Chapter 1: Computer Abstractions and Technology

1.1 - 1.4: Introduction, great ideas, Moore’s law, abstraction,
computer components, and program execution

ITSC 3181 Introduction to Computer Architecture
https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan
vyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Lectures for Chapter 1 and C Basics

Computer Abstractions and Technologx

I® | ecture 01: Chapter 1

— 1.1 -1.4: Introduction, great ideas, Moore’s law, abstraction,
computer components, and program execution

* Lecture 02: Number System, Compilation, Assembly, Linking
and Program Execution

* Lecture 03: C Basics; Memory and Binary Systems

* Lecture 04: Chapter 1
— 1.6 - 1.7: Performance, power and technology trends

* Lecture 05:
— 1.8 - 1.9: Multiprocessing and benchmarking

The Computer Revolution

* Progress in computer technology

— Underpinned by Moore’s Law
e Every two years, circuit density ~= increasing frequency ~=

performance, double

* Makes novel applications feasible

— Computers in automobiles

— Cell phones

— Human genome project
— World Wide Web
— Search Engines

* Computers are pervasive

Transistors

Per Die

1010
1965 Actual Data 25 ¥

10°<{ = MOS Arrays o MOS Logic 1975 Actual Data 256M 212
108 1975 Projection o Itatqiurg;
Memory enuum

107 ' Pentium® llI
A Microprocessor p@entiumm Il

106 — Pentium
105
104-
103

102
10!

1004
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Generation Of Computers

"Omp e VOBSEas 5 %3,
S e el L LT .

SN . v i
X -~ .
Nv'eoa s RAanass
<= LLE A
DOO O GAN a

e
=

Third Generation Fourth Generation Fiﬁh Generation

https://solarrenovate.com/the-evolution-of-computers/

New School Computer

Classes of Computers

* Personal computers (PC) --> computers are PCs today
— General purpose, variety of software
— Subject to cost/performance tradeoff

* Server computers
— Network based
— High capacity, performance, reliability
— Range from small servers to building sized

Classes of Computers

* Supercomputers
— High-end scientific and engineering calculations, e.g. for
forecasting weather and hurricane

— Highest capability but represent a smaII fractlon of the overaII

W

computer market ST Y &

* Embedded computers
— Hidden as components of systems
— Stringent power/ performance/cost constraints

What is Embedded Computer ???
. PTA0S fr ’ "4‘. &

The PostPC Era

1400

1200
Tablet

1000

800

Smart phone sales
600 /
400 PC (not including
tablet)
200 ___// Cell phone (not

including smart phone)
2007 2008 2009 2010 2011 2012

The PostPC Era

* Personal Mobile Device (PMD)
— Battery operated
— Connects to the Internet
— Hundreds of dollars
— Smart phones, tablets, electronic glasses

* Cloud computing
— Warehouse Scale Computers (WSC)
— Software as a Service (SaaS)
— Portion of software run on a PMD and a portion run in the Cloud
— Amazon and Google

What You Will Learn

How programs are translated into the machine language =

Usability
— And how the hardware executes them

The hardware/software interface

What determines program performance
— And how it can be improved

How hardware designers improve performance

All those that make you more than a programmer,

and much more.

10

Yy
.' N ;'

Understanding Performance ﬁgfm

* Performance:
— Hardware performance, peak or theoretical performance, e.g. frequency
— Application performance, user experience, how long to get a computation

done

* Performance is like nutrition of food: what is in the raw food is (much)
less than what you would digest in your body
— The process of transformation
— Application performance you see is less than the hardware/vend (=g

Algorithm
— Determines number of operations executed

®* Programming language, compiler, architecture
— Determine number of machine instructions executed per operation

®* Processor and memory system

— Determine how fast instructions are executed
/0 system (including OS)

— Determines how fast I/O operations are executed

11

Eight Great Ideas

* Design for Moore’s Law

* Use abstraction to simplify design
* Make the common case fast

* Performance via parallelism

* Performance via pipelining

* Performance via prediction

* Hierarchy of memories

* Dependability via redundancy

12

Great Idea: “Moore’s Law”

Gordon Moore, Founder of Intel

* 1965: since the integrated circuit was invented, the number of
transistors/inch? in these circuits roughly doubled every year

* From 1975: Circuit complexity doubles every two years

— =» |n a room, number of persons double every two years
— How: shrink the person by half every two years (who can?)

* Increasing circuit density ~=
performance

increasing frequency ~= increasing

Transistors
Per Die

1010
1965 Actual Data 16 26 -

10°1 m MOS Arrays o MOS Logic 1975 Actual Data 256M 212M
108 1975 Projection 128M Itar)iun;"
Memory Pentium® 4

107 > Pentium® llI
A Microprocessor %entiumdbll

* Transparent to users EEES=s
* An easy job of getting better SN k‘ j
performance: buying faster :2 T EE

processors (higher frequency) o
103

102
10
10%<

Moore’s Law in Reality and Test

Transistors/chip Transistor tech (size) CPU Speed (frequency)

1998
2000 500 M 200 nm 2 GHz
2002
2004
M1 Chip M2 Chip
B Made using TSMC's 5nm process (N5) B Made with TSMC's enhanced 5nm
m 16 billion transistors process (N5P)
B 4 high-performance "Firestorm" cores W 20 billion transistors
m 4 energy-efficient "Icestorm" cores B 4 high-performance "Avalanche" cores
B 3.2GHz CPU clock speed B 4 energy-efficient "Blizzard" cores
m CPU cores first seen in the iPhone 12 W 3.49GHz CPU clock speed
lineup's A14 Bionic chip m CPU cores first seen in the iPhone 13
m 8-core GPU lineup's A15 Bionic chip
m Support for 8GB or 16GB unified m 10-core GPU

https://en.wikipedia.org/wiki/List of Intel CPU microarchitectures
https://www.macrumors.com/guide/m1-vs-m2-chip/ 14

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://www.macrumors.com/guide/m1-vs-m2-chip/

Below Your Program

* Application software
— Written in high-level language

* System software

— Compiler: translates HLL code to
machine code

— Operating System: service code
* Handling input/output

\.\Ga{\ons soft"l’e,
e

* Managing memory and storage
* Scheduling tasks & sharing resources

* Hardware
— Processor, memory, |/O controllers

15

Levels of Program Code
Another Great Idea: Abstraction

* High-level language
— Level of abstraction closer to
problem domain
— Provides for productivity and
portability
* Assembly language

— Textual representation of
instructions

— Interface between HW and SW

* Hardware representation
— Binary digits (bits)
— Encoded instructions and data

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
{

size_t temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;

1
J

swap:

s11i x6, x11, 3
add x6, x10, x6

1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

Assembler

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Instruction Set Architecture: The Interface
Between Hardware and Software

software g V4

||

hardware

* The words of a computer
language are called instructions,
and its vocabulary/dictionary is

called an instruction set

— lowest software interface,
assembly level, to the users or to
the compiler writer

Instruction Set Architecture — A
type of computers

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)

size_t temp;
temp = v[k]1;
vlk] = v[k+1];
vik+l] = temp;

swap:
s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

Assembler

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Major Types of ISA (Computers)

X86: Intel and AMD, Desktop, laptop, server market

Power (mainly IBM) and SPARC (mainly Oracle and Fuijitsu):

server market
RISC-V: fastest growing one, embedded so far : ‘
— This class uses RISC-\V°

8

Levels of Program Code to
Multiple Target Architectures

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
{

size_t temp;

temp = v[k];

vlk]l = v[k+1];

v[k+1] = temp;

swap:
s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd X5, 8(X6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Java

1

C/C++

19

X86 64 Assembly Example

Using “-S” compiler flag to translate high-level code to assembly instructions

yanyh@vm
Linux vm
yanyh@vm
lyanyh@vm

i Swap:
! .LFBO:

]

:~$ uname -a

4.4.0-170-generic #199-Ubuntu SMP Thu Nov 14 01:45:04 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

i~$ gcc =S swap.cC

i~$ cat swap.s

.file "swap.c"

. text

.globl swap

.type swap, @function

.cfi_startproc

pushq Srbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16

mov(q %rsp, %rbp
.cfi_def_cfa_register 6
movq %srdi, —24(%rbp)
mov'1 %esi, —-28(%rbp)

movl -28(%rbp), %eax
cltq

leaq 0(,%rax,4), %rdx
mov(q -24(%rbp), %rax
addq %srdx, %rax

mov 1 (%srax), %eax
movl %eax, —4(%rbp)
mov 1 -28(%rbp), %eax
cltq

leaq 0(,%rax,4), %rdx
movq -24(%rbp), %rax
addq %rax, %rdx

movl -28(%rbp), %eax
cltq

addq $1, %rax

leaq 0(,%rax,4), %rcx

movq -24(%rbp), %rax

swap(size_t v[], size_t k)
|

size_t temp;
temp = v[k];
vlk] = v[k+1];
vlk+1] = temp;
)
}

Assembler

Binary machine 00000000001101011001001100010011
language 00000000011001010000001100110011
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

* X86_ 64 is ISA Architecture
for most Intel and AMD
desktop/server CPUs

® RISC-V is one ISA
* ARM is another ISA

— Most cellphone/smartphone
are ARM CPUs

Try the highlighted command for swap.c from the terminal of
https://repl.it/languages/c

https://passlab.github.io/ITSC3181/exercises/swap/

20

https://passlab.github.io/ITSC3181/exercises/swap/
https://repl.it/languages/c

X86 64 Assembly Example https://repl.it/languages/c

Disassembly a machine binary code to assembly instructions using “objdump”

High-level swap(size_t v[], size_t k) yanyh@vm:~$ gcc -c swap.c

language { lyanyh@vm:~$ objdump -D swap.o

program Size_t temp;

(in C) temp = vLkl; ‘swap. o: file format elf64-x86-64

vlk] = v[k+1];
v[k+1] = temp;

Disassembly of section .text:

, 0000000000000000 <swap>:

{ 0: 55 push Srbp
t 1t 48 89 e5 mov %rsp,%rbp
4: 48 89 7d e8 mov %rdi,—0x18(%rbp)
pr— 8: 89 75 e4 mov %esi,—0x1c(%rbp)
—- s111 26, , , b: 8b45e4 mov -0x1c(%rbp) ,%eax
program add x6, , e: 48 98 cltq
(for RISC-V) 1d x5, 10: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4) ,%rdx
1d x7, (17: 00
sd x7, 18: 48 8b 45 €8 mov -0x18(%rbp) ,%rax
sd x5, 1c: 48 01 do add %rdx,%srax
Jalr x0, . 1f: 8b 00 mov (%rax) ,%eax
Dis sembly 21: 89 45 fc mov %seax,—0x4 (srbp)
24: 8b 45 e4 mov -0x1c(%rbp) ,%eax
27 48 98 cltq
<2§§EEEEE> 29: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
30: 00
31: 48 8b 45 €8 mov -0x18(%rbp) ,%rax
Binary mac 00000000001101011001001100010011 3o 14 101, 2 a6 SLaX, STOX
inar .
el S 00000000011001010000001100110011 [| gs 23 gg ed '(':Kl’fc'q Bxlc(kubplykeax
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011 3d: 48 83 c0 01 add $0x1,%rax
00000000011100110011000000100011] 41: 48 8d 0c 85 00 00 00 lea 0x0(,%rax,4) ,%rcx
00000000010100110011010000100011 fJ | 48: @0
00000000000000001000000001100111 ;] 49: 48 8b 45 €8 mov -0x18(%rbp) ,%rax
]
]

4d: 48 01 c8 add %rcx,%rax

EM. Ol NN mA (o wvav) OAAw

https://repl.it/languages/c

Exercise: Inspect ISA for swap

* Swap example
— https://passlab.github.io/ITSC3181/exercises/swap/
Check

— sSwap.x86_64.s,
— swap.x86_64 objdump.txt

®* Generate and execute
— £CC -S swap.c -0 swap.x86_64.s
— gcc -c swap.c
— objdum -D swap.o > swap.x86_64 objdump.txt

For how to compile and run Linux program
— https://passlab.github.io/ITSC3181/notes/lecture01_LinuxCProgramming.pdf

Other system commands:

— cat /proc/cpuinfo to show the CPU and #cores
— top command to show system usage and memory

22

https://passlab.github.io/ITSC3181/exercises/swap/

Compiler Explorer

* Explore other ISA assembly from Compiler Explorer at
https://godbolt.org/

* Work on Lab 01 Tomorrow

C' & godbolt.org

- 1) Use conan or vcpkg to manage your C & C++ library
%= EXPLORER | "%~ | More™ i
S \) dependencies
C++ source #1 X O X | x86-64 gcc 9.2 (Editor #1, Compiler #1) C++ X
A~ BSave/load +Addnew..> ¥ Vim © Cpplnsights Cua - x86-64 gcc 9.2 v @& Compiler options...
1 // Type your code here, or load an example. = .
. ype ¥ . ' P A~ 01010 [O./a.out .LX0: Olib.f: text &M/ O\s+ E
2 int square(int num) {
3 return num * num; 1 square(int):
4 } T 2 push rbp
3 mov rbp, rsp
4 mov DWORD PTR [rbp-4], edi
5 mov eax, DWORD PTR [rbp-4]
6 imul eax, eax
7 pop rbp
8 red

23

https://godbolt.org/

Great Idea: More on Abstractions

Abstraction helps us deal with complexity
— Hide lower-level detail

Instruction set architecture (ISA)

— The hardware/software interface
Application binary interface

— The ISA plus system software interface

Implementation
— The details underlying and interface

Another example of abstraction:
— Java Interface and Class

High-level
language
program
(inC)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(size_t v[], size_t k)
{

size_t temp;

temp = v[k];

vlk] = v[k+1];

v[k+1] = temp;
}

swap:
s11i x6, x11, 3
add x6, x10, x6
1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

24

Components of a Computer

* Same components for
ALL kinds of computer
— Processor (functional unit,
control logic and data path)
— Memory
— Input/out devices

* |nput/output includes

— User-interface devices
* Display, keyboard, mouse

11 _ : — Storage devices

S * Hard disk, CD/DVD, flash

S —— — Network adapters

 For communicating with other
computers

Components of a Computer: Input/Output

26

Open the Box: a Laptop

A,

)

W

RN

o

2 ‘//
o
Fol

N

W

LSRERSL

Hard drive Processor Fanwith Spotfor Spotfor Motherboard ~ Fan with
cover memory

DVD drive
battery

cover
DIMMs

27

Opening the Box: an IPhone

Capacitive multitouch LCD screen

/ 3.8 V, 25 Watt-hour battery

Computer board

28

Desktop Computer Components

Heatsink and Fan

Motherboard
Hard Drive

29

Main Memory (DRAM) of a Computer

CPU or Processor

Control Unit

Main Memory

Data Bus

1 Control Bus 1

® Address Bus ' y .
Southbridge o %

e N PCI Slot (x5)

IDF Conne

DRAM Memory Slot

20-pin ATX Power
Connector

CMOS
Backup

CPU Fan & X8 Battery

Heatsink N ;
Mounting 22T ‘ B
Points \ X

CPU Socket

Connectors For
Inteqrated Peripherals

<
N
LN

AN Y
L)

y) (Wop
M

Everything is Data Stored in Files

* Source code, executable, object are all files ' Files Folders
— Files: Hello.c, sum_full.c, sum pr—

— Folder: ., .., /home/yanyh, etc i‘m‘ -
* Compiler, OS kernel, etc are all stored as files
— gcc, vmlinuz-4.4.0-104-generic

* Information about files/folders and data are also files
— Metadata

* Files need to be loaded to memory in order to be
processed

— An app or executable is a file (multiple files) that contains
the instructions in binary form and other data needed to
execute the program.

31

Loading a file for a command to Memory

* To load a file from disk into memory

* Loading: To run an app=> load the app executable file to
memory and run the instructions of the program
— lyanyh@vm:~/sum$./sum 1000000
e ./ is to specify the path of sum file
— To execute any linux command, e.g. “Is, cd”, etc.
— Double click an icon to execute app:

* The runtime instance of an executable is called a “process”
— |t occupies memory, and uses resources (files, sockets, etc).
— |t executes its threads (machine instructions).

— See the processes of the system using “ps” command, Windows
“task manager”, and Mac OS X “Activity Monitor”

32

Memory and Address

* Memory are accessed via the address of memory cells that store

the value

— inta=AJi]; //a, Ali] are symbolic representation of memory

addresses

* Read value from a memory location whose address is represented

by Ali];

* Write value to a memory location whose address is represented by a

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101

0000 0000 0100 1001
0000 0000 0100 1010
0000 0000 0100 1011

1111 1111 1111 1111

Binary

Address

0000
0001
0002
0003
0004
0005

0049
004A
0048

FFFF

Hex

Memory

/TN

Address 0x10d3ba0c8 0x10d3baOe8 0x10d3ba108
Data

Good
Test Morning Stylus

Touchscreen

* PostPC device
* Supersedes keyboard and mouse

* Resistive and Capacitive types
— Most tablets, smart phones use
capacitive
— Capacitive allows multiple touches
simultaneously

34

Through the Looking Glass

* LCD screen: picture elements (pixels)
— Mirrors content of frame buffer memory

Frame buffer

Raster scan CRT display

0 ' Yo 4——
1V | Yy

Xo X Xo X

| W R S SR

A Safe Place for Data

* Volatile main memory
— Loses instructions and data when power off

- ""'c =
5 i S 5
o Tltra FSS
‘ 2.008 MN‘AA(‘AII"

* Non-volatile secondary memory
— Magnetic disk

— Flash memory
— Optical disk (CDROM, DVD)

Networks

Communication, resource sharing, nonlocal access
Local area network (LAN): Ethernet

Wide area network (WAN): the Internet

Wireless network: WiFi, Bluetooth

37

End of Lecture 01

Inside the Processor (CPU)

* Functional units: performs computations
* Datapath: wires for moving data

* Control logic: sequences datapath, memory, and operations

* Cache memory

— Small fast SRAM memory for immediate access to data

e s . e e [oo

Eranch

Prediction Table

Vo h 4

mw —| Three Symmetric x85 hiruction Decoders

T

N
.’j
~

[Instruction Control Unit

VoY J

J 3

L

e [FPU Stack Map / Rename |
= = | FPU Stack Map / Rename

[_FPUScheduler]

int. |aAddr | [Int. |Addr. | [Int. |Addr. .

4 d & A [FPURggbfrFlie]

J

Bus Exec. |calc, | |Exec. |calc. | [Exec. |cak
Interface FP

Unit 1

FP
Unit 2

FP
Unit3

[II & &4

Load / Store Queue

/I\ \L 4\ M
< 7 Data Cache

| TosystemBus

L2 Cache
Controller

ToL2 Cache J

39

