-cache-3-60-ghz.html

CPU Clocking

* Operation of digital hardware governed by a constant-
rate clock, alternating high-low voltage (0 and 1 binary
state)

«—Clock period—s

Clock (cycles)

Data transfer
and computation

Update state ' '

= Clock period: duration of a clock cycle
= e.g., 250ps = 0.25ns = 250%10"%s

= Clock frequency (rate): cycles per second
= e.g., 4.0GHz = 4000MHz = 4.0%x10°Hz

= Clock period, or cycle time is 1/Frequency *»

1

\

1

1

1

1

1

! n
>

About the Unit

103s ms
10%s | ps
10°s | ns
107125 | ps

10% Hz kHz
106 Hz MHz
10° Hz GHz

millisecond
microsecond
nanosecond

picosecond

kilohertz
megahertz

gigahertz

Prefixes for multiples of
bits (bit) or bytes (B)

Decimal
Value Sl

1000 10% k kilo
10002 10° M mega
1000° 10° G giga
1000 102 T tera
1000° 10"® P peta
1000° 10"8 E exa
10007 1021 Z zetta
10008 10%* Y yotta

Binary

Value IEC

1024 210 Kj kibi
10242 220 Mi mebi

10243 230 Gij gibi
10244 240 Ti tebi
1024° 2°0 Pj pebi
10245 250 Ej exbi
10247 270 Zi zebi
10248 280 Yj yobi

13

CPU Time

* Performance improved by
— Reducing number of clock cycles
— Increasing clock rate

— Hardware designer must often trade off clock rate against cycle
count

CPU Time(s) = # CPU Clock Cycles X Clock Cycle Time (s)

_ # CPU Clock Cycles
~ Clock Rate (Hz)

One Clock
“Period”

14

CPU Time Example

* Computer A: 2GHz clock, 10s CPU time to execute a program

* Designing Computer B
— Aim for 6s CPU time to execute the same program
— Can do faster clock, but causes to have 1.2 X of clock cycles of A

* How fast must Computer B clock be?
Equation: CPU Time(s) = # CPU Clock Cycles X Clock Cycle Time (s)

_ # CPU Clock Cycles
~ Clock Rate (Hz)

Clock Cyclesp 1.2 X # Clock Cyclesp
1. ClockR Hz) = =
Cloc ateB() CPU Timeg 6S

2. # Clock Cyclesy, = CPU Timep X Clock Ratey

= 10s x 2GHz = 20 x 10°

9 9
3. Clock Rateg(Hz) = Lo X2OXIY 22X — AGHz

6S 6S

15

Instruction Count and CPI

* Hardware/CPU executes a program instruction by instructions
CPU Time(s) = # CPU Clock Cycles X Clock Cycle Time (s)

swap(int v[], int k)
tint temp:

__ #CPU Clock Cycles VT - vt
~ Clock Rate (Hz) .

CPU Clock Cycles = # Instruction Count X # Cycles per Instruction (CPI)

Swap:
muli $2, $5,4
add $2, $4,3%2

CPU Time(s) = # Instruction Count X # CPI X Clock Cycle Time (s) 1-13 ﬂ
_ # Instruction Count X # CPI ir o $31

Clock Rate (Hz)
* |nstruction Count for a program

—_ Determ|ned by program’ |SA and Comp||er g:::::g:u::(:::l::r_u:: l::'::::z: 00000000000 l:ﬁi:ﬁlil
* Average cycles per instruction (CPI) o
— Determined by CPU hardware
— If different instructions have different CPI o
 Average CPI affected by instruction mix o I LT LT LI LTI LT 16

CPl Example

Computer A: Cycle Time = 250ps, CP1 =2.0
Computer B: Cycle Time = 500ps, CPI =1.2
Same program and same set of instructions (ISA)

Which is faster, and by how much?
Equation: CPU Time(s) = # CPU Clock Cycles X Clock Cycle Time (s)

_ # CPU Clock Cycles
~ Clock Rate (Hz)

CPU TlmeA = Instruction Count x CPIA x Cycle Tlme

=1x2. ox250ps_|x500ps</_

CPU TimeB = Instruction Count x CPIB x Cycle TlmeB

=1x1.2x500ps =1x600ps
CPU Timeg [x600ps

“lesoops 2 by musn
CPU Time |x500ps 17

A

CPIl in More Detail

CPU Clock Cycles = # Instruction Count X # Cycles per Instruction (CPI)

* |f different instruction classes take different numbers of
cycles

Clock Cycles = (CPI xInstruction Count,)
i=1

= Weighted average CPI

CP| - Clock. Cycles Z(Cpli . Instructllon Count j
Instruction Count 4= Instruction Count

18

CPl Example

* Alternative compiled code sequences using instructions
in classes A, B, C

Clock Cycles =) (CPI xInstruction Count,)
i=1

Class

CPI for class

IC in sequence 1

= = (N1

C
3
2
1

U PN

IC in sequence 2

= Sequence 1: IC =5 = Sequence 2:IC =06

= Clock Cycles = Clock Cycles
=2x1 + 1x2 + 2%3 =4x1 + 1x2 + 1x3
=10 =9

« Avg. CPI = 10/5 = 2.0 « Avg.CPI=9/6 =15 .

Performance Summary

Instructions # Clock cycles Seconds

CPU Ti = X X
ime(s) Program Instruction Clock cycle

* Performance depends on

Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiler: affects IC, CPI

Instruction set architecture: affects IC, CPI, T,

20

Questions in HW and Tests

°* CPU Time = # Clock Cycles * Cycle Time (s) = # Clock
Cycles/ClockRate (Hz)

* # Clock Cycles = # Instruction Count * Cycles Per Instruction
(CPI1)

* Most questions give you two cases (two computers, e.g.) and
some known parameters, and you solve the unknown based
on the questions

21

Download, Compile and Execute sum_full.c for Lab 03

wget https://passlab.github.io/ITSC3181/exercises/sum/sum_full.c

gcc sum_full.c

gcc -save-temps sum_full.c -o sum
./sum 100000

time ./sum 10000000

Checkout sum_full.c and sum_full.s

Generate assembly code by yourself

— X86 assembly code is generated using gcc
* gcc -C -save-temps sum.c

— https://godbolt.org/

22

https://godbolt.org/

Using Perf for Lab 03

hito.Loaaaabrendangregg.com/perf.html

yanyh@cocsce 11d39-15:~% perf stat /sum 10006660

Sum 10000000 numbers

Performance. Runtime (ms) MFLOPS

Sum: 23.000002 869.565145

Performance counter stats for './sum 10000000':

159.899354 task-clock:u (msec) # 0.994 CPUs utilized
0 context-switches:u # 0.000 K/sec
0 cpu—-migrations:u i 0.000 K/sec
1,184 page-faults:u # 0.007 M/sec
596,350,910 cycles:u # 3.730 GHz
1,620,168,612 instructions:u # 2.72 1insn per cycle
210,036,915 branches:u # 1313.557 M/sec
3,690 branch-misses:u # 0.00% of all branches

0.160907353 seconds time elapsed

23

http://www.brendangregg.com/perf.html

Use perf to collect cycle information for lab 03

* perfstat./sumO0
— To collect non-sum instructions profiles as baseline

. perf stat ./sum 1000000
To collect instruction profiles that include sum and non-sum ins

— Instructions and cycles each can be subtracted, but not CPI
— E.g. for sum 10000000

* Cycles =596,350,910 — 308,987

Instructions =1,620,168,612 - 162,870

— If N=10000000 is huge, baseline can be ignored
— Notice the differences of CPU frequency (1.058 GHz vs 3.730 GHz)

Sum @ numbers

yanyh@cocsce-11d39-15:8$ perf stat ./sum 10000000

Performance:

Runtime (ms)

MFLOPS

Sum 10000000 numbers

Performance: Runtime (ms) MFLOPS

Sum:

Performance counter stats for

0.292052
0

0

a7
308,987
162,870
34,761
3,536

0.000000 -nan

'./sum Q':

task-clock:u (msec)
context-switches:u
cpu-migrations:u
page-faults:u
cycles:u
instructions:u
branches:u
branch-misses:u

0.000970656 seconds time elapsed

HHHEH R R R

0.301 CPUs utilized

0.000 K/sec

0.000 K/sec

0.161 M/sec

1.058 GHz

.53 1insn per cycle
119.023 M/sec

10.17% of all branches

Sum: 23.000002 869.565145

Performance counter stats for './sum 10000000':

159.899354 task-clock:u (msec) # 0.994 CPUs utilized
0 context-switches:u # 0.000 K/sec
(4] cpu-migrations:u # 0.000 K/sec
1,184 page-faults:u # 9.007 M/sec
596,350,910 cycles:u # 3.730 GHz
1,620,168,612 instructions:u # 2.72 1insn per cycle
210,036,915 branches:u # 1313.557 M/sec
3,690 branch-misses:u # 0.00% of all branches

0.160907353 seconds time elapsed
24

1 W/compile and run:

//gcc papi_example.c -lpapi -o papi_example

Using PAPI //./papi_example
#include <stdio.h>

#include <papi.h>

#define NUM_PONTOS
#define NUM_EVENTS

[
SSWoo~NOOULIE WN

* perf only profiles the
WhOle program execution 11 int main(int argc, char xxargv){

12 int EventSet = PAPI_NULL;

13 Llong long values[NUM_EVENTS];
® PAPI can read hardware 14 PAPT Uibrary_init(PAPT_VER CORRENTT;
15 PAPI_create_eventset(&EventSet);
L 16 PAPI_add_event(EventSet, PAPI_TOT_INS);
Counter Of d Specrﬂc part 17 PAPI_add_event(EventSet, PAPI_TOT_CYC);
18 PAPI_add_event(EventSet, PAPI_L1_DCM);
of a program 19 PAPI_start(EventSet);
20 PAPI_reset(EventSet);
— Hardware counter records 2 —Tong_(ong 1INt 1]
. . 22 floa? p1i= » .
cycles, # instructions, 23 D
: 25 pi -= /(4.0%i+3.0);
etc during program e y
. 27 —PAPI_Tead(EventSet, values);
execution 28 printf("INS: %1ld, CYC: %lld, L1 Misses:
alues([§]));
29 PAPI_stop(EventSet,)3
30 return 0;
31}

yanyh@cocsce-11d39-10:~$ gcc papi_example.c —-lpapi —-o papi_example
yanyh@cocsce-11d39-10:~% ./papi_example

INS: 11600001549, CYC: 12149354772, L1 Misses: 1074, CPI: 1.047358
https://passlab.github.io/ITSC3181/resources/#papi
https://passlab.github.io/ITSC3181/resources/papi_example.c

25

https://passlab.github.io/CSCE212/resources/
https://passlab.github.io/ITSC3181/resources/papi_example.c

Power and Energy

* Problem: ?"

— Get power in and distribute around &
— get power out: dissipate heat
* Revisit Moore’s Law i
— Transistor density double every 2 year \ =
— Translate to frequency till ~2005 o
10,000 —+ - 120
’ 3600 2667 3300 3400
2000 O 0 1 100
’:rET 1000 +
= -+ 80
§ 100 + , T Lo
5
S 12.5 16 4 40
S 104 B—H
33 4.1 4.9 720
1T | | | | | | | 0
0T = ©5 —_ - - 2 &
85 52 83 53 5§ tfcizgoigsizass
®T 2T @ §Z ET 255 £33 528 358 328
T dg §578eT0gT 0702

Power (watts)

26

.‘5?

VA

Dynamic Energy and Power

®* Dynamic energy
— Transistor switch fromQ0->1or1->0

Energy dynamic ™ 1/2 x Capacitive load X Voltage2

* Dynamic power

Powerdynamic o< 1/2 X Capacitive load X Voltage2 requency switched |

* Reducing clock rate reduces power, not energy

* The capacitive load:

— a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the
wires and the transistors.

27

An Example from Textbook

* Suppose a new CPU has
— 85% of capacitive load of old CPU
— 15% voltage and 15% frequency reduction

P.. _ C,,x0.85x(V,,x0.85)*xF ,x0.85 _0.85% —0.52

Pais Cag X Vold2 X Fog

28

Technology Trends

* Electronics technology
continues to evolve

— Increased capacity and
performance

city

Kbit capa

— Reduced cost

10,000,000 -

1,000,000 4

100,000 -

10,000 4

1000 4

1G

512M
e e 256M

64M
4M

™

4G

Year of introduction

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2013 | Ultra large scale IC 250,000,000,000

29

Semiconductor Technology

Silicon

* Silicon: semiconductor
— How to turn sand into gold

* Add materials to transform properties:
— Conductors
— Insulators
— Switch

Sand Purified Wafer sliced from Processed Completed die from
silicon ingot ingot and polished wafer finished wafer

30

Silicon ingot
C) — | Slicer
Tested dies
O O
Bond die to| _ D%EDDDED)
ond die to
package OOXOO
OO0
OO

|

Packaged dies

=

Manufacturing ICs

Dicer

Blank
wafers

Tested
wafer

el

=

i

Tested packaged dies

Part
tester

—_—

,(D,

Wafer
tester

0o

[l

Ship to

customers

* Yield: proportion of working dies per wafer

20 to 40
processing steps

1

Patterned wafers

T TN

\

—

N\
\

'/’ SN\ O\

31

Intel Core i7 Wafer

.
k.
&

* 300mm wafer, 280 chips, 32nm technology
®* Each chipis 20.7 x 10.5 mm

32

Silicon Valley

«.Mountain ' P o o
\V»ew Sunnyvale - ”"\)
\’\

"°'°f' \ Santa Clara Sarf :J;se /

i i P \ .; o V‘@ - - ‘ » : T X . “ ~ CUMM J’(.."~_~_:_//// \\\
’ = = N ANtONM meo \

_ Campben ‘
A

Cambrian \

Saratoqa S ,,p ok)

<
T ey —

Los _Gatos

A N

33

