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Introduction

• CPU performance factors
– Instruction count
• Determined by ISA and compiler

– CPI and Cycle time
• Determined by CPU hardware

• A small subset of RISC-V ISA that can support most 
high-level programming constructs
– Memory reference: load and store such as lw, sw
– Arithmetic/logical: add, sub, and, or
– Control transfer: beq, j
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Instruction and Data (1/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them
• Each byte/word has its memory address
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Instruction and Data (2/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them

• Each byte/word has its memory address
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Appendix A and Chapter 4 and 5

• Study how a processor is designed
and its implication to software and
performance
– Foundation of CPU design
•
• Bottom-up approach to study
– Appendix A: logic design
– Chapter 4: CPU design
– Chapter 5: Memory design
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Processor

Control Logic

Datapath

Components of a Computer
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Logic Design Basics

• To represent and store data, and to perform operation
– 0 and 1
– Start with addition
• Electrics inside a computer are digital

• Information encoded in binary
• Digital circuits use voltage levels to represent 1 and 0
– Low voltage = 0, FALSE, deasserted
– High voltage = 1, TRUE, asserted
– One wire per bit
– Multi-bit data path is encoded via multi-wire buses
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A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

inputs outputs
functional spec

timing spec

Logic Circuit
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• Nodes
– Inputs: A, B, C
– Outputs: Y, Z
– Internal: n1
• Circuit elements
– E1, E2, E3

A E1

E2
E3B

C

n1

Y

Z

Logic Circuits
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Combinational and Sequential Circuits

• To perform operation and store 
data

• Combinational circuit, such as 
adder
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as 
register or memory
– Store information
– Outputs determined by previous 

and current values of inputs
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Three Steps of Logic Design in Theory

x    y    z       F
0    0    0       0
0    0    1       1
0    1    0       0
0    1    1       0
1    0    0       1
1    0    1       1
1    1    0       1
1    1    1       1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram
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Step 1: Truth Table for Binary Logic

• Given N input binary variables, list the output for all the 
possible inputs
– N input è 2n number of input combinations of 0 and 1
– It is digital version of a function, e.g. D = f (A, B, C)

– Computing is a function of binary input, and output is binary
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Step 2: Boolean Algebra

• Logic equation to express binary logic function using binary 
variable, instead of a truth table

• Three fundamental operators
– OR operator, logic sum, written as + 
• Y = A + B

– AND operator, logic product, written as * or .
• Y = A * B, or AB

– NOT operator, inverse, written as ~A, A’ or A
• ~~A = A

14

A  B  Y
0  0  0
0  1  1
1  0  1
1  1  1

A  B  Y
0  0  0
0  1  0
1  0  0
1  1  1

A  ~A 
0  1 
1  0 



George Boole, 1815-1864

• Born to working class parents
• Taught himself mathematics and

joined the faculty of Queen’s
College in Ireland

• Wrote An Investigation of the
Laws of Thought (1854)

• Introduced binary variables
• Introduced the three

fundamental logic operations:
AND, OR, and NOT
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Laws of Boolean Algebra (1/3)

• Basic operators of Boolean algebra
– AND, *
– OR, + 
– NOT, ~

1. Identity Law
– A + 0 = A
– A * 1 = A

2. Zero and One Laws:
– A + 1 = 1
– A * 0 = 0

3. Inverse Laws:
– A + ~A = 1
– A * A~ = 0
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Laws of Boolean Algebra (2/3)

• Basic operators of Boolean algebra
– AND, *
– OR, + 
– NOT, ~

4. Commutative Law
– A + B = B + A
– A * B = B * A

5. Associative Laws:
– A + (B + C) = (A + B) + C
– A * (B * C) = (A * B) * C

6. Distributive Laws:
– A * (B + C) = (A * B) + (A * C)
– A + (B * C) = (A + B) * (A + C)
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Laws of Boolean Algebra (3/3)

• Basic operators of Boolean algebra
– AND, *
– OR, + 
– NOT, ~

7. DeMorgan’s Laws:
– ~(A * B) = ~A + ~B
– ~(A + B) = ~A * ~B
• Extended
– (x1 + x2 + ... + xn )’ = x1’x2’... xn’
– (x1x2 ... xn)’ = x1' + x2' +...+ xn'   

• Easy way to remember: each TERM is complemented, ANDàOR, 
ORàAND
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Operators and Laws of Boolean Algebra: Summary

• Basic operators of Boolean 
algebra
– AND, *
– OR, + 
– NOT, ~

1. Identity Law
– A + 0 = A
– A * 1 = A

2. Zero and One Laws:
– A + 1 = 1
– A * 0 = 0

3. Inverse Laws:
– A + ~A = 1
– A * A~ = 0
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4. Commutative Law
– A + B = B + A
– A * B = B * A

5. Associative Laws:
– A + (B + C) = (A + B) + C
– A * (B * C) = (A * B) * C

6. Distributive Laws:
– A * (B + C) = (A * B) + (A * C)
– A + (B * C) = (A + B) * (A + C)

7. DeMorgan’s Laws:
– ~(A * B) = ~A + ~B
– ~(A + B) = ~A * ~B

• Extended
– (x1 + x2 + ... + xn )’ = x1’x2’... xn’
– (x1x2 ... xn)’ = x1' + x2' +...+ xn'   



Derive Logic Equation from Truth Table 1/2

• Write down the Boolean equation for each line in the truth 
table where the output is 1

• Simplify the equation using Boolean Algebra Laws
• F = A * B * C
• E = ~A*B*C + A*~B*C + A*B*~C
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Derive Logic Equation from Truth Table 2/2

• Write down the Boolean equation for each line in the truth 
table where the output is 0, and do NOT

• Simplify the equation using Boolean Algebra Laws
• D = ~(~A * ~B * ~C) = A + B + C
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More Examples

22

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-
deriving-boolean-expressions-from-truth-tables

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-deriving-boolean-expressions-from-truth-tables


Simplifying Boolean Equations

Y = AB + ~AB 6
= B(A + ~A) 3
= B(1) 1
= B

law #:

Y = A(AB + ABC)     1,6
= A(AB(1 + C)) 2 
= A(AB(1))               1
= A(AB)                    5
= (AA)B                 
= AB
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Law #: 



Step 3: Logic Gates

• Implement the Boolean equation in circuits

• Perform logic functions: 
– inversion (NOT), AND, OR, NAND, NOR, etc.

• Single-input: 
– NOT gate, buffer
• Two-input: 
– AND, OR, XOR, NAND, NOR, XNOR
• Multiple-input
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BUF

Y = A

A Y
0
1

A Y

NOT

Y = A

A Y
0
1

A Y

Single-Input Logic Gates

25



NOT

Y = A

A Y
0 1
1 0

A Y

BUF

Y = A

A Y
0 0
1 1

A Y

Single-Input Logic Gates
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AND

Y = AB

A B Y
0 0
0 1
1 0
1 1

A
B Y

OR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

Two-Input Logic Gates
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AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

Two-Input Logic Gates
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XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0
0 1
1 0
1 1

A B Y
0 0
0 1
1 0
1 1

A B Y
0 0
0 1
1 0
1 1

A
B Y A

B Y A
B Y

More Two-Input Logic Gates
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XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B Y A

B Y A
B Y

1
0
0
1

More Two-Input Logic Gates
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NOR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

Multiple-Input Logic Gates

AND3

Y = ABC

A
B Y
C

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1
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NOR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
0
0
0
0
0
0

• Multi-input XOR: Odd parity

Multiple-Input Logic Gates

AND3

Y = ABC

A
B Y
C

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
1
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Bubble to Invert (NOT) Inputs or Outputs



• Two-level logic: ANDs followed by ORs
• Example: Y = ABC + ABC + ABC

From Logic to Gates

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C
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Circuit Schematics Rules

• Inputs on the left (or top)
• Outputs on right (or bottom)
• Gates flow from left to right
• Straight wires are best

35

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C



Circuit Schematic Rules (cont.)

wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

• Wires always connect at a T junction
• A dot where wires cross indicates a connection between 

the wires
• Wires crossing without a dot make no connection
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Equivalent Circuits

F = ABC + ABC’ + A’C       .......…… (1)          
= AB(C + C’) + A’C          ……..…. (2)   
= AB • 1 + A’C                    
= AB + A’C                       ….....…. (3)

(1)

(2)

(3)

A
B
C

F

A
B

C
F

F

A
B

C

Many different logic diagrams are possible for a given function

37

Simplified function 
uses less gates.



Gates are Implemented Using Transistors

38

• Moore’s Law: number of 
transistors on a computer 
chip doubles every year 
(observed in 1965)

• Since 1975, transistor 
counts have doubled every 
two years.



g

s

d

g = 0

s

d

g = 1

s

d

OFF ON

• Logic gates built from transistors
• 3-ported voltage-controlled switch

– 2 ports connected depending on voltage of 3rd
– d and s are connected (ON) when g is 1

Transistors
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Silicon Lattice

Si SiSi

Si SiSi

Si SiSi

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

Free electron Free hole

n-Type p-Type

• Transistors built from silicon, a semiconductor
• Pure silicon is a poor conductor (no free charges)
• Doped silicon is a good conductor (free charges)

– n-type (free negative charges, electrons)
– p-type (free positive charges, holes)

Silicon
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n

p

gatesource drain

substrate

SiO2

nMOS

Polysilicon

n

gate

source drain

• Metal oxide silicon (MOS) transistors: 
– Polysilicon (used to be metal) gate
– Oxide (silicon dioxide) insulator
– Doped silicon

MOS Transistors
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n

p

gate
source drain

substrate

n n

p

gatesource drain

substrate

n

GND

GND
VDD

GND

+++++++
- - - - - - -

channel

Gate = 0

OFF (no connection 
between source and 
drain)

Gate = 1

ON  (channel between 
source and drain)

Transistors: nMOS
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• Two-level of logic and PLA
– Product of Sum and 
– Sum of Product
– PLA
• ROM
• Don’t Care
• Multiplexer
• Decoder

Combinational Logic
§A.3 C

om
binational Logic



Three Steps of Logic Design in Theory

x    y    z       F
0    0    0       0
0    0    1       1
0    1    0       0
0    1    1       0
1    0    0       1
1    0    1       1
1    1    0       1
1    1    1       1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram
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Two-Levels of Logic and PLA

• A general approach to derive Boolean function from truth 
table and then construct logic circuit
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• Complement: variable with a bar or ’ over it (NOT)
A’, B’, C’

• Literal: variable or its complement
A, A’, B, B’, C, C’

• Minterm: product that includes all input variables (AND)
AB’C, A’BC, AB’C’
– 0, the minimum, determines the value, so it is called minterm

• Maxterm: sum that includes all input variables (OR)
(A+B’+C’), (A’+B+C), (A’+B’+C)
– 1, the maximum, determines the value,  so it is called maxterm

Some Definitions
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• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where the output is TRUE 
• Thus, a sum (OR) of products (AND terms)

Y = F(A, B) =

Sum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

Sum-of-Products (SOP) Form
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• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where the output is TRUE 
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) FormSum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

Y = F(A, B) = AB + AB = Σ(1, 3)
49



• All Boolean equations can be written in POS form
• Each row has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• Form function by ANDing the maxterms for which the 

output is FALSE
• Thus, a product (AND) of sums (OR terms)

Y = F(A, B) = (A + B)(A + B) = Π(0, 2)

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Product-of-Sums (POS) Form
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SOP & POS Form

• SOP – sum-of-products

• POS – product-of-sums

O C E
0 0
0 1
1 0
1 1

minterm
O C
O C
O C
O C

O + C
O C E
0 0
0 1
1 0
1 1

maxterm

O + C
O + C
O + C
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SOP & POS Form

• SOP – sum-of-products

• POS – product-of-sums

O + C
O C E
0 0
0 1
1 0
1 1

0
0
1
0

maxterm

O + C
O + C
O + C

O C E
0 0
0 1
1 0
1 1

0
0
1
0

minterm

O C
O C
O C

O C

E = (O + C)(O + C)(O + C)
= Π(0, 1, 3)

E = OC
= Σ(2)
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Sum of Produce (SOP) is easy to use

• Write down the Boolean equation for each line in the truth 
table where the output is 1

• E = ~A*B*C + A*~B*C + A*B*~C in SOP Form
53



Sum of Products Example

• Boolean function for D
• D = A’*B’ + A’*B + A*B’ + A*B

54



Sum of Product è Programmable Logic Array 
(PLA)

D = A’*B’*C + A’*B*C + A*B’*C’ + A*B*C
• Sum of Product representation is two stages of logic
– Array of AND operations for the minterms
– Array of OR operations to sum logically up the minterms
• Programmable Logic Array (PLA) to implement
– Very easy and efficient to implement
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• PLA impl based
on SOP Boolean
equation 
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• Another form to represent
the PLA array
– Use dot to represent AND

or OR gate
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Read-Only-Memory (ROM) Logic for the Truth 
Table

• Hard-code the truth table in the logic so the output can be 
read given an input

• The truth table is stored as in memory
– Address is the input
– Value is the output
• ROM for the truth table has 3*8 bits for the three outputs
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PLA vs ROM

• ROM is fully decoded, contain the full output for every 
possible input
– Number of entries grows exponentially with regards to the 

number of inputs
• PLA partially decoded, no need for all the possible input most 

of the time

59



Don’t Care

• Output don’t cares and input don’t cares

• Consider a logic function with inputs A, B, and C defined as 
follows: 
– If A or C is true, then output D is true, whatever the value of B. 
– If A or B is true, then output E is true, whatever the value of C.
– Output F is true if exactly one of the inputs is true, although we 

don’t care about the value of F, whenever D and E are both true. 
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Truth Table without Don’t Cares

61



Truth Table with Don’t Cares
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Multiplexors

• Selectors: the output is from one of the two inputs (A 
and B) according to a control input (S)
– C = A * S + B * S
– 1-bit multiplexor

– Extended to select x-bit width input/output
– Extended to select from n number of inputs
• Need log2n select bits

63

A  B  S  C
0  x  0  0
1  x  0  1
x  0  1  0
x  1  1  1



4-to-1 Multiplexor 
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Q = abA + abB + abC + abD

https://www.electronics-tutorials.ws/combination/comb_2.html



N-to-1 Mux

65

https://www.electrical4u.com/multiplexer/



Multiplexors for Selecting Reading from 32 
Registers

• Register read: all the 32 registers
are being read at the same time

• Only the output of the needed one
is selected and sent out

• 32-bit registers
– Input/output are 32-bit data
• 32 registers, we need 5 bit to select
– For 32è1 selector

• Instruction: add x5, x11, x20

66

x0
x1

x11

x31

32 bitwidth

32/



Decoder

• Translate n-bit input into a single bit that corresponds to the 
binary value of the n-bit input

• 3-to-8 decoder
– Inputs are bits of an address
• Address to enable access to a specific location for that address
• Access is turned on/off by the single OutX bit. 
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3-to-8 encoder

• Boolean equation and logic circuit
for 3-to-8 decoder

• A, B, C (or 10, 11, 12) are symbols
or bit position of an address

68



Decoder for Register Write

69



Decoder for Enabling Write to a Register

• Register write: data are sent to all
the registers

• Only the selected one is written
– Write-enable (WE) bit is set to 1 (asserted)
– We use a decoder for set the WE bit
• 32 registers, we need 5 bit to address a register
– For each address, the corresponding bit is set

• Instruction: add r10, rs1, rs2

70

1 bit WE signal 



Decoder and Mux for Register Write-Read
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Lab 7

• Digital for digital logic design and experiment 
from https://github.com/hneemann/Digital
– A Java software that you download and launch the program

72

https://github.com/hneemann/Digital


Organization and Do it as Art Work

73

https://passlab.github.io/ITSC3181/notes/Lab_07_IntroMuxDecoder.pdf

Being able to organize complicated things is a skill and ability that can be trained by 
practice, but hardly a talent. 

https://passlab.github.io/ITSC3181/notes/Lab_07_IntroMuxDecoder.pdf
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ALU and Bitwidth

• Arithmetic logic unit (ALU) is the brawn of the computer
– Perform add, sub, AND, OR, etc. 
– A unit to perform all supported operations

• 64-bit machine (registers are 64-bit wide), we need 64-bit ALU
• 32-bit machine (registers are 32-bit wide), we need 32-bit ALU
– We will focus 32-bit machine starting from now for the lecture
– Choose your bitwidth of your CPU design for your labs 07 – 10
• 32-bit, 16-bit, 8-bit
• More bitwidth à more wire/complexity
• 8-bit is good choice, 16-bit is nice, 32-bit is challenging

• Starting with 1-bit ALU first
– Logic, and then Arithmetic

75
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1-Bit ALU: Logic Unit (AND and OR)

• Logics circuit does AND and OR operations, operation is used 
to select the output of the gate as the result.
– 0: AND
– 1: OR 
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1-Bit ALU adder

• For add, 1-bit adder
– 3 Inputs: a, b, and CarryIn
– 2 Outputs: sum and CarryOut
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XOR Gate

• It does addition, no CarryIn or CarryOut
– Sum = A XOR B = A⊕ B
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1-Bit Half-Adder

• 1-Bit Half-Adder
– Two inputs: A and B
– Two outputs: S and CarryOut

– Sum = A XOR B = A⊕ B
– CarryOut = A*B
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1-Bit Full Adder

• 1-Bit Full-Adder
– Three inputs: A, B and CarryIn
– Two outputs: S and CarryOut

• Combine two half-adder to a full adder

80



1-Bit Full Adder
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1-Bit ALU that can do add, AND, and OR. 

• 1-Bit Full Adder + AND/OR logic unit

• Operation has 2 bits for the mux
– AND: 00
– OR: 01
– ADD: 10
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64-Bit ALU

• 64 input bits are split and fed
to each 1-bit ALU

• Results/sums of each 1-bit 
ALU are combined into a 
single 64-bit double word 
as the result of the ALU

• CarryOut goes to CarryIn
of the ALU for next bit
– CarryOut of 63-rd bit is 

the overflow
• Operation bits go to

all adders
83
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Extending ALU to DO 
A Little More: sub
• Starting from the 1-Bit ALU
– Can do add, AND and OR

• Add substraction to the ALU
– a – b = a + (-b) = a + b’ + 1 since 
• For 2’s complement 

representation, -b = b’ + 1
– Thus we just need to revert (NOT)

b and “add 1”
• Use the carryIn for “add 1”
• A Mux to select b or b’

– if doing sub
• Binvert is 1
• CarryIn is 1
• Operation is still add (10)

84

2/



Extending ALU to DO 
A Little More: NOR
• Current 1-Bit ALU
– Can do add, sub, AND and OR

• Add NOR operation
– (a + b)’ = a’ * b’
– Just need to add NOT for a, and 

a mux to select a or a’

• For doing NOR
– Operation is AND (00)
– Ainvert is 1
– Binvert is 1
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Extending ALU to DO 
A Little More: SLT (1/2)
• Current 1-Bit ALU
– Can do add, sub, AND, OR and NOR

• slt (set less than) instruction 
– slt rd, rs1, rs2
• if ([rs1] < [rs2]) [rd] = 1

else [rd] = 0
– slti rd, rs1, #immediate
• if ([rs1] < #immediate) [rd] = 1

else [rd] = 0
– For the ALU, a is [rs1], b is [rs2] 

and result is [rd]
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Extending ALU to DO 
A Little More: SLT (2/2)
• Current 1-Bit ALU
– Can do add, sub, AND, OR and NOR

• slt (set less than) instruction 
– Implementation: 
• (a < b) == (a-b) < 0
• Thus slt is to perform sub and 

then check the sign bit of the result. 
• A set bit from the adder output

is used to pass through the 
sign bit from MSB to LSB

• SLT has its own operation 
code (11) and less goes to the output 
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SLT in 64-Bit ALU

88

• For SLT (set less than)
– Operation is 11
– MSB set, bit 63, which 

is the sign bit goes to 
LSB as the result
• If negative, set of 63 

is 1, thus [rd] = 1
• All others are 0

2/

ALU control lines



Check zero in 64-Bit ALU

89

• Check zero of any 
operations
– NOR of all result bit
• Usage, e.g.
– For beq rs1, rs2, label 

instruction
• Which do [rs1] – [rs2] 

first, and check whether 
result is zero or not

2/

ALU control lines



Extending ALU to DO 
A Little More: overflow
• Current 1-Bit ALU
– Can do add, sub, AND, OR, NOR 

and SLT

• Overflow detection is optional
– Can be just CarryOut
• We will NOT do this in the lab
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64-Bit ALU
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• Operation:
– AND: 00
– OR: 01
– ADD: 10
– SUB: 10 (same as ADD)
– SLT: 11
– NOR: 00 (same as AND)
• 4 bits ALU controls:
– Ainvert: for NOR
– Bnegate: for sub and slt
– 2-bit operation

2/

ALU control lines



ALU Symbol

• 4-bit ALU operation
– Ainvert, Bnegate, 2-bit operation
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Examples using Hardware Description Language: 
Verilog for Half-adder

• HDL describe the behavior of the logic
– logic synthesis converts to gates

• Half-adder
– Sum = A XOR B = A⊕ B
– CarryOut = A*B
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Verilog for 4-to-1 Mux

• 4-to-1 Mux (32-bit in the picture, 64-bit in the code)

• always @(list of signals that cause reevaluation)
– Re-evaluate the assignment if any of the sensitive list changes
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Verilog for ALU

• HDL describe the behavior of the logic
– logic synthesis converts to gates
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Verilog for a Complete ALU for RISC-V

• 6-bit function code derived from the instruction decoding
– Pick the needed bits from, e.g. opcode/func3/funct7
• Use function code to assign the 2-bit ALUop code
– E.g. for Load and store instruction, add ALUop is used to signal 

the ALU to perform add operation of base and offset
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Appendix A: The Basics of Logic Design
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• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and 

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware 

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic 

Arithmetic Logic Unit
– A.6 Faster Addition: Carry 

Lookahead

☛• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs 

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable 

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10



Processor

Control Logic

Datapath

Components of a Computer
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Program Counter (PC)

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Read/Write

Address

Write Data

Read Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Appendix A: logic design
Chapter 4: CPU design Chapter 5: Memory design



Combinational and Sequential Circuits

• Combinational circuit, such as 
mux, decoder, ALU
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as 
register or memory
– Store information
– Outputs determined by 

previous and current 
values of inputs
• e.g. previous inputs 

are stored
99
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• Mostly consists of combinational logic + Memory
• Memory is used to store state
– Update memory according to both input and previous state
• Combinational logic to drive output
– It uses both input and internal state to drive the output 
• Controlled by clock 
– Update at specific time

Sequential Circuits
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• Are needed in sequential logic to decide when an element that 
contains state (memory) should be updated (written or stored). 
– It is a real clock, but in different form
• E.g. update the memory every 125 ns, not anytime one wants. But 

since it is very fast, not a big deal. 
– Cycle time, or clock period (inverse of clock frequency)
• High and Low

• Edge-triggered clocking
– State change (0 à 1 or 1à 0) on a clock edge
– Rising edge and falling edge
– Active edge causes stage change
• Could be just rising or falling, or both
• State change in the rising edge in the above figure

Clocks

Rising edge

Falling edge

1
0



Clocking Methodology

• Synchronous systems
– Clock and input MUST be synchronized to make sure update is 

stabilized. 
• Combinational logic transforms data during clock cycles
– Between clock edges
– Input from state elements (memory), output to state element
– Longest delay determines clock period
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Read and Write in the Same Cycle

• Both rising and falling edge are active
– Update twice per cycle

• E.g. Double data rate (DDR) memory

• Register files work in this way as well
– Read and write to a register file in the same cycle
– Read and write a register (x6) in the same cycle
– Write to a register (x6) and then read it (x6) in the same cycle for 

two instructions 
add x6, x4, x6
add x7, x6, x8 103
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• ALU is used for doing computation

• Memory: to store information
– State: information at a particular time
– Registers, cache and main memory are all “memory”
• Different type of technologies, e.g. SRAM and DRAM, detailed in 

Chapter 5
• Memory element in circuit
– The output from any memory element depends both on the inputs 

and on the value that has been stored inside the memory element.
– All logic blocks containing a memory element contain state are 

sequential, e.g. registers, cache and main memory

Memory Element



Some Terms about Memory

• Outputs of sequential logic depend on current and prior input 
values – it has memory.

• Some definitions:
– State: all the information about a circuit necessary to explain its 

future behavior
– Latches and flip-flops: 

state elements (circuits) that 
store one bit of state

– Sequential circuits are synchronous 
combinational logic followed by 
a bank of flip-flops (memory) 
controlled by clock

• We start studying how to design logic to store a single-bit
– Then extend to create logics for storing multiple bits 
– 1-bit ALU è 32/64-bit ALU
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SR (Set/Reset) Latch

R

S

Q

Q

N1

N2

• SR Latch
• Cross-coupled structure

• Consider the four possible cases of the 2 inputs:
– S = 1, R = 0
– S = 0, R = 1
– S = 0, R = 0
– S = 1, R = 1
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– S = 1, R = 0: 
then Q = 1 and Q = 0

– S = 0, R = 1: 
then Q = 0 and Q = 1

R

S

Q

Q

N1

N2

0

1

1

00

0

R

S

Q

Q

N1

N2

1

0

0

10

1

SR Latch Analysis
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– S = 1, R = 0: 
then Q = 1 and Q = 0
Set the output to 1

– S = 0, R = 1: 
then Q = 0 and Q = 1
Reset the output to 0

R

S

Q

Q

N1

N2

0

1

1

00

0

R

S

Q

Q

N1

N2

1

0

0

10

1

SR Latch Analysis
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R

S

Q

Q

N1

N2

0

0

R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1

1

– S = 0, R = 0: 
then Q = Qprev

– S = 1, R = 1: 
then Q = 0, Q = 0

R

S

Q

Q

N1

N2

1

1

0

00

0

SR Latch Analysis
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R

S

Q

Q

N1

N2

0

0

R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1– S = 0, R = 0: 
then Q = Qprev

Memory!

– S = 1, R = 1: 
then Q = 0, Q = 0
Invalid State
Q ≠ NOT Q

R

S

Q

Q

N1

N2

1

1

0

00

0

SR Latch Analysis
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S

R Q

Q

SR Latch
Symbol

• SR stands for Set/Reset Latch
– Stores one bit of state (Q)

• Control what value is being stored with S, R
inputs
– Set: Make the output 1 

(S = 1, R = 0, Q = 1)
– Reset: Make the output 0 

(S = 0, R = 1, Q = 0)
• Must do something to avoid

invalid state (when S = R = 1)

SR Latch Symbol
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D Latch
Symbol

CLK
D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes
– D (the data input): controls what the output changes to

• Function
– When CLK = 1, (0à1, rising edge)

D passes through to Q (transparent)
– When CLK = 0, 

Q holds its previous value (opaque)

• Avoids invalid case when 
Q ≠ NOT Q

D Latch
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S R Q QCLK D
0 X
1 0
1 1

D

D Latch Internal Circuit
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S

R Q

Q

Q

QD

CLK
D

R

S

CLK
D Q

Q



S

R Q

Q

Q

QD

CLK
D

R

S

CLK
D Q

Q
S R Q
0 0 Qprev
0 1 0
1 0 1

Q

1
0

CLK D
0 X
1 0
1 1

D
X
1
0

Qprev

D Latch Internal Circuit
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When the clock, 
CLK, is asserted 
(rising edge, i.e. 
0à1), the latch is 
open and the Q 
output immediately 
assumes the value 
of the D input.

CLK

Rising edge

Q does not 
change even 
D is changed 
since CLK is 
not on the 
rising edge 
(0à1).



D Flip-Flop
Symbols

D Q
Q

• Inputs: CLK, D
• Function

– Samples D on falling edge of CLK
• When CLK falls from 1 to 0, D

passes through to Q
• Otherwise, Q holds its previous value

– Q changes only on falling edge of CLK

• Called edge-triggered
• Activated on the clock edge

D Flip-Flop
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• Two back-to-back latches (L1 and L2) controlled by 
complementary clocks

• When CLK = 1
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 0
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the falling edge of the clock (when CLK falls from 
1 à 0)
– D passes through to Q

116

L1 L2

N1

D Flip-Flop: Falling Edge Triggered

CLK



• Two back-to-back latches (L1 and L2) controlled by complementary clocks
• When CLK = 1

– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 0
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the falling edge of the clock (when CLK falls from 0 à 1)
– D passes through to Q
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L1 L2

N1

D Flip-Flop: Falling Edge Triggered



Timing

• For a falling-edge triggered D flip-flop
– The input must be stable for a period of time before the clock edge, as 

well as after the clock edge, for the latches to sample
• Setup time: the minimum time that the input must be valid before 

the clock edge; 
• Hold time: the minimum time during which it must be valid after 

the clock edge
• Thus the inputs to any flip-flop (or anything built using flip- flops) 

must be valid during a window that begins at time tsetupbefore the 
clock edge and ends at tholdafter the clock edge, 

118
CLK

CLK



• Two back-to-back latches (L1 and L2) controlled by 
complementary clocks

• When CLK = 0
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 1
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the rising edge of the clock (when CLK rises from 
0 à 1)
– D passes through to Q

119

D Flip-Flop: Rising Edge Triggered

CLK



D Flip-Flop, Rising Edge Triggered

• Verilog description:

• always@(posedge clock): at the positive/rising edge of the clock
• always@(negedge clock): at the negative/falling edge of the clock
• They are used to describe sequential Logic, or Registers. 
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Registers in a Processors

• General purpose registers
– 32 32-/64-bit registers

• Instruction register
– Store the current instruction word
• Program counter (PC)
– Store the address of the current instruction
• Status registers
• Others: page table register, etc. 

• A 32- or 64-bit register: a kind of memory
– Created with 32 or 64 D-flip-flops and combinational logics to read and 

write
– Can be read from and written to
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1-Bit and 4-bit Register

• A D Flip-flop is a 1-bit register
– D is write input port
– Q is read output port
– Clk is the input control to write

• A 4-bit register
– Needs 4 D flip-flops

• Same for a 32- or 64-bit register
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CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

D Flip-Flop
Symbols

D Q
Q



A Register File
• Has multiple registers
– E.g. 32 32-bit registers
– Numbered from 0 to 31
• Needs 5 bit to address each

• Read: (does not change state)
– Input: register number
– Output: data of the register

• We want to read (at least) two registers the same time
– add x7, x6, x5 (two register reads and one register write)
– Two read ports

• Write: (change state)
– 3 Inputs: 
• Register number
• Data to be written to the register 
• Write signal (1-bit): to tell register that this is a write (clock signal)

– No output
• A D flip-flops:
– Read anytime
– Write on the rising edge of the clock (write signal)
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D Flip-Flop
Symbols

D Q
Q



Design a Register File with 32 32-bit Registers from 
Digital

• Design a single 32-bit register
– A 32 bitwidth D flip-flop
– D is “write data” input
– Q is ”read data” output
– Clk is the “Write” input, or called WE (Write-Enable)
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D Flip-Flop
Symbols

D Q
Q



Design the Read Port of the Register File

• Stack up 32 32-bit registers and 
label them from x0 to x31
– Leave some space between 

registers for wires
• Each Read Port:
– Since the output (Q of D flip-flop) 

of each register is always available, 
to read from one register is just to 
select which output to become the 
output of the register file. 
• Select one from 32: use a Mux
– 5-bit selection (register number)

– Two read ports since for most 
instructions, there are two source 
operands, e.g. 
• add x7, x6, x5
• sd x6, 0(x5)
• beq x1, x2, label
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Use the 32-1 Mux You Designed Before

• Need two Mux’s, one for reach read port
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x0
x1

x11

x31



Design the Write Port of the Register File (1/2)

• Three inputs:
– Register number to be written to
– Data to be written to the register: which is D
– Write signal (1-bit): to tell that this is a write: which is clock

• Design: 
– Write data sent to all registers (write data wired to D of all).
– Use writer register number to turn on the write signal (1-bit 

clock) of the target register
• A decoder to set one of 32 output, 
• and then AND with the write signal
• and then send the output of AND to the clock input of each 

register
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D Flip-Flop
Symbols

D Q
Q



Design the Write Port of the Register File (2/2)

• Three inputs:
– Write register number
– Data to be written to the register: 

which is D
– write signal (1-bit): to tell that this is 

a write: which is clock

• Design: 
– Write data sent to all registers (write 

data wired to D of all).
– Use writer register number to turn 

on the write signal (1-bit clock) of 
the target register
• A decoder to set one of 32 output, 
• and then AND with the write signal
• and then send the output of AND 

to the clock input of each register
128



Use the 32-Output Decoder You Designed Before 

• Add AND gate for each register for write
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Lab 09: Design a Register File with 32 32-bit (16- or 
8-bit) Registers (1/2)
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D Flip-Flop
Symbols

D Q
Q



Lab 09: Design a Register File with 32 32-bit (16- or 
8-bit) Registers (2/2)

1. Design 1 32/16/8-bit register
– Use the system provided D flip-flop
– You can design your own D flip-flop and use yours

2. Stack up 32 32/16/8-bit registers
– Leave room between registers for wires

3. Design the two read ports
– Use the Mux you designed before

4. Design the write inputs
– Use the decoder you designed before

5. Label input/output correctly, wire neatly.  
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Rising Edge Triggered Register Can be Written and 
Read in the Same Clock Cycle

• D is written to D flip-flop (register) at the rising edge, and 
data is available in the same cycle for read
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Clk 

D

Q

Enableff

Read Data (Q)

Write Data (D)

Clk
Enable

One clock period



Appendix A: The Basics of Logic Design

133

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and 

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware 

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic 

Arithmetic Logic Unit
– A.6 Faster Addition: Carry 

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs 

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable 

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10
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• We learned 
– how to design ALU, adder, gate, Mux, Registers, etc
– how to program, both high-level and assembly

• Random Access Memory
– Thinking of extending 
a register file to have 
larger capacity
• 32 64-bit registers

A Typical Single-Cycle Processor



Memory Arrays

Address

Data

ArrayN

M

• Efficiently store large amounts of data
• 3 common types:

– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)
– Read only memory (ROM)

• M-bit data value read/ written at each unique N-bit address
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Memory Arrays

Address

Data

ArrayN

M

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells 
• Consider it as a bigger register file

• Each bit cell stores one bit
• N address bits and M data bits:

– 2N rows and M columns
– Depth: number of rows (number of words)
– Width: number of columns (size of word)
– Array size: depth × width = 2N × M
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Memory Array Example

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array
• Number of words: 4
• Word size: 3-bits
• For example, the 3-bit word stored at address 10 is 100
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Memory Arrays

• 10-bit address: 210 = 1024 word
• Each word is 32-bit
• Total: 1024 * 32 bits = 32K bits = 4K bytes

Address

Data

1024-word x
32-bit
Array

10

32

long int a = A[8]; A[4] = b;

Instructions that access memory: 
• Load: e.g. ld x5 64(s0)

• Address: 64+[s0]
• Store: e.g. sd x6, 32(s0)

• Address: 32 + [s0]
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Types of RAMRandom-Access Memory (RAM)

• Historically called random access memory (RAM) because any data 
word accessed as easily as any other (in contrast to sequential 
access memories such as a tape recorder)

• Volatile: 
– loses its data when power off
– Read and written quickly
– Main memory in your computer is RAM (DRAM)

• Two types: 
– DRAM (Dynamic random access memory), main memory of computer
– SRAM (Static random access memory)
• Differ in how they store data:
– DRAM uses a capacitor
– SRAM uses cross-coupled inverters

Address

Data

1024-word x
32-bit
Array

10

32
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SRAM and DRAM Technology Differences

• Static RAM (SRAM)
– Each cell stores a bit with a six-transistor 

circuit, a flip-flop
– Retains value indefinitely, as long as it is 

kept powered.
– Relatively insensitive to disturbances such 

as electrical noise.
– Faster and more expensive than DRAM.
• Dynamic RAM (DRAM)
– Data stored as a charge in a capacitor
– Single transistor used to access the 

charge
– Dynamic: need to be “refreshed” 

regularly, every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.
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• Data is stored statically in flip-flop
– As long as it is powered, data (high/low voltage) will be stored.
– RAM (random access):  fixed access time to any datum
• Not like spinning disk. 

– Same as register
• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220 

bits = 4MByte)

SRAM (Static Random Access Memory)
L1 L2

N1
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• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220 bits = 

4MByte)
• Read
– Input:
• Chip select
• Output enable
• Address

– Output:
• Dout

• Read access time (latency): time to initiate read to when data is 
available on Dout
– 2-4 ns

Read of SRAM (Static Random Access Memory)
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• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220 

bits = 4MByte)
• Write
– Input:
• Chip select
• Write enable (not clock, but pulse)
• Address
• Din

– Output: (not output)
• Write time: setup time, hold time and pulse width

Write of SRAM (Static Random Access Memory)



Memory Read Implementation

• Recall register read:
– A 32-1 Mux to select one of the 

register
• 32 registers

• Not practical for select from one of 
the large amount of memory word 
using the regular centralized Mux
– 64k x 1 memory array needs a 64k-

1 mux
• Memory use tristate buffer to 

create a mux
– “Mux” is distributed to the memory 

cell
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Tristate Buffer

• Tristate buffer, or Three-state buffer
– 1: asserted
– 0: deasserted
– Hi-Z state: to allow other control the output

• “Driver” in Digital
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4-1 Distributed Mux Using Tristate Buffer 

• Select bit is the output of a decoder whose input is the 
address 

• Select bit to select one of the data from memory to drive the 
output line (become the output)
– No need Mux to select
• Create a distributed Mux
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Another Design for Not Using Centralized Large 
Mux 

• 4x2

147



Two-level of Decoding

• 4M x 8 SRAM: 4K rows and each has 8 bits
• First decoder: select 8 1024-bit-wide data from 4K
• Second:  8 Muxes, each to select 1 bit from each 1024-bit-

wide data 
• Two steps: Increate read latency
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DRAM (Dynamic Random Access Memory)

• Static RAM (SRAM)
– Each cell stores a bit with a six-

transistor circuit, a flip-flop
– Faster and more expensive than 

DRAM.
• Dynamic RAM (DRAM)
– Data stored as a charge in a capacitor
– Single transistor used to access the 

charge
– Dynamic: need to be “refreshed” 

regularly, every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.
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To Refresh a DRAM Cell

• Refresh: Read its content and write it back
– Every several milliseconds

• Refreshing conflicts with normal read/write
– Two-level decoding à refresh one row a time
– Refresh consume 1% - 2% of active cycles
– 98% - 99% cycles for normal read and write
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Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and 

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• 4M x 1 DRAM built with a 2048 x 2048 Array
– 22-bit address line
– Address[21-11]: Row address
• Select a row and latch 2048 bits in the column latches

– Address[10-0]: Column address  
• Select one bit from the 2048 latches
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Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and 

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• Use the same address wire for row address and column 
address
– RAS (Row Access Strobe) and CAS (Column Access Strobe) are 

used to signal DRAM either a row or column address is being 
supplied

• Refreshing:
– Reading data into column latch and write them back
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Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and 

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• DRAM Access Time
– Because of two-level decoding and internal circuitry, 
– 5-10 times slower than SRAM access time, e.g. 45-65 ns
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Memory Hierarchy of Computer in Real
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Static RAM (SRAM)
0.5ns – 2.5ns, $2000 – $5000 per GB
Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB
Magnetic disk
5ms – 20ms, $0.20 – $2 per GB



Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large not expensive

Control

Datapath

Off-Chip
Memory

Processor
Input

Output
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CPU is The chip. 
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Lecture Ends Here



Appendix A: The Basics of Logic Design
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• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and 

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware 

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic 

Arithmetic Logic Unit
– A.6 Faster Addition: Carry 

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs 

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable 

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10



Combinational and Sequential Circuits

• Combinational circuit, such as 
mux, decoder, ALU
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as 
register or memory
– Store information
– Outputs determined by previous 

and current values of inputs
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§A.10 Finite-State M
achines



Three Steps of Logic Design in Theory, 
Mostly for Combinational Circuit, so far

x    y    z       F
0    0    0       0
0    0    1       1
0    1    0       0
0    1    1       0
1    0    0       1
1    0    1       1
1    1    0       1
1    1    1       1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram
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• Input, output and states
• State: Given n bits of storage 

(memory)
– 2n state

• Next-state function
– Combinational logic, given 

inputs and current states, 
determines the next state of 
the system

• Output function
– Produce outputs from current 

state and inputs

Sequential System is described as a Finite-state 
Machine (FSM)



• Two types of finite state machines differ in output logic:
– Moore FSM: outputs depend only on current state
– Mealy FSM: outputs depend on current state and inputs
– These two types are equivalent in capabilities, can convert from 

one to the other
– We are only going to deal with the Moore machine. 

Finite State Machines (FSMs)

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM



Intelligent Traffic Controller

• We want to use a finite state machine to control the 
traffic lights at an intersection of  a north-south route 
and an east-west route
– We consider only the green and red lights
– We want the lights to change no faster than 30 seconds in each 

direction
• So we use a 0.033 Hz clock
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Intelligent Traffic Controller

• There are two output signals: 
– NSlite: When the signal is asserted, the light on the north-south 

route is green; otherwise, it should be red
– EWlite: When the signal is asserted, the light on the east-west 

route is green; otherwise, it should be red

163Pictures adapted from:  https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino

EWlite

NSlite

Control
1/

1/

https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino


Intelligent Traffic Controller

• There are two inputs
– NScar: Indicates that there is at least one car that is over the 

detectors placed in the roadbed in the north-south road
– EWcar: Indicates that there is at least one car that is over the 

detectors placed in the roadbed in the east-west road
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EWlite

NSlite

Control
1/

1/

NScar1/
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Intelligent Traffic Controller

• Here we need two states
– NSgreen: The traffic light is green in the north-south direction
– EWgreen: The traffic light is green in the east-west direction
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen



Intelligent Traffic Controller: Traffic Lights 
Change only When They Need To

• The traffic lights should only change from one direction to 
the other only if there is a car waiting in the other direction
– Otherwise, the light should continue to show green in the same 

direction
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen



Next State Function
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen



Next State Function: If cars are in both directions, 
alternate

168

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen



Output Function
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen



Graphical Representation
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

• Node: state
– Inside: a list of output that are 

active for the state
• Directed Arch: next-state func
– Labels: input



Implementation: State Assignment

• We need to assign state numbers to the states
– Only two states: assign 0 to NSgreen and 1 to EWgreen
– Therefore we only need 1 bit in the state register
– CurrentState:
• 0: NSGreen
• 1: EWgreen
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EWlite

NSlite

Control
1/

1/

NScar1/
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Combinational Logic for Next State Function
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Combinational Logic for Ouptput Function

– CurrentState:
• 0: NSGreen
• 1: EWgreen
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Implementing Intelligent Traffic Controller
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EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

CurrentState

CurrentState

NextState



Implementing Intelligent Traffic Controller

• The state is updated at the edge of the clock cycle
• The next state is computed once every clock. 
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EWlite

NSlite

Control
1/
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CurrentState
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Implementing the Design using Verilog
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FSM

• More complicated FSM
– More states à more flip-flops
– More inputs and output
– Inputs/outputs are more than 1 bit
– More complicated state transition

– E.g. extension to support Green/Red/Yellow light in Exercise 
A.41

• FSM is used to control processor execution
– Chapter 4 and 5
– Appendix C: Mapping Control to Hardware
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Five Steps to Build a Finite State Machine

• There are no set procedures and diagrams. Application dependent
• Step 1: Identify inputs, outputs and states
• Step 2: State diagram and state table
– Choose a state to be the starting state when power is turned on the 

first time
– Draw a state diagram by a graph with regards to input/outputs and 

state transition
– List in the tables for state transition and for output à Boolean 

function for each tables à next-state function and output function
• Step 3: State assignment
– Assign a unique binary number to each state
– Rewrite the state table using the assigned number for each state
• Step 4: Combinational logic for next state function and output 

function
• Step 5: Logic Implementation
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CircuitVerse-Related Slides
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Lab 07

• https://circuitverse.org/
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