
Chapter 1: Computer Abstractions and Technology
1.1 – 1.4: Introduction, great ideas, Moore’s law, abstraction,

computer components, and program execution

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Lectures for Chapter 1 and C Basics
Computer Abstractions and Technology

• Lecture 01: Chapter 1
– 1.1 – 1.4: Introduction, great ideas, Moore’s law, abstraction,

computer components, and program execution

• Lecture 02: Number System, Compilation, Assembly, Linking
and Program Execution

• Lecture 03: C Basics; Memory and Binary Systems
• Lecture 04: Chapter 1
– 1.6 – 1.7: Performance, power and technology trends
• Lecture 05:
– 1.8 - 1.9: Multiprocessing and benchmarking

2

☛

The Computer Revolution

• Progress in computer technology
– Underpinned by Moore’s Law
• Every two years, circuit density ~= increasing frequency ~=

performance, double
• Makes novel applications feasible
– Computers in automobiles
– Cell phones
– Human genome project
– World Wide Web
– Search Engines
• Computers are pervasive

§1.1 Introduction

3

Generation Of Computers

4https://solarrenovate.com/the-evolution-of-computers/

New School Computer

5

Classes of Computers

• Personal computers (PC) --> computers are PCs today
– General purpose, variety of software
– Subject to cost/performance tradeoff

• Server computers
– Network based
– High capacity, performance, reliability
– Range from small servers to building sized

6

Classes of Computers

• Supercomputers
– High-end scientific and engineering calculations, e.g. for

forecasting weather and hurricane
– Highest capability but represent a small fraction of the overall

computer market

• Embedded computers
– Hidden as components of systems
– Stringent power/performance/cost constraints

7

The PostPC Era

8

The PostPC Era

• Personal Mobile Device (PMD)
– Battery operated
– Connects to the Internet
– Hundreds of dollars
– Smart phones, tablets, electronic glasses

• Cloud computing
– Warehouse Scale Computers (WSC)
– Software as a Service (SaaS)
– Portion of software run on a PMD and a portion run in the Cloud
– Amazon and Google

9

What You Will Learn

• How programs are translated into the machine language à
Usability
– And how the hardware executes them
• The hardware/software interface
• What determines program performance
– And how it can be improved
• How hardware designers improve performance

All those that make you more than a programmer,
and much more.

10

Understanding Performance

• Performance:
– Hardware performance, peak or theoretical performance, e.g. frequency
– Application performance, user experience, how long to get a computation

done
• Performance is like nutrition of food: what is in the raw food is (much)

less than what you would digest in your body
– The process of transformation
– Application performance you see is less than the hardware/vendor claims

• Algorithm
– Determines number of operations executed

• Programming language, compiler, architecture
– Determine number of machine instructions executed per operation

• Processor and memory system
– Determine how fast instructions are executed

• I/O system (including OS)
– Determines how fast I/O operations are executed

11

Eight Great Ideas

• Design for Moore’s Law

• Use abstraction to simplify design

• Make the common case fast

• Performance via parallelism

• Performance via pipelining

• Performance via prediction

• Hierarchy of memories

• Dependability via redundancy

§1.2 Eight G
reat Ideas in C

om
puter Architecture

12

Great Idea: “Moore’s Law”

Gordon Moore, Founder of Intel
• 1965: since the integrated circuit was invented, the number of

transistors/inch2 in these circuits roughly doubled every year
• From 1975: Circuit complexity doubles every two years
– è In a room, number of persons double every two years
– How: shrink the person by half every two years (who can?)
• Increasing circuit density ~= increasing frequency ~= increasing

performance

13
Image credit: Intel

• Transparent to users
• An easy job of getting better

performance: buying faster
processors (higher frequency)

Moore’s Law in Reality and Test

Year Transistors/chip Transistor tech (size) CPU Speed (frequency)

1998

2000 500 M 200 nm 2 GHz

2002

2004

14

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://www.macrumors.com/guide/m1-vs-m2-chip/

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://www.macrumors.com/guide/m1-vs-m2-chip/

Below Your Program

• Application software
– Written in high-level language
• System software
– Compiler: translates HLL code to

machine code
– Operating System: service code
• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

• Hardware
– Processor, memory, I/O controllers

§1.3 Below
 Your Program

15

Levels of Program Code
Another Great Idea: Abstraction

• High-level language
– Level of abstraction closer to

problem domain
– Provides for productivity and

portability
• Assembly language
– Textual representation of

instructions
– Interface between HW and SW

• Hardware representation
– Binary digits (bits)
– Encoded instructions and data

16

Instruction Set Architecture: The Interface
Between Hardware and Software

• The words of a computer
language are called instructions,
and its vocabulary/dictionary is
called an instruction set
– lowest software interface,

assembly level, to the users or to
the compiler writer

Instruction Set Architecture – A
type of computers

instruction set

software

hardware

17

Major Types of ISA (Computers)

• X86: Intel and AMD, Desktop, laptop, server market

• ARM: embedded, smart pad, phone, etc, now moving to
laptop/server

• Power (mainly IBM) and SPARC (mainly Oracle and Fujitsu):
server market

• RISC-V: fastest growing one, embedded so far
– This class uses 18

Levels of Program Code to
Multiple Target Architectures

Java C/C++ Python

gcc/clangJavac and
JIT python

RISC-V X86/X86_64 ARM

19

X86_64 Assembly Example
Using “-S” compiler flag to translate high-level code to assembly instructions

• X86_64 is ISA Architecture
for most Intel and AMD
desktop/server CPUs

• RISC-V is one ISA
• ARM is another ISA
– Most cellphone/smartphone

are ARM CPUs

20
https://passlab.github.io/ITSC3181/exercises/swap/

Try the highlighted command for swap.c from the terminal of
https://repl.it/languages/c

https://passlab.github.io/ITSC3181/exercises/swap/
https://repl.it/languages/c

X86_64 Assembly Example
Disassembly a machine binary code to assembly instructions using “objdump”

21

https://repl.it/languages/c

Disassembly

https://repl.it/languages/c

Exercise: Inspect ISA for swap

• Swap example
– https://passlab.github.io/ITSC3181/exercises/swap/

• Check
– swap.x86_64.s,
– swap.x86_64_objdump.txt

• Generate and execute
– gcc -s swap.c -o swap.x86_64.s
– gcc -c swap.c
– objdum -D swap.o > swap.x86_64_objdump.txt

• For how to compile and run Linux program
– https://passlab.github.io/ITSC3181/notes/lecture01_LinuxCProgramming.pdf

• Other system commands:
– cat /proc/cpuinfo to show the CPU and #cores
– top command to show system usage and memory

22

https://passlab.github.io/ITSC3181/exercises/swap/

Compiler Explorer

• Explore other ISA assembly from Compiler Explorer at
https://godbolt.org/

• Work on Lab 01 Tomorrow

23

https://godbolt.org/

Great Idea: More on Abstractions

• Abstraction helps us deal with complexity
– Hide lower-level detail
• Instruction set architecture (ISA)
– The hardware/software interface
• Application binary interface
– The ISA plus system software interface
• Implementation
– The details underlying and interface

• Another example of abstraction:
– Java Interface and Class

The BIG Picture

24

Components of a Computer

• Same components for
ALL kinds of computer
– Processor (functional unit,

control logic and data path)
– Memory
– Input/out devices
• Input/output includes
– User-interface devices
• Display, keyboard, mouse

– Storage devices
• Hard disk, CD/DVD, flash

– Network adapters
• For communicating with other

computers

§1.4 U
nder the C

overs

The BIG Picture

Components of a Computer: Input/Output

26

Open the Box: a Laptop

27

Opening the Box: an IPhone

Capacitive multitouch LCD screen

3.8 V, 25 Watt-hour battery

Computer board

28

Desktop Computer Components

29

Main Memory (DRAM) of a Computer

30

CPU is also called a chip. Main Memory I/O Processor
ALU

Control Unit

IR PC

MARMBR

Data Bus

Control Bus

Address Bus

Input
Output

CPU or Processor

Everything is Data Stored in Files

• Source code, executable, object are all files
– Files: Hello.c, sum_full.c, sum
– Folder: ., .., /home/yanyh, etc
• Compiler, OS kernel, etc are all stored as files
– gcc, vmlinuz-4.4.0-104-generic
• Information about files/folders and data are also files
– Metadata

• Files need to be loaded to memory in order to be
processed
– An app or executable is a file (multiple files) that contains

the instructions in binary form and other data needed to
execute the program.

31

Loading a file for a command to Memory

• To load a file from disk into memory

• Loading: To run an app=> load the app executable file to
memory and run the instructions of the program
–
• ./ is to specify the path of sum file

– To execute any linux command, e.g. “ls, cd”, etc.
– Double click an icon to execute app:
• The runtime instance of an executable is called a “process”
– It occupies memory, and uses resources (files, sockets, etc).
– It executes its threads (machine instructions).
– See the processes of the system using “ps” command, Windows

“task manager”, and Mac OS X “Activity Monitor”

32

Memory and Address

• Memory are accessed via the address of memory cells that store
the value
– int a = A[i]; //a, A[i] are symbolic representation of memory

addresses
• Read value from a memory location whose address is represented

by A[i];
• Write value to a memory location whose address is represented by a

33

Touchscreen

• PostPC device
• Supersedes keyboard and mouse
• Resistive and Capacitive types
– Most tablets, smart phones use

capacitive
– Capacitive allows multiple touches

simultaneously

34

Through the Looking Glass

• LCD screen: picture elements (pixels)
– Mirrors content of frame buffer memory

35

A Safe Place for Data

• Volatile main memory
– Loses instructions and data when power off

• Non-volatile secondary memory
– Magnetic disk
– Flash memory
– Optical disk (CDROM, DVD)

Networks

• Communication, resource sharing, nonlocal access
• Local area network (LAN): Ethernet
• Wide area network (WAN): the Internet
• Wireless network: WiFi, Bluetooth

37

End of Lecture 01

38

Inside the Processor (CPU)

• Functional units: performs computations
• Datapath: wires for moving data
• Control logic: sequences datapath, memory, and operations
• Cache memory
– Small fast SRAM memory for immediate access to data

Apple A5

39

