Appendix A: The Basics of Logic Design

ITSC 3181, Introduction to Computer Architecture

https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan
yyan7@uncc.edu
https://passlab.github.io/yanyh/

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Appendix A: The Basics of Logic Design

W ecture 12 * Lecture 15
~ A.llntroduction _ 2; CMIZ(::Zry Elements: Flip
— A.2 Gates, Truth Tables, and F|'ops’ Latches, and Reéisters
Logic Equation * Lab 8
* Lecture 13 * Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A4-Usinga-Hardware and DRAMs
Deseription-Language * Lab9
*_lecture-18
° Lab7 . :
— A O Fpite-tiate Mackhines
* Lecture 14 —A-11 Timing-Methodelegies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
cai . — A.13 Concluding Remarks
—EsEFasterbdditionCarny A 14 Exerci

Lookahead .
° Lab10

Introduction

* CPU performance factors

— Instruction count
 Determined by ISA and compiler

— CPl and Cycle time CPU Time
 Determined by CPU hardware

_ Instructions Clock cycles y Seconds
Program Instruction Clock cycle

* A small subset of RISC-V ISA that can support most
high-level programming constructs
— Memory reference: load and store such as 1w, sw
— Arithmetic/logical: add, sub, and, or
— Control transfer: beq, jJ

Instruction and Data (1/2)

* Are all numbers stored as binary format in memory
It is up to the CPU on how to interpret and do with them

* Fach byte/word has its memory address

Name Field Comments
(Field Size) 7 bits 5 bits 5 bits 3 bits
R-type funct7 | rs2 rsl funct3 rd opcode Arithmetic instruction format
I-type immediate[11:0] rsl funct3 rd opcode Loads & immediate arithmetic
S-type immed[11:5] rs2 rsl funct3 | immed[4:0] opcode Stores
SB-type immed[12,10:5] rs2 rsl funct3 |[immed[4:1,11] opcode Conditional branch format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional jump format
U-type immediate[31:12] rd opcode Upper immediate format

2s-Complement Signed Integers

Bit 31 is sign bit

1 for negative numbers
0 for non-negative numbers

000
000
000

0000
0000
0000
111
111
111

1111

0000
0000
0000

1111

0000
0000
0000

1111

0000
0000
0000

1111

0000
0000
0000

1111

0000
0000
0000

0000,
0001,
0010,..

1111

000
000

nnn

IEEE Floating-Point Format

single: 8 bits ingle: i
double: 11 bits 3?35&2532%?5
S | Exponent Fraction

x = (—1)° x(1+Fraction) x 2®xerent-22)

ten

tcr\

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

space 0 @

1| 49 1 A

50 2 66 B

& 51 3 67 Cc

$ 52 4 68 D

% 53 5 69 E

& 54 6 70 F

) 55 3 71 G

(56 8 72 H

) 57 9 73 |

v 58 . 74 J

2 59 : 75 K

60 < 76 L

61 = 77 M

. 62 > 78 N

| 7 [& | = 79 | 0
FIGURE 2.15

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

swap:

muli $2,
add $2,
Tw $15,
Tw $16,
sw $16,
Sw $15,
ir $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

P
Q

R 98
S 99
T 100
u 101
\ 102
w 103
X 104
Y 105
Z 106
[107
\ 108
] 109
A

110
111

3|3 | =|x|=|=|Tgjm|~0oalojc o

ASCII representation of characters

$5.4

$4,$2
0($2)
4($2)
0(s$2)
4($2)

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

l|~|—|~|N|w x| E|<c|c|~|lu|~|0|O

o
m
Al

Instruction and Data (2/2)

* Are all numbers stored as binary format in memory
— Itis up to the CPU on how to interpret and do with them

* Each byte/word has its memory address

« P —
Edit - Coproc 1 Coproc 0

Name Number Value
Text Segment Labels $zero 0 0x00000000
Bkpt Address Code Basic Source Label Address A $at 1 0x00000000
0x24080010 addiu $8,$0,0x00000010 33: 1i $t0, 16 # $t0 = numb... row-major.asm $v0 2 0x00000000
0x24090010 addiu $9,$0,0x00000010 34: 11 $t1, 16 # $t1 = numb... loo 0x00400014 $v1 3 0x00000000

p X

0x00008021 addu $16,$0, $0 BBk move $s0, $zero # $s0 = row ... data 0x10010000 $a0 4 0x00000000
0x00400008 0x00008821 addu $17,$0,$0 36: move $s1, $zero # $s1 = colu... $al 5 0x00000000
0x0040001f 0x00005021 addu $10,$0, $0 Bl move $t2, $zero # $t2 = the ... $a2 6 0x00000000
0x0040001§ 0x02090018 mult $16,$9 41: loop: mult $s0, $tl # $s2 = row ... $a3 7 0x00000000
0x0040001§ 0x00009012 mflo $18 42: mflo $s2 # move multi... $t0 8 0x00000000
0x0040001f ©x02519020 add $18,$18,$17 43: add $s2, $s2, $s1 # $s2 += col... $t1 9 0x00000000
0x00400028 0x00129080 s11 $18,$18,0x00000002 44: sl $s2, $s2, 2 # $s2 x=4 (... $t2 10 0x00000000
0x00400028 ©0x3c011001 lui $1,0x00001001 45: sw $t2, data($s2) # store the ... $t3 11 0x00000000
0x0040002§ 0x00320821 addu $1,$1,$18 $t4 12 0x00000000
0x00400021 0xac2a0000 sw $10.0x00000000($1) v Data v Text $t5 13 0x00000000
$t6 14 0x00000000
$t7 15 0x00000000
$s0 16 0x00000000
Dl gl el $s1 17 0x00000000
Address alue (+0) Value (+4) Value (+8) Value (+¢) Value (+10) Value (+14) Value (+18) Value (+1¢) $s2 18 0x00000000
0x10010000 0x 0x ox 0x ox 0x 0x 0x $s3 19 0x00000000
0x10010020 0x 0x 0x 0x 0x 0x 0x 0x $s4 20 0x00000000
0x10010040 0x 0x 0x 0x 0x 0x 0x 0x $s5 21 0x00000000
0x10010060 0x 0x 0x 0x 0x 0x 0x 0x $s6 22 0x00000000
0x10010080 0x 0x 0x 0x 0x 0x 0x 0x $s7 23 0x00000000
0x100100a0 0x 0x 0x 0x 0x 0x 0x 0x $t8 24 0x00000000
0x100100c0 0x 0x 0x 0x 0x 0x 0x 0x $t9 25 0x00000000
0x100100e0 0x 0x 0x 0x 0x 0x 0x 0x $k0 26 0x00000000
0x10010100 0x 0x ox 0x ox 0x ox 0x $k1 27 0x00000000

Appendix A and Chapter 4 and 5

* Study how a processor is designed
and its implication to software and

performance
— Foundation of CPU design

* Bottom-up approach to study
— Appendix A: logic design
— Chapter 4: CPU design
— Chapter 5: Memory design

Seconds
Clock cycle

Instructions y Clock cycles 9
Program Instruction

CPU Time =

focus of this course

Application |>"hello
Software |world!”
Operating
Systems
; o o pmsemney
Architecture mmm ——
.
Micro- <+—>
architecture <+—>
o O
Logic of + o
o
Digital fOD:.O
Circuits
Analog
Circuits
Devices —@
Physics %

programs

device drivers

instructions
registers

datapaths
controllers

adders
memories

AND gates
NOT gates

amplifiers
filters

transistors
diodes

electrons

Components of a Computer

Processor ey) I"PUE
Control Logic Read/Write >
v A Program
Datapath
Program Counter (PC) Address >
— Bytes
- Registers
Write Data
<
Read Data Data Output
(0 o
\ Y J \ l
Processor-Memory Interface |/O0-Memory Interfaces
A ix A: logi '
ppendix A: logic design Chapter 5: Memory design 7

Chapter 4: CPU design

Logic Design Basics

* To represent and store data, and to perform operation
— Oand 1
— Start with addition

®* Electrics inside a computer are digital
Value Value

A

A
Time Time

Analog signal Digital signal

* Information encoded in binary
* Digital circuits use voltage levels to represent 1 and 0

— Low voltage = 0, FALSE, deasserted Ana,og/‘\/‘\/\/\

— High voltage = 1, TRUE, asserted
— One wire per bit °'9'“'[—|_f—|_ﬂ_f_|

— Multi-bit data path is encoded via multi-wire buses

Logic Circuit

A logic circuit is composed of:
* |nputs

* Qutputs

* Functional specification

* Timing specification

add x6, x4, x5
e)
—» functional spec I
{)X(‘;]] inputs » add I outputs To [xé]
—» timing spec

_ J

* Nodes
— Inputs: A, B, C
— Outputs: Y, Z
— Internal: nl

®* Circuit elements
— E1,E2, E3

Logic Circuits

V)

E1

n1

=)

> Y

» Z

10

Combinational and Sequential Circuits

* To perform operation and store
data

* Combinational circuit, such as
adder n Inputs m Outputs
Combinational

— Operate on data : Circuit
— OQOutput is a function of input

Combinational Circuit

Vs

* State (sequential) circuit, such as Sequential Circuit

register or memory P . Combinational ——2

Circuit
— Store information o EI.:‘.T
— Outputs determined by previous 122%™ T — St

and current values of inputs

11

Three Steps of Logic Design in Theory

X V Z F

Truth 0 00 0
Table 00 111
ry 0O 1 0 0

o 1 1 0

1 0 O 1

1 0 1 1

11 0 1

1 1 1 1

Boolean F=x+y'z
unctio
\ X

- >+
Logic Ny >~ W
ate Diagrap ——
z

12

Step 1: Truth Table for Binary Logic

* Given N input binary variables, list the output for all the
possible inputs

— N input = 2" number of input combinations of 0 and 1
It iS dlgltal version ofa function, e. g D f(A B, C)

e SR BRI e 2 IR g s 222
R et iy 5 forie il TEfst: i

lnput Outputs

Rrlolr|olr|olr|o
Rrir|lkrR|R|R|R|O
olr|rlolr|ololo
rlo|lo|lo|lo|o|lo|o

Prlrlo|lolr|r|olo

HHHHOOOOH

— Computing is a function of binary input, and output is binary

13

Step 2: Boolean Algebra

* Logic equation to express binary logic function using binary
variable, instead of a truth table

A Bl Y

0 0| O

* Three fundamental operators 0 1] 1
— OR operator, logic sum, writtenas+ 1 0] 1
*Y=A+B 1 1 1

— AND operator, logic product, written as * or .
e Y=A*B, or AB

R R O O
—~ O~ O|W
— O O O |

— NOT operator, inverse, written as ~A, A’ orK Al ~A
* "TA=A 0] 1
110

George Boole, 1815-1864

® Born to working class parents

® Taught himself mathematics and
joined the faculty of Queen’s
College in Ireland

® Wrote An Investigation of the
Laws of Thought (1854)

® |ntroduced binary variables

® |ntroduced the three

fundamental logic operations:
AND, OR, and NOT

.y :
‘ -
- 1
Scanned at the American
Institute of Physics

15

Laws of Boolean Algebra (1/3)

* Basic operators of Boolean algebra
— AND, *
— OR, +
— NOT, ~

1. Identity Law
— A+0=A
— A*1=A

2. Zero and One Laws:
— A+1=1
— A*0=0

3. Inverse Laws:
— A+~A=1
— A*A~=

16

Laws of Boolean Algebra (2/3)

* Basic operators of Boolean algebra
— AND, *
— OR, +
— NOT, ~

4. Commutative Law
— A+B=B+A
— A*B=B*A

5. Associative Laws:
— A+(B+C)=(A+B)+C
— A*(B*C)=(A*B)*C

6. Distributive Laws:
— A*(B+C)=(A*B)+ (A *C(C)
— A+(B*C)=(A+B)*(A+C)

17

Laws of Boolean Algebra (3/3)

* Basic operators of Boolean algebra
— AND, *
— OR, +
— NOT, ~

/. DeMorgan’s Laws:
— ~(A*B)=~A+"~B
— “(A+B)=~"A*"~B
* Extended
— (X ++ .+ X,) = X% X,
— (X9Xy e X)) =X+ X' Fonat X,

’

* Easy way to remember: each TERM is complemented, AND—>OR,
OR—>AND

18

Operators and Laws of Boolean Algebra: Summary

* Basic operators of Boolean 4. Commutative Law
algebra — A+B=B+A
— AND, * — A*B=B*A
— OR, +
— NOT, ~

5. Associative Laws:
— A+(B+C)=(A+B)+C

1. IdentityLaW — A*(B*C)=(A*B)*C
— A+0=A
_ A*q =
AT1=A 6. Distributive Laws:
— A*(B+C)=(A*B)+(A*C)
2. Zero and One Laws: — A+(B*C)=(A+B)*(A+C)
— A+1=1 , |
_ A*0=0 /. DeMorgan’s Laws:

— ~(A*B)=~A+"~B
— ~(A+B)=~A*"~B
3. Inverse Laws: e Extended
_ A+~A=1 xrende N
_ AK A~ = — (X + Xy + oo + X,) = X% .00 X,
— (X Xy oo X)) = X"+ %, +. 4 X, 19

’

Derive Logic Equation from Truth Table 1/2

T TR N SR D . e O 3 ; B 2 Gt s H s 5
s ., [SR R L SR) Rl celapteig, o aE RS L5 i >
5 S R R . BY oy e BT i :“
a PRS- 4

inputs Outputs

B

Rikr(kRIRr|R|R|OI=

Rrlrlrlolololo
Rrlojlolr|r|olo

HO!—‘O!—\OHOl

— e

et 1
* Write down the Boolean equation for each line in the truth
table where the outputis 1

* Simplify the equation using Boolean Algebra Laws
°* F=A*B*C
* E=~A*B*C+ A*B*C+ A*B*~C

OCilRrIPIOCOIFP|IO]IOIO

=

v,

20

Derive Logic Equation from Truth Table 2/2

b2
ol O :

Rikr(kRIRr|R|R|OI=

o

Rrlo|lo|lr|ir|ololf
OiIrIPIOIRLIO|IO|O
olleffciiolic) Hw) | <

1

Write down the Boolean equation for each line in the truth
table where the output is 0, and do NOT

* Simplify the equation using Boolean Algebra Laws
* D=~("A*~B*~C)=A+B+C

Rikrlkrlkrlolo|lo
=

Rrlolr|lolkr|lolr

=

21

More Examples

To write down the Boolean expression that describes this truth table (and therefore the system that the truth

table describes) we simply write down the Boolean equation for each line in the truth table where the output is 1.

The output for the first line is 0, so we ignore it.

The output for the second line is a 1. The Boolean equation for this line is A.B.C
The output for the third line is a 1. The Boolean equation for this line is A.B.C

The output for the fourth line is 0, so we ignore it.

The output for the fifth line is a 1. The Boolean equation for this line is A.B.C
The output for the sixth line is 0, so we ignore it.

The output for the seventh line is 0, so we ignore it.

The output for the eighth line is a 1. The Boolean equation for this line is A.B.C

_x_xoo_x_xoo>

-_ Q| = O = |O|=(CO |
Dl lala|lOolo|lO|O| O
=l =l =l e e k= ™.

We can now get the Boolean equation for the whole system simply by getting the equations where the output
was 1 and ORing them together. This gives us the output Q:

AB.C + AB.C + AB.C + AB.C=Q

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-

deriving-boolean-expressions-from-truth-tables

22

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-deriving-boolean-expressions-from-truth-tables

Simplifying Boolean Equations

Law #:

Y=AB + ~AB 6
= B(A + ~A) 3
= B(1) 1
=B

* Basic operators of Boolean 4. Commutative Law
algebra — A+B=B+A
— AND, * — A*B=B*A
— OR, +
— NOT,~ 5. Associative Laws:
— A+(B+C)=(A+B)+C
1. IdentityLaw — A*(B*C)=(A*B)*C
— A+0=A
- A¥1=A 6. Distributive Laws:
— A*(B+C)=(A*B)+(A*C)
2. Zero and One Laws: — A+(B*C)=(A+B)*(A+C)
~ 2:; _ cl) 7. DeMorgan’s Laws:
— ~(A*B)=~A+"~B
— ~(A+B)="~A*~B

3. Inverse Laws:
— A+~A=1
— A*¥A~=0

* Extended

) - 1] [
= (X% e X)) =X X F X

— (X + X+ o + X,) = %% X

law #:

Y=A(AB+ABC) 1,6

= A(AB(1 + C))
= A(AB(1))

= A(AB)

= (AA)B

= AB

2
1
5

23

Step 3: Logic Gates

°* Implement the Boolean equation in circuits

Truth
Table

* Perform logic functions:
— inversion (NOT), AND, OR, NAND, NOR, etc.

- - - O 00 OX

__ OO0 - -0 0K
S, O = O =0 =0|N
- ek e = OO0 =_0O0mM

Boolean F=x+yz
unctio

* Single-input:

|
— NOT gate, buffer y >

. - —
Diagram 2

°* Two-input:
— AND, OR, XOR, NAND, NOR, XNOR

°* Multiple-input

Single-Input Logic Gates

NOT BUF
oo Al
Y=7 y=A

A Y
A Y 0
S 1

25

Single-Input Logic Gates

NOT BUF
AD@Y A{>y
Y=A v =4

A Y
A Y 5 5
3 1l

26

Two-Input Logic Gates

AND OR
A - A
Y =AB Y=A+8B
A B Y A B Y
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

27

Two-Input Logic Gates

OR

AND

<@

Y=A+B

AB

Y

O v v

O O

O O v

O o O

O O

O O

28

More Two-Input Logic Gates

XOR NAND NOR XNOR

o>
E\Lj
<
W >
||
<
>
<
o>
@
<

Y=A®B Y = AB Y=A+B Y=A®B
A B|Y A B|Y A B|Y A B|Y
0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

29

More Two-Input Logic Gates

XNOR

Y=A®B

— O O

O A O

O O v

— O O O

O A O

O O v

— — — O

O A O

O O v

O O

O A O

O O v

30

Multiple-Input Logic Gates

AND3

NOR3

Y =ABC

A+B+C

Y =

O O v+ O O

O O v O O v

O O O O v v v

O O O —d O

OO O O v

O O OO ™ ™ v

31

Multiple-Input Logic Gates

Y =ABC

A+B+C

Y

— O O O O O o O

O O H O H O

O O HH OO v

O O O O v v

e Multi-input XOR: Odd parity

32

m >

Bubble to Invert (NOT) Inputs or Outputs

A+ B

Do) DD

=)

33

From Logic to Gates

* Two-level logic: ANDs followed by ORs

°* Example: Y=ABC + ABC + ABC

A B C

Vil Ve | Ve
}— minterm: ABC
j minterm: ABC
D minterm: ABC

Circuit Schematics Rules

Inputs on the left (or top)
Outputs on right (or bottom)
Gates flow from left to right

Straight wires are best A C

Vil Vs | Vo

UL

35

Circuit Schematic Rules (cont.)

* Wires always connect at a T junction

* A dot where wires cross indicates a connection between
the wires

* Wires crossing without a dot make no connection

wires crossing
wires connect wires connect without a dot do
ata T junction at a dot not connect

36

Equivalent Circuits

Many different logic diagrams are possible for a given function

F=ABC+ABC’'+AC (1)
=AB(C+C)+AC (2)
=AB+1+AC
=AB + A'C A)
A ™
1 —
==
D.:
@ T
q=p T
Do T~
|/
A . oo .
3) B ’ i Simplified function

c uses less gates. 35

Gates are Implemented Using Transistors

 Moore’s Law: number of
transistors on a computer

chip doubles every year
(observed 1n 1965)

e Since 1975, transistor
counts have doubled every
two years.

38

Transistors

* Logic gates built from transistors

 3-ported voltage-controlled switch
— 2 ports connected depending on voltage of 3rd

— d and s are connected (ON) when g 1s 1

39

Silicon

e Transistors built from silicon, a semiconductor
* Pure silicon 1s a poor conductor (no free charges)

* Doped silicon 1s a good conductor (free charges)
— n-type (free negative charges, electrons)
— p-type (free positive charges, holes)

Free electron Free hole
Si— Si—Si —Si—Si_lSi— — Si—Siy---Si—
Si Si Si Si —As—Si Si B Si
Si—Si —Si Si— Si—Si Si — Si —Si
Slilicon |Latticle | n-lepe | | p-lepe |

40

MOS Transistors

 Metal oxide silicon (MOS) transistors:

— Polysilicon (used to be metal) gate

— Oxide (silicon dioxide) insulator

— Doped silicon

source gate

drain

Polysilicon

n

source I L drain

nMOS

41

Transistors: nMOS

Gate =0 Gate = 1

OFF (no connection ON (channel between
between source and source and drain)

drain)
source drain source gate drain
O gate O O
@GND
n n n

42

Appendix A: The Basics of Logic Design

~ A.llntroduction _ 2; CMIZ(::Zry Elements: Flip
— A.2 Gates, Truth Tables, and F|'ops’ Latches, and Reéisters
Logic Equation * Lab 8
I Lecture 13 * Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A4-Usinga-Hardware and DRAMs
Deseription-Language * Lab9
*_lecture-17/
° Lab7 . :
— A O Fpite-tiate Mackhines
° Lecture 14 —A-11 Fiming-Methodologies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
cai . — A.13 Concluding Remarks
—A_G-asher-Additicn—Cary A 14 Exerci
Leekahead
° Lab 10

43

Combinational Logic

Two-level of logic and PLA

— Product of Sum and
— Sum of Product
— PLA

ROM

Don’t Care
Multiplexer
Decoder

n Inputs m Outputs

Combinational

Circuit

Combinational Circuit

Vs

Sequential Circuit

Input Output
Combinational
Circuit _I_I_
i Giock
s — Signal

Memory

44

Three Steps of Logic Design in Theory

X V Z F

Truth 0 00 0
Table 00 111
ry 0O 1 0 0

o 1 1 0

1 0 O 1

1 0 1 1

11 0 1

1 1 1 1

Boolean F=x+y'z
unctio
\ X

- >+
Logic Ny >~ W
ate Diagrap ——
z

45

Two-Levels of Logic and PLA

* A general approach to derive Boolean function from truth
table and then construct logic circuit

46

Some Definitions

Complement: variable with a bar or’ over it (NOT)
A’, B, C’

Literal: variable or its complement

A A’ B,B,C, C

Minterm: product that includes all input variables (AND)
AB’C, A’BC, AB’C’
— 0, the minimum, determines the value, so it is called minterm

Maxterm: sum that includes all input variables (OR)
(A+B’+C’), (A’+B+C), (A’+B’+C)
— 1, the maximum, determines the value, so it is called maxterm

47

Sum-of-Products (SOP) Form

® All equations can be written in SOP form
e Each row has a minterm
e A minterm is a product (AND) of literals
e Each minterm is TRUE for that row (and only that row)
e Form function by ORing minterms where the output is TRUE
e Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| pame
0 0|0 AB m,
0 1|1 A B m,
1 0|0 A B m,
1 1|1 A B m,

48

Sum-of-Products (SOP) Form

® All equations can be written in SOP form
e Each row has a minterm
e A minterm is a product (AND) of literals
e Each minterm is TRUE for that row (and only that row)
e Form function by ORing minterms where the output is TRUE
e Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| pame
0 010 AB m,
Co 1|1 A B m,)
1 0[O AB m,
(1 1|1 A B m,)

Y=F(4, B)=AB + AB =X(1, 3)
49

Product-of-Sums (POS) Form

* All Boolean equations can be written in POS form

Each row has a maxterm
A maxterm 1s a sum (OR) of literals
Each maxterm is FALSE for that row (and only that row)

Form function by ANDing the maxterms for which the
output 1s FALSE

Thus, a product (AND) of sums (OR terms)

maxterm
A B | Y |maxterm| name
(0o o|of|a+B M,)
0 1|1]a+B M,
1 o]of|a+B M,)
1 1| 1]|a+B | —M,

Y =F(A4, B) = (4 + B)(4 + B) = (0, 2) 50

* SOP — sum-of-products

SOP & POS Form

O C | E | minterm
0 0 0O C
0 1 0O C
1 0 O C
1 1 O C
* POS — product-of-sums
O C | E | maxterm
0 0 O + C
0 1 O + C
1 0 0 + C
1 1 O + C

51

* SOP — sum-of-products

SOP & POS Form

O C | E | minterm
0 0 0 0O C
0 1 0 0O C
1 0|1 0C)
1 1 0 O C
* POS - product-of-sums

O C | E | maxterm
(0 o [O0]0O+C)
O 1]0f0o+C)
1 0 1 10 + C
(1 1]0]0+70C)

E=0C
= 2(2)

E=(0+ O)O + C)(O + C)
=11(0, 1, 3)

52

Sum of Produce (SOP) is easy to use

inputs

- D o
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 ' 1 1 o 1

* Write down the Boolean equation for each line in the truth
table where the output is 1

°* E=~A*B*C + A*B*C + A*B*~C in SOP Form
53

Sum of Products Example

prpoooo|
Hu-xooupool

RlIO|IRIOIP|OIFR|O

HOOI—-‘O!—‘HOI

®* Boolean function for D
*D=A*B’+ A’*B + A*B’ + A*B

54

Sum of Product =» Programmable Logic Array

(PLA)

D=A"*B’*C+A’*B*C + A*B’*C’ + A*B*C
* Sum of Product representation is two stages of logic

— Array of AND operations for the minterms
— Array of OR operations to sum logically up the minterms

* Programmable Logic Array (PLA) to implement
— Very easy and efficient to implement

g

Inputs <

S

AND gates

Product terms

OR gates

55

Outputs

0 0 0 0 0 0
0 0 1 ;o 0 0
0 | 0 1 0 0
0 1 1 1 1 0
4 0 0 1 0 0
1 0 b i 1 1 0
s § 1 0 ¥ 1 0
1 1 2 | % 0 1
Inputs
A —& L 2 L 3 L 3 Ty
. B T ® S T . 2 s]
* PLAimpl based ° l I
on SOP Boolean t [L LJ k)
equation
b ¢ [2
[2
3
&

Outputs
D

-
56

Outputs

I 0 0
JUUU s
0 0
® s A\ Outputs 1 0
[s] D 0 0
) 1 0
e S e
1 S] .] - 1 0 B
Inputs
A—t I |
L 4 ! 2
* Another form to represent) |l ||
AND plane
the PLA array o t—1
— Use dot to represent AND ~ °71 o 1T 111
\ 4 L L3
or OR gate —
—¢—9¢—9¢—0¢—¢—9¢ o D
OR plane 4 ? S E
* F

FIGURE A.3.5 A PLA drawn using dots to indicate
the components of the product terms and sum
terms in the array.

57

Read-Only-Memory (ROM) Logic for the Truth
Table

* Hard-code the truth table in the logic so the output can be
read given an input

* The truth table is stored as in memory

— Address is the input
— Value is the output

* ROM for the truth table has 3*8 bits for the three outputs

inputs

RIOCO|IOCIO|IO|IOIOIOD

OIRIPIOCIPIOCIOIO

RIRrIRIR|IO|lO|O|O

RPRirIR|IRIR|R|P|O

RPIOIRP|IO|R|IO|IR|O

Rlir|lolo|lr|ikr|o|lo

58

PLA vs ROM

* ROM is fully decoded, contain the full output for every
possible input
— Number of entries grows exponentially with regards to the
number of inputs

* PLA partially decoded, no need for all the possible input most
of the time

59

Don’t Care

* Qutput don’t cares and input don’t cares

* Consider a logic function with inputs A, B, and C defined as
follows:
— If Aor Cis true, then output D is true, whatever the value of B.
— If Aor Bis true, then output E is true, whatever the value of C.

— QOutput Fis true if exactly one of the inputs is true, although we
don’t care about the value of F, whenever D and E are both true.

60

Truth Table without Don’t Cares

61

Truth Table with Don’t Cares

Multiplexors

* Selectors: the output is from one of the two inputs (A
and B) according to a control input (S)

—C=A*
— 1-bit multiplexor

1)
. ._Jj:}c

A—=(0)

u
X
B—1

\{

S
— Extend

— Extend

* NeeC

S+B*S

X X = O
= O X X |

S

ed to select x-bit width input/output
ed to select from n number of inputs
log,n select bits

R P O O W

— O L OO

63

C

D

4-to-1 Multiplexor

A —>
B —1
Inputs 21— Q)
C 2 Qutput
|
= | b
Select

Q = abA + abB + abC + abD

e

_\ A — A —
— Q B — Q B —
b a D— b 3 D— b 3
| | |
0 0 0 1 10

m =

Ao
NAND
Gat
Bo ates
Data])
Inputs }Q
Co }_,‘
.
b O_"_EDDB_ Truth Table
Select Inputs
Select b a D C B A |Q
a 0 0 x x x 1 1
aO—“—E} 0 1 x x 1 x [1
1 0 x 1 x x |1
1 1 1 x x x |1

b
I
1

-t

Switch Analogy
(4PST)

https://www.electronics-tutorials.ws/combination/comb_2.html

64

N-to-1 Mux

P _’\
“ogpe—— Do
D,
Data o Dip s———p
: n-to-1 Output
'nwt . —_— g Dz
Mux Y .
D,y —p '
Dn-l
E —
(Enable
Input)
Se S Sma
l |
l SO Sl Sm!
Select Input

https://www.electrical4u.com/multiplexer/

Multiplexors for Selecting Reading from 32

Registers

x0

* Register read: all the 32 registers —x

32/

are being read at the same time
* Only the output of the needed one

is selected and sent out [t

32 bitwidth

[RS1]
* 32-bit registers

— Input/output are 32-bit data

* 32 registers, we need 5 bit to select
— For 32=>»1 selector

| x31 I

* |nstruction: add x5, x11, x20

RS1

* Translate n-bit input into a single bit that corresponds to the
binary value of the n-bit input

* 3-t0-8 decoder

— Inputs are bits of an address

Decoder

* Address to enable access to a specific location for that address
e Access is turned on/off by the single OutX bit.

Decoder

B ot (13 || PREECETNERETR] | Qulpwte SPUEE Lo Db
—> Out0
. mmmmmmmmmmm

—> Out1
—» Qut2
— Qut3
—» Out4
—> Qut5
—» Out6
— Out7

a. A 3-bit decoder

== =00 O 0

= = 00| = OO0

IO IO O

OO0 |0|0O O
O O00|0 O
OO O‘O o o
ol|lOol0O |00 O
|00 O|=»|0O|0O

b. The truth table for a 3-bit decoder

0

|00 0|0 | O

OO0 0|0 |O |

OO0 0|00 O|L

Decoder

—» Out1
— Qut2
—» Out3
— Out4
— Qut5
—» Out6
— Qut7

* Boolean equation and logic circuit -«
for 3-to-8 decoder

a. A 3-bit decoder

BER sahte (DY || SETTECNERIET | Guipwie PO S oSSt |
— Out0
’ mmnmmmmmmmmﬂ

* A, B,C(or10, 11, 12) are symbols

or bit position of an address

0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
b. The truth table for a 3-bit decoder
J_Doj—__o\, - 0, - G
. e
(LS8} 4 = 1 }—e 0, =CBA

O
~

I

0!

w

>\

LD

68

Decoder for Register Write

input

|

|

I

.

3:8
Dec

~N O O AW N = O

|

|

J

!

J

J

|

[L e

69

Decoder for Enabling Write to a Registe

Register write: data are sent to all
the registers

Only the selected one is written
— Write-enable (WE) bit is set to 1 (asserted) 5

— We use a decoder for set the WE bit
32 registers, we need 5 bit to address a register

— For each address, the corresponding bit is set

Instruction: add r10, rs1, rs2

1 bit WE sig

70

Decoder and Mux for Register Write-Read

nput

—

Sel —

38
Dec

~N OO O A W N - O

LD_Rn—EN

@
—a

MU

NOOSEWN -0

e N
e —
— O

L ——— Sel

71

Lab 7

* Digital for digital logic design and experiment
from https://github.com/hneemann/Digital

— A Java software that you download and launch the program

72

https://github.com/hneemann/Digital

1)
2)

3)

4)

Organization and Do it as Art Work

Each input and output of a design MUST be properly and meaningfully labeled.

Each component, input and output should be correctly configured in terms of its
bitwidth and signal control width.

Keep wires and components organized and layed out according to the circuit
schematics rules, a) Inputs on the left (or top), b) Outputs on right (or bottom), c) gates
flow from left to right, d) Straight (not angled) wires are best, e) Wires always connect at
a T junction (only 90-degree turn or connection), f) A dot where wires cross indicates a
connection between the wires, and g) Wires crossing without a dot make no connection.
While you may not need to follow all those rules for creating correct and small circuit, it
is very important when for creating complex circuit. So, make sure you properly
organize the components and wires, make them structured and look good. That will
help reduce errors.

For drawing straight wires using mouse, make one turn per each draw. You should not
use one draw to make a connection that needs to have two or more 90-degree turns,
which would create angled wires. For those wires, you have to make a wire that has a
90-degree turn, and then connect it with another wire that also make 90 turn, and so on.
Try to minimize the turns as much as possible. If two wires have to be crossed, but
should not be connected, make sure no dot is marked on where the wire is crossed.

https://passlab.github.io/ITSC3181/notes/Lab 07 IntroMuxDecoder.pdf

Being able to organize complicated things is a skill and ability that can be trained by
practice, but hardly a talent. 73

https://passlab.github.io/ITSC3181/notes/Lab_07_IntroMuxDecoder.pdf

Appendix A: The Basics of Logic Design

~ A.llntroduction _ 2; CMIZ(::Zry Elements: Flip
— A.2 Gates, Truth Tables, and F|'ops’ Latches, and Reéisters
Logic Equation * Lab 8
* Lecture 13 * Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A4-Usinga-Hardware and DRAMs
Deseription-Language * Lab9
*_lecture-17/
° Lab7 . :
— A O Fpite-tiate Mackhines
I Lecture 14 —A-11 Fiming-Methodologies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
cai . — A.13 Concluding Remarks
—A_G-asher-Additicn—Cary A 14 Exerci
Leekahead
° Lab 10

74

ALU and Bitwidth

* Arithmetic logic unit (ALU) is the brawn of the computer
— Perform add, sub, AND, OR, etc.
— A unit to perform all supported operations

* 64-bit machine (registers are 64-bit wide), we need 64-bit ALU

* 32-bit machine (registers are 32-bit wide), we need 32-bit ALU
— We will focus 32-bit machine starting from now for the lecture
— Choose your bitwidth of your CPU design for your labs 07 — 10
« 32-bit, 16-bit, 8-bit
* More bitwidth 2 more wire/complexity
* 8-bit is good choice, 16-bit is nice, 32-bit is challenging

* Starting with 1-bit ALU first
— Logic, and then Arithmetic

75

1-Bit ALU: Logic Unit (AND and OR)

* Logics circuit does AND and OR operations, operation is used
to select the output of the gate as the result.
— 0: AND

- LOR Operation

;

Result

76

Carryln

1-Bit ALU adder .

ar — Sum
* For add, 1-bit adder b4
— 3 Inputs: a, b, and Carryln l
— 2 Outputs: sum and CarryOut CarryOut

_—mmm Comments

0+ 0+ 0 =00
O+O+1=01two

0+1+0=01,,
0+1+1=10p,
1+0+0 =01y
1+0+1=10,,
1+1+0=10,
1+1+1=11,,

pilr|l k| rl olo|lo| o]
plrl ololkr krlolo
RIO| | O] RO|F O]
B p| k|l okl ololol
hlololrl okl kr ol

77

XOR Gate

* |t does addition, no Carryln or CarryOut
— Sum=AXORB=AE@ B

Symbol Truth Table

B A S
0 0 0

Ao

= 1 S
5O 0 1 1
2-input Ex-OR Gate

1 0 1
1 1 0

1-Bit Half-Adder

Symbol Truth Table

* 1-Bit Half-Adder
— Two inputs: Aand B
— Two outputs: S and CarryOut

— Sum=AXORB=A&B
— CarryOut = A*B

SUM

CARRY

79

Carryln

1-Bit Full Adder l

. ch — Sum
* 1-Bit Full-Adder i
— Three inputs: A, B and Carryln |
— Two outputs: S and CarryOut CarryOut
* Combine two half-adder to a full adder
 Half Adder | | Half Adder | i
suM — ASB ~N sum | (ASB)eCin Sum
A it l | T -
HA | t HA l
I A l | CiNn(A&RB)
B —t7> CARRY 1" > BARRN—+—0 " F
l | | .
o IR e s s b e J e J Cour
- 21 -
Full Adder

80

1-Bit Full Adder

|
g Ll SUM - SUM
|
|

1-Bit ALU that can do add, AND, and OR.

Operation

* 1-Bit Full Adder + AND/OR logic unit |

a
T‘}°
A —o K D—Result

Cin
Operation

Carryln
Cout a —~eo—» \ (:'\
.)
. . il 1 > Result
* QOperation has 2 bits for the mux :j >
— AND: 00 sl
— OR: 01 .| >
b ——4—— _/
— ADD: 10 o

CarryOut

64-Bit ALU

2/
I — Carl'yln I

* 64 input bits are split and fed l | ‘

to each 1-bit ALU a0 —» Carmyln

. b0 s ALUO » ResultO

* Results/sums of each 1-bit CarryOut

ALU are combined into a I l

single 64-bit double word : - e - Result

as the result of the ALU camyout |
* CarryOut goes to Carryln vy

of the ALU for next bit Zi_’ s p—

— CarryOut of 63-rd bit is | BemyOut

the overflow : l

* Operation bits go to |

all adders Zzz:: iirur)élg » Result63

83

Extending ALU to DO
A Little More: sub

* Starting from the 1-Bit ALU
— Can do add, AND and OR

* Add substraction to the ALU
— a—-b=a+(-b)=a+b’+1since
* For 2’s complement
representation, -b=b’ +1
— Thus we just need to revert (NOT)
b and “add 1”
* Use the carryln for “add 1”
* A Mux to selectborb’
— if doing sub
* Binvertis1
* Carrylnis1
* Operation is still add (10)

Operation
Carryln ‘

Y

U

i

> Result

b N
\
CarryOut
Binvert Operation
.' Ca;ryln lz /
a—>_J\ (O‘\

1o

Y
CarryOut

> Result

384

Extending ALU to DO
A Little More: NOR

®* Current 1-Bit ALU
— Can do add, sub, AND and OR

* Add NOR operation
— (a+b)y=a"*b’
— Just need to add NOT for a, and
a mux to selecta or @’

* For doing NOR
— Operation is AND (00)
— Ainvertis 1
— Binvertis 1

Overflow
detection

» Set

85

Extending ALU to DO
. : e
A Little More: SLT (1/2) —J
TN 1)
* Current 1-Bit ALU 1A -
— Can do add, sub, AND, OR and NOR I 1 RN
* slt (set less than) instruction
— slt rd’ rsll rs2 A 4 Amlvertamvert Carryl:per‘atzlo;
o if ([rs1] < [rs2]) [rd] = 1 S RN AN N
1)
else [rd] =0 | —
— sltird, rs1, #fimmediate NEyank
f.’ ‘— Result

e if([rs1] < #immediate) [rd]=1 » [lﬂ P)

else [rd] =0
— Forthe ALU, ais [rs1], bis [rs2] &
and result is [rd] "

» Set

Overflow » Overflow
detection

86

Extending ALU to DO Binvert Ca”w:pe:ation
. ; — [
A Little More: SLT (2/2) R
* Current 1-Bit ALU {P L
— Can do add, sub, AND, OR and NOR 1 i AN
* |t (set less than) instruction |
— Implementation: V™ e caryn |2/
* (a<b)==(a-b)<0 13 A

* Thus slt is to perform sub and 1
then check the sign bit of the result. !
* A set bit from the adder output >0
is used to pass through the LD‘*b
sign bit from MSB to LSB - Y
e SLT has its own operation "
code (11) and less goes to the output

» Set

Overflow » Overflow
detection

87

SLT in 64-Bit ALU

a

ALU control lines

Bnegate Operation
|
Ainvert ¢ -) 4
™ ‘ " Yy v | 2
a0 — Carryin /
b0 —o ALUO Result0 | _ i
> Less T—
CarryOut
* 1 r *
‘_,—. |
‘ YYyY VY VY
al—{ Carryln
b —s) ALY e
0 — Less
CarryOut :
r— *
.——' 3
‘ Y VY ¥
a2—{ Carryln
b2 — ALU2 Result2 -
00— Less
CarryOut
: L : : Carryin
R : J
e l : Result63 17
a63—| Carryin o5y ® >
b63— ALUB3 Set
00— Less

Less

» Qverflow

Ainvert Operation
‘ Binvert Carryln ‘2/
. 0 ﬂ /LO
[—
’_L/ :
o <
> Result
. f('q t
I + 2
1
| w,
» Set
y ' Y i
Overflow Overflow
detection

Zero

* For SLT (set less than)
— Operationis 11

— MSB set, bit 63, which

is the sign bit goes to
LSB as the result

* If negative, set of 63

is1, thus [rd] =1

 All others are 0

88

Check zero in 64-Bit ALU

ALU control lines

Bnegate Operation
Ainvert
‘? N—— *

Y Vv % p)
a0 — Carryin /
i [~ T | ==

> Less
CarryOut
° : °
" W ——
Y Y VY

al—{ Carryln

o
'Y Vv ¥
a2—{ Carryln
b2—s{ ALU2 [Resull2 -
00— Less
CarryOut
'
. Carryln :
R l ‘
as3—s| Camyn |Rosuts3 [
b63—{ ALU63 Set
00— Less » Overflow

Less 3
Result0

Ainvert Operation

| Binvert Carryln ‘

ade D)

ot

Result

7]
100
|

Set

Overflow Overflow
detection

s Rl N | . * Check zero of any
| e f “° operations

— NOR of all result bit

* Usage, e.g.

— For beqrsi, rs2, label
instruction
* Which do [rs1] — [rs2]
first, and check whether
result is zero or not

89

Extending ALU to DO
A Little More: overflow

* Current 1-Bit ALU
— Can do add, sub, AND, OR, NOR
and SLT

* QOverflow detection is optional
— Can be just CarryOut

* We will NOT do this in the lab

Carryl
ARN
'?) 1 Result
q

¢_

r b — 0-\ > 5
+
1
CarryOut

v Ainvert Operation
’ Binvert C yIn ‘ 2/

. (0 \ ,ﬁ ;

1
’_L/ 1
L
‘— Result
i fq .
I > + 2
1
3
» Set
A
Overflow > QOverflow
detectio

90

64-Bit ALU

ALU control lines

Result

* Operation:

Set

inver
I Binvert Carryl ‘
a o { 0 } ﬁ 0
1
’_L/ 1
-
W
0
i 2
1
3
\./
Overflow
detectio

Bnegate Operation
Ainvert I L 2 + Le
< - | |
t ‘ $I . 2/
a0 — Carryin Resultd
b0 —={ ALUO et
[l |
CarryOut
‘?—A
®* -
\ 'Y ¥ ¥
al—{ Carryln
- AL31 Result1
s iy —
CarryOut
— r)
o]
T 344
a2—{ Carryln
b2 —o ALU2 Result2 -
00— Less
CarryOut
£ L . Carryln ; :
| [o
== | §
a63—s| Camryin Result63 | .
b63—{ ALUB3 Set
0 — Less

+ Qverflow

Overflow

AND: 00

OR: 01

ADD: 10

SUB: 10 (same as ADD)
SLT: 11

NOR: 00 (same as AND)

* 4 bhits ALU controls:

Ainvert: for NOR
Bnegate: for sub and slit
2-bit operation

0000 AND

0001 OR

0010 add

0110 subtract
0111 set less than
1100 NOR

91

ALU Symbol

* 4-bit ALU operation

— Ainvert, Bnegate, 2-bit operation

0000 AND

0001 OR

0010 add

0110 subtract
0111 set less than
1100 NOR

ALU operation

a —»

—» Zero

> ALU }— Result

— Overflow

b —»

CarryOut
; o 92

Examples using Hardware Description Language:

Verilog for Half-adder

* HDL describe the behavior of the logic
— logic synthesis converts to gates

® Half‘adder B A SUM | CARRY
A —ry 0 0 0 0
—Sum=AXORB:A@B B %Sum
0 1 1 0
_ = * ar
CarryOut = A*B &) —con [t
1 1 0 1

module half_adder (A,B,Sum,Carry);
input A,B; //two 1-bit inputs
output Sum, Carry; //two 1-bit outputs
assign Sum = A ~ B; //sum 1s A xor B
assign Carry = A & B; //Carry is A and B

endmodule
93

Verilog for 4-to-1 Mux

* 4-to-1 Mux (32-bit in the picture, 64-bit in the code)

In1|10010000000000100000101110011000}—1_'o

Out

m[0000000010000010100010010011111O0p—A:

00000000100000101000100100111110]

m3[L00010000000001I0O110110010011001 1],

4 [10000000100000110001101100110011

Sel

* always @(list of signals that cause reevaluation)

— Re-evaluate the assignment if any of the sensitive list changes

module Multd4tol (Inl,In2,In3,In4,Sel,Qut);

input [63:0] Inl, In2, In3, In4; //four 64-bit inputs

input [1:0] Sel; //selector signal
output reg [63:0] Qut; //64-bit output
always @(Inl, In2, In3, In4, Sel)
case (Sel) // a 4->1 multiplexor
0: OQut <= Inl;
1: Qut <= InZ;
2: Qut <= In3;
default: Qut <= In4;
endcase
endmodule o o)

Verilog for ALU

* HDL describe the behavior of the logic

— logic synthesis converts to gates

module RISCVALU (ALUctl, A, B, ALUOut, Zero);
input [3:0] ALUctl;
input [63:0] A,B;
output reg [63:0] ALUOut;
output Zero;

ALU operation

— Zero

b —»

> ALU [— Result

—» Overflow

CarryOut

assign Zero = (ALUQut==0); //Zero is true if ALUOQut is O
always @(ALUctl, A, B) begin //reevaluate if these change

case (ALUctl)

0: ALUOut <= A & B;
1: ALUOQut <= A | B;
2: ALUQut <= A + B;
6: ALUQut <= A - B;
7: ALUQut <=A<B ?1 : 0;

12: ALUQut <= ~(A | B); // result is nor
default: ALUOut <= 0;
endcase
end
endmodule

0000

AND \

0001

OR |

0010

add

0110

subtract

(O o B B

set less than

1100

NOR

95

Verilog for a Complete ALU for RISC-V

* 6-bit function code derived from the instruction decoding
— Pick the needed bits from, e.g. opcode/func3/funct?

* Use function code to assign the 2-bit ALUop code

— E.g. for Load and store instruction, add ALUop is used to signal
the ALU to perform add operation of base and offset

module ALUControl (ALUOp, FuncCode, ALUCtT);
input [1:0] ALUOp;

input [5:0] FuncCode; R-Format Encoding Example 2
output [3:0] reg ALUCtT;

always case (FuncCode) add x6, x10, (add rd, rsl, rs2)
32: ALUOp<=2; // add rs2 funct3 | rd opcode
34: ALUOp<=6; // subtract 7 bits 5bits 5bits 3bits 5 bits 7 bits

36: ALUOPL=0; // and
37: ALUOp<=l; // or
39: ALUOp<=12; // nor
42: ALUOp<=7; // slt
default: ALUOp<=15; // should not happen
endcase
endmodule = _ e 96

Appendix A: The Basics of Logic Design

e Lecture 12 1o Lecture 15
~ A.llntroduction _ 2; CMIZ(::Zry Elements: Flip
— A.2 Gates, Truth Tables, and F|'ops’ Latches, and Reéisters
Logic Equation * Lab 8
* Lecture 13 * Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A4-Usinga-Hardware and DRAMs
Deseription-Language * Lab9
*_|eeture-1/
° Lab7 . :
— A O Fpite-tiate Mackhines
° Lecture 14 —A-11 Fiming-Methodologies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
cai . — A.13 Concluding Remarks
—A_G-asher-Additicn—Cary A 14 Exerci
Leekahead
° Lab 10

97

Components of a Computer

Processor Memory <« | Input
Control Logic Read/Write >
v 4 Program
Datapath
Program Counter (PC) Address >
— Bytes
Registers———
Write Data
==
Read Data Data —
(ALU) oo
Processor-Memory Interface I/O-Memory Interfaces
Appendix A: logic design :
Chapter 5: Memory design 98

Chapter 4: CPU design

Combinational and Sequential Circuits I

* Combinational circuit, suchas M Lo |
mux, decoder, ALU o S e
— Operate on data o [i T E
— Output is a function of input * - o e | ’
* State (sequential) circuit, such as |
. n Inputs m Outputs
register or memory -
Combinational
— Store information Circuit
— OUtpUtS determined by Combinational Circuit
: Vs
previous and current SeGasamaL ClrciN
values of inputs nput _~ ____ _Output
* e.g. previous inputs C— ClrcLa —_—
Positive
are stored Fe::ba = Clock

Memory =" gg

Sequential Circuits

* Mostly consists of combinational logic + Memory

* Memory is used to store state
— Update memory according to both input and previous state

* Combinational logic to drive output
— |t uses both input and internal state to drive the output

* Controlled by clock Inputs

Outputs

1 ! o »Z 1
1
o o . | 1
— Update at specifictime X, | Combinational *Zm
" logic
'''''' +—Clock period—»
Clock (cycles)
Data transfer
and computation |
Update state Sp S 1
CPU Time(s) = # CPU Clock Cycles x Clock Cycle Time (s) Ptraetsent
slaie

_ # CPU Clock Cycles
" Clock Rate (Hz) 100

Clocks

* Are needed in sequential logic to decide when an element that
contains state (memory) should be updated (written or stored).
— Itis a real clock, but in different form
 E.g. update the memory every 125 ns, not anytime one wants. But
since it is very fast, not a big deal.

— Cycle time, or clock period (inverse of clock frequency)

* High and Low ,
_ Falling edge
:<—Clock perlod—>: / :

Clock (cycles)

Data transfer
and computation

Update state .

* Edge-triggered clocking
— State change (0 2 1 or 1> 0) on a clock edge
— Rising edge and falling edge
— Active edge causes stage change
* Could be just rising or falling, or both
e State change in the rising edge in the above figure

\Rising edge

101

Clocking Methodology

* Synchronous systems
— Clock and input MUST be synchronized to make sure update is
stabilized.
* Combinational logic transforms data during clock cycles
— Between clock edges
— Input from state elements (memory), output to state element
— Longest delay determines clock period

Falling edge
Inputs Outputs +—Clock period— / :
X 1 T H *L Clock (cycles) : 3
Xn : Com b'n atj Onal : . Zm aD:éacg;nszfartion :
'oglc Update state .
\ Rising eage

Sp ------ 81 State State
element Combinational logic element
1 2
Present
state
Clock cycle —— 102

Read and Write in the Same Cycle_

* Both rising and falling edge are active

— Update twice per cycle

State
element Combinational logic
1

State
element
2

Clock cycle —

| State
element

Xy ——Zi
Xo— :

sssss

Combinational logic

Clock cycle —

* E.g. Double data rate (DDR) memory .

Clock Cycle

DDR SDRAM

* Register files work in this way as well
— Read and write to a register file in the same cycle

— Read and write a register (x6) in the same cycle

— Write to a register (x6) and then read it (x6) in the same cycle for
two instructions

add x6, x4, x6
add x7, x6, x8

103

Memory Element

(General

rl?gga]ste Computer system

* ALU is used for doing computation T
bgﬁc Instruction regis
(ALU) Program countel
Processor status

. . “\ 2 2 memory (RAM)
* Memory: to store information 2 [L %\
— State: information at a particular time One memory cell

— Registers, cache and main memory are all “memory”
* Different type of technologies, e.g. SRAM and DRAM, detailed in
Chapter 5
* Memory element in circuit

— The output from any memory element depends both on the inputs
and on the value that has been stored inside the memory element.

— All logic blocks containing a memory element contain state are
sequential, e.g. registers, cache and main memory

104

Some Terms about Memory

* Qutputs of sequential logic depend on current and prior input

values — it has memory.
* Some definitions:

— State: all the information about a circuit necessary to explain its

future behavior
— Latches and flip-flops:

state elements (circuits) that Xy

store one bit of state

— Sequential circuits are synchronous
combinational logic followed by
a bank of flip-flops (memory)
controlled by clock

Si

Outputs

Combinational
logic

—:_.Z|

Zn

Present

state

* We start studying how to design logic to store a single-bit
— Then extend to create logics for storing multiple bits

— 1-bit ALU = 32/64-bit ALU

105

SR (Set/Reset) Latch

« SR Latch R

MR
* Cross-coupled structure
e

o] NPT

» Consider the four possible cases of the 2 mputs:
-~ S=1,R=0
-~ S=0,R=1
~S=0,R=0

~S=1,R=1

106

SR Latch Analysis

-5S5=1,R=0:
then O=1and 0=0

-5S=0,R=1: 1
then 0=0and O =1 R1 QQ

107

SR Latch Analysis

-5S5=1,R=0:
then O=1and Q=0
Set the output to 1

-5S=0,R=1:

then O=0and O =1 R1 QQ
Reset the output to 0

108

SR Latch Analysis

_S=O’R=0: Qprev=O Q,orev=1
then Q — Qprev

-S=1,R=1:
thenQ=O,Q=O

109

SR Latch Analysis

_S=O,R=0: Q,orev=O Qprev=1
then Q — Qprev
Memory!

-S=1,R=1:
then 0=0,0=0 ©
Invalid State)
O #NOT QO S

110

SR Latch Symbol

SR stands for Set/Reset Latch
— Stores one bit of state (Q)

* Control what value 1s being stored with S, R

Inputs
— Set: Make the output 1
S=1,R=0,0=1)
— Reset: Make the output 0
S=0,R=1,0=0)
 Must do something to avoid
invalid state (when S =R =1)

SR Latch
Symbol

—R Q_

—S Q_

111

D Latch

* Two mputs: CLK, D
— CLK: controls when the output changes
— D (the data mput): controls what the output changes to

* Function
— When CLK =1, (01, rising edge) [S)yl_rre:t)cor;
D passes through to Q (transparent) CI|_K
— When CLK =0,
O holds its previous value (opaque) 1B 8_
Q |

 Avoids invalid case when

0 #NOT Q

112

D Latch Internal Circuit

CLK Doﬁ}R aLa °fr B CLK

113

D Latch Internal Circuit

CLK DCB}R arQ T

CLK D|D S R|Q Q@
0 X[X 0 00,9,
1 0 1 0 1 0 1
1 1 0 1 0 1 0

D

CLK \

0 Rising edge

FIGURE A.8.3 Operation of a D latch, assuming the

output is initially deasserted.

When the clock,
CLK, is asserted
(rising edge, i.e.
0->1), the latch is
open and the Q
output immediately
assumes the value
of the D input.

114

D Flip-Flop

Inputs: CLK, D D Flip-Flop
Function ~Symbols
— Samples D on falling edge of CLK |
* When CLK falls from 1 to 0, D 1D Q B
passes through to O Q

* Otherwise, O holds its previous value
— @ changes only on falling edge of CLK

Called edge-triggered
Activated on the clock edge

115

D Flip-Flop: Falling Edge Triggered

Two back-to-back latches (L1 and L2) controlled by
complementary clocks

When CLK =1
— LI 1s transparent D B, QN B 8 Q
— L2 is opaque - latch L1 . latch Lza a
— D passes through to N1

When CLK =0 CLK r {>¢
— L2 1is transparent FIGURE A.8.4 A D flip-flop with a falling-edge

; trigger.
— L1 1s opaque 99

— N1 passes through to QO

Thus, on the falling edge of the clock (when CLK falls from
1-2>0)

— D passes through to QO

116

D Flip-Flop: Falling Edge Triggered

« Two back-to-back latches (L1 and L2) controlled by complementary clocks

 When CLK=1
— L1 is transparent D D Q N1 D Q &
. D D
— L21s opaque latch [1 latch o e
— D passes through to N1 c C Q
e When CLK=10
— L2 is transparent c >°
— Llis opaque FIGURE A.8.4 A D flip-flop with a falling-edge

— N1 passes through to O trigger.

* Thus, on the falling edge of the clock (when CLK falls from 0 = 1)
— D passes through to O

FIGURE A.8.5 Operation of a D flip-flop with a
falling-edge trigger, assuming the output is initially 117
deasserted.

° ° D D o Q N1 D R Q &
Timing s T I
CLK >c

o For a fa”lng_edge trlggered D fl'p_flop FIGURE A.8.4 A D flip-flop with a falling-edge

trigger.

— The input must be stable for a period of time before the clock edge, as
well as after the clock edge, for the latches to sample

* Setup time: the minimum time that the input must be valid before
the clock edge;

* Hold time: the minimum time during which it must be valid after
the clock edge

* Thus the inputs to any flip-flop (or anything built using flip- flops)
must be valid during a window that begins at time t...before the
clock edge and ends at t..«after the clock edge,

Setup time Hold time

- > |- >

CLK

118

D Flip-Flop: Rising Edge Triggered

* 'Two back-to-back latches (L1 and L2) controlled by

complementary clocks
e When CLK =10 g
— LI 1s transparent oK o

— L2 1s opaque

— D passes through to N1

D —>»{ D,

* When CLK =1 [

— L2 1s transparent

it

CLK - I >0,

— L1 is opaque S

l)

FIGURE A.8.4 A D flip-flop with a falling-edge
trigger.

Qo O

— N1 passes through to QO

G,

L

¢

* Thus, on the rising edge of the clock (when CLK rises from

0> 1)
— D passes through to QO

119

D Flip-Flop, Rising Edge Triggered

* \erilog description:

medile DERP(cloek,D,Q,0bat) ;

input clock, D; I sl D Q.»——ﬁ_->~D\

output reg Q; [-L

output Qbar; CLK‘"T*{:>O"‘”| — G,
assign Qbar= ~ Q; ;

always @ (posedge clock)

Q=D;
endmodule

O, >0

* always@(posedge clock): at the positive/rising edge of the clock
* always@(negedge clock): at the negative/falling edge of the clock

* They are used to describe sequential Logic, or Registers.
120

Registers in a Processors

(General

registe Computer system
* General purpose registers e CPU |
— 32 32-/64-bit registers e IR[0 Jfe— Instruction register
(ALU) PC S — Program counter

PSR E Ha— Processor status register

t ¢

memory (RAM)

N

One memory cell

Instruction register Add
— Store the current instruction wor

Program counter (PC)
— Store the address of the current instruction

Status registers
Others: page table register, etc.

W = o
A
NI—‘A:

A 32- or 64-bit register: a kind of memory

— Created with 32 or 64 D-flip-flops and combinational logics to read and
write

— Can be read from and written to
121

1-Bit and 4-bit Register

* A D Flip-flop is a 1-bit register
— D is write input port
— Qs read output port
— Clk is the input control to write

* A 4-bit register
— Needs 4 D flip-flops

* Same for a 32- or 64-bit register

CLK —T—‘[>0~

CLK

D i

D,

G,

L

0,

» >0

ol O

122

A Register File

_| Read register
. . "| number 1 Read
* Has multiple registers T datat|
— E.g. 32 32-bit registers RINRER
. Register file
— Numbered from 0 to 31 | Write Read
. register data 2
* Needs 5 bit to address each W
* Read: (does not change state) RSte] —

A

— Input: register number
— Output: data of the register

°* We want to read (at least) two registers the same time
— add x7, x6, x5 (two register reads and one register write)
— Two read ports

Write: (change state)
— 3 Inputs:
* Register number
* Data to be written to the register
* Write signal (1-bit): to tell register that this is a write (clock signal)
— No output
A D flip-flops:

— Read anytime
— Write on the rising edge of the clock (write signal)

ol O

123

Design a Register File with 32 32-bit Registers from
Digital
* Design a single 32-bit register
— A 32 bitwidth D flip-flop
— D is “write data” input o aL 7L

— Qis ”read data” output Q-
— Clk is the “Write” input, or called WE (Write-Enable)

Write Data IO1001001010000010000000000101000b|

32-bit D Flip-flop
Write m 20110423

124

Design the Read Port of the Register File

* Stack up 32 32-bit registers and
label them from x0 to x31 Read register

number 1
— Leave some space between
registers for wires

* Each Read Port:
— Since the output (Q of D flip-flop)
of each register is always available,
to read from one register is justto
select which output to become the number2
output of the register file.
e Select one from 32: use a Mux
— 5-bit selection (register number)

— Two read ports since for most
instructions, there are two source
operands, e.g.

e add x7, x6, x5
e sd x6, 0(x5)
* beq x1, x2, label

Register 0

Register 1

Register n—2

> U » Read data 1

Register n—1

> U » Read data 2

125

Use the 32-1 Mux You Designed Before

* Need two Mux’s, one for reach read port

xQ
x]

Read register
number 1

Register 0 >

Register 1 >

> U » Read data 1

Register n—2 >

| x11

Register n—1 =

Read register
number 2 l
—

> U » Read data 2

_hwm:o\cm\lo\m-ho-’)l\?b-‘o

=

SH B R N H R
= OOV ON OThWN = OV N OO

[RS1]

=

ORI P

| x31

[O1 01 1]
RS1 126

Design the Write Port of the Register File (1/2)

* Three inputs:
— Register number to be written to D Q- 4 -
— Data to be written to the register: which is D Qr

— Write signal (1-bit): to tell that this is a write: which is clock

* Design:
— Write data sent to all registers (write data wired to D of all).

— Use writer register number to turn on the write signal (1-bit
clock) of the target register

* A decoder to set one of 32 output,
* and then AND with the write signal

* and then send the output of AND to the clock input of each
register

127

Design the Write Port of the Register File (2/2)

®* Three inputs:
— Write register number
— Data to be written to the register:

Write

which is D
— write signal (1-bit): to tell that this is
d Write: WhiCh iS CIOCk Register number
* Design:

— Write data sent to all registers (write
data wired to D of all).

— Use writer register number to turn
on the write signal (1-bit clock) of
the target register s

e A decoder to set one of 32 output,
* and then AND with the write signal

* and then send the output of AND
to the clock input of each register

0
1

n-to-2n
decoder

n-2

n-1

Register 0

Register 1

c

Register n—-2

b N

Cc

D

Register n—1

128

Use the 32-Output Decoder You Designed Before

* Add AND gate for each register for write

OO0 O QNUTHAWN RO

Register number

Register data

nto-2n | .
"| decoder | -

n-2

Register 0

Register 1

Ty

129

Lab 09: Design a Register File with 32 32-bit (16- or
8-bit) Registers (1/2)

/ e Read register
1 g
o) Write number 1
3 Gu—y .
| E— = Register 0
5 gr—g 0 X
6 Qg 1 Register 0 Register 1
gu S—) 2 D
Pe— n
o o Register number — d;’.(:toot;er Read data 1
d 2 : N
1 Register 1 Register n—2 x1 S—
3 n-2 & —s
RD i n=1 Register n— 1 ._'—j
-em— t
01010 ! —
1 —1
—1
B Read register £l P—
= Register n—2 et
2 18
2 D pemm—
g0 3.
; Register n—1 Read data 2 ._E(;
2 Register data D el
20— 10
\ 3;:,_._. [A —
Read register
Emm——
number 1 Read
>
Read register data 1
—
number 2
. Register file
Write Read
—_—] >
register data 2
Write
R
data Write

130

Lab 09: Design a Register File with 32 32-bit (16- or
8-bit) Registers (2/2)

1. Design 132/16/8-bit register

— Use the system provided D flip-flop
— You can design your own D flip-flop and use yours

2. Stack up 32 32/16/8-bit registers end register
— Leave room between registers for wires e)
number 2
3. Design the two read ports wig Fegisterfile
. register data 2
— Use the Mux you designed before e |
data Write

4. Design the write inputs
— Use the decoder you designed before

5. Label input/output correctly, wire neatly.

131

Rising Edge Triggered Register Can be Written and
Read in the Same Clock Cycle

* Dis written to D flip-flop (register) at the rising edge, and
data is available in the same cycle for read

One clock period

Write Data (D) Clk __| _

o Enable——/_ —

Enable — o | |
Read Data (Q) Q /

132

Appendix A: The Basics of Logic Design

~ A.llntroduction _ 2; CMIZ(::Zry Elements: Flip
— A.2 Gates, Truth Tables, and F|'ops’ Latches, and Reéisters
Logic Equation * Lab 8
* Lecture 13 I Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A4-Usinga-Hardware and DRAMs
Deseription-Language * Lab9
*_lecture-17/
° Lab7 . :
— A O Fpite-tiate Mackhines
° Lecture 14 —A-11 Fiming-Methodologies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
cai . — A.13 Concluding Remarks
—A_G-asher-Additicn—Cary A 14 Exerci
Leekahead
° Lab 10

133

General

registe Computer system
[[R N CPU
A Typical Single-Cycle Processor e e [—
(nAltLU) PC 1 Program counter)
PSR 0 Processor status register
m 0 0]_ memory (RAM)
* We learned PR
— how to design ALU, adder, gate, Mux, negisiers, et
— how to program, both high-level and assembly
C’_Branch
(M\
* Random Access Memory .
— Thinking of extending Y face il
a register file to have K R
° Data
larger capacity o N et
° ° > [ress Instruction 14 egisters ALU Address
* 32 64-bit registers || | " esers | [(SR o |
memory Register # RegWirite ';tx HERY
rl?j::tj) er?g1ister ong + Data MemRead
—,Yg;it;er Register file E;:dz—, contro }

134

Memory Arrays

 Efficiently store large amounts of data

e 3 common types:

— Dynamic random access memory (DRAM)

— Static random access memory (SRAM)

— Read only memory (ROM)

e M-bit data value read/ written at each unique N-bit address

Address ﬁN;

Array

h

Data

135

e 2-dimensional array of bit cells

Memory Arrays

* Consider 1t as a bigger register file

 FEach bit cell stores one bit

e N address bits and M data bits:

2N rows and M columns

Depth: number of rows (number of words)

Width: number of columns (size of word)

Array size: depth x width =2V X

Address 2

Array

Data

M

11
10
01
00

Address —— Array

Data

Address Data

ol1[o| 4
1101(0

depth
1110
011 Y
-
width

136

Memory Array Example

22 x 3-bit array
Number of words: 4
Word size: 3-bits

For example, the 3-bit word stored at address 10 1s 100

Address —3—

Array

Data

Address Data

11 |ol1]/o| A
10 |1]/olo
depth
01 |1/1]0
00 |0[1/1]
>
width

137

Memory Arrays

1024 long int a = A[8]; A[4] = b;
Address 15— 32\1\:0?: o
Array Instructions that access memory:
* Load: e.g. Id x5 64(s0)
$32 * Address: 64+[s0]
Data * Store: e.g. sd x6, 32(s0)
e Address: 32 + [sO]

* 10-bit address: 219 =1024 word
* Each word is 32-bit
* Total: 1024 * 32 bits = 32K bits = 4K bytes

138

Random-Access Memory (RAM)

* Historically called random access memory (RAM) because any data
word accessed as easily as any other (in contrast to sequential
access memories such as a tape recorder)

* Volatile:
— loses its data when power off Address 1% 102;;1‘?:(1 X
— Read and written quickly Array
— Main memory in your computer is RAM (DRAM) $
32
Dat
* Two types: -

— DRAM (Dynamic random access memory), main memory of computer
— SRAM (Static random access memory)

* Differ in how they store data:
— DRAM uses a capacitor
— SRAM uses cross-coupled inverters

139

SRAM and DRAM Technology Differences

* Static RAM (SRAM)

Each cell stores a bit with a six-transistor
circuit, a flip-flop

Retains value indefinitely, as long as it is
kept powered.

Relatively insensitive to disturbances such
as electrical noise.

Faster and more expensive than DRAM.

°* Dynamic RAM (DRAM)

Data stored as a charge in a capacitor

Single transistor used to access the
charge

Dynamic: need to be “refreshed”
regularly, every 10-100 ms.

Sensitive to disturbances.
Slower and cheaper than SRAM.

WL

Vbp

—“u:l[J Mg
TL

Q
BL

Address line

|

bit line

capacitor

Transistor

Storage

Ground 40

SRAM (Static Random Access Memory)

* Data is stored statically in flip-flop

D Q N1 D Q|
b D D
latch L1 latch L2
C [}
Cc { Dc

— As long as it is powered, data (high/low voltage) W|II be stored
— RAM (random access): fixed access time to any datum

* Not like spinning disk.
— Same as register

* A2M x 16 SRAM module: 2 M (2*22°) 16-bit entries

— Address line has 21 bits =2 2%, which is 2 * 220=2M rows
— Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220

bits = 4MByte) Address =\

Chip select ———
Output enable ——

Write enable ———

Din[15-0] —=\—er

SRAM
2M X 16

16
—\— Dout[15-0]

141

Read of SRAM (Static Random Access Memory)

°* A2M x 16 SRAM module: 2 M (2*22°) 16-bit entries
— Address line has 21 bits =2 221, which is 2 * 220=2M rows
— Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220 bijts =

4MByte) -
e Read Address ——\x—
B Inqu: Chip select ——
* Chip select SRAM

16
Output enable ——— __, Dout[15-0]
e Output enable 2M X 16

Write enable ———

 Address
— Output: Din[15-0] —d—s-
* Dout

* Read access time (latency): time to initiate read to when data is
available on Dout

— 2-4ns

142

Write of SRAM (Static Random Access Memory)

* A2M x 16 SRAM module: 2 M (2*22°) 16-bit entries
— Address line has 21 bits = 2%, which is 2 * 220=2M rows
— Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220

° .
erte Chip select ———
— IﬂpUt: Output enable ———» zf/lR::I\% E\—» Dou
° Chip Select Write enable ———

* Write enable (not clock, but pulse) .. &
* Address

° Di n D ’ Setup time >=<Hold time==

— Output: (not output)

* Write time: setup time, hold time and pulse width

143

Memory Read Implementation

* Recall register read: Road it l
— A 32-1 Mux to select one of the Registst 0

Register 1

register s > Read data 1
* 32 registers Fogetir -

Register n—1

* Not practical for select from one of ™ e
the large amount of memory word g
using the regular centralized Mux 1 =

— 64k x 1 memory array needs a 64k-
1 mux

* Memory use tristate buffer to
create a mux

— “Mux” is distributed to the memory
cell

Read data 2

144

Tristate Buffer

* Tristate buffer, or Three-state buffer

— 1: asserted

— 0: deasserted

— Hi-Z state: to allow other control the output

* “Driver” in Digital

Symbol

En

it View Simulati Analysis | Ci

= | A ~ [= [& Logic
) | @ | ©

‘I—‘ w‘l O % %0

*[Users/yanyh/ h/

SSSSSSSSS

Output

Truth Table
En Input Output
0 X Hi-Z
1 0 0
1 1 1

145

4-1 Distributed Mux Using Tristate Buffer

* Select bit is the output of a decoder whose input is the

address

* Select bit to select one of the data from memory to drive the

output line (become the output)
— No need Mux to select

®* Create a distributed Mux

1

Select 0

Data O

> Select 1

Enable
In 'J\ Out

V

PJ\EnabIe
In Out

o 4
aaaaa

Select 2

Data 2

Select 3

Data 3

¢—— Output

146

Another Design for Not Using Centralized Large
Mux

Din[1] Din[1]
* 4x2
b p D p
C latch ol 1 C latch Q—¢
Write enable J— Enable T Enable
0 T)\
»—_j
2-to-4 D D D D
decoder
C latch O_0 C latch Q—¢
J— Enable Enable
1 T :
o1 ,
D p D p
Address ==t C latch O_" C latch Q—*
F Enable Enable
2 T)\
o1 ’
b p D p
C latch O_0 C latch Q¢
J— Enable Enable
3 T :
* |)

Dout[1] Dout[0] 1 47

* AM x 8 SRAM: 4K rows and each has 8 bits

Two-level of Decoding

* First decoder: select 8 1024-bit-wide data from 4K

* Second: 8 Muxes, each to select 1 bit from each 1024-bit-
wide data

* Two steps: Increate read latency

Address

[21-10] ~ |

Address
(9-0]

12
to
4096
decoder

4K x 4K > 4K > 4K > 4K x 4K 4K x 4K >
1024 1024 1024 1024 1024 1024 1024 1024
SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM
4096
\
\
\\1024
° -
A\ 1 i) 1
{ Mux) { Mux) -(Mux Mux) Mux) Mux) Mux) -(Mux)
' l l
Dout7 Dout6 Dout5 Dout4 Dout3 Dout2 Dout1 Dout0

148

DRAM (Dynamic Random Access Memory)

* Static RAM (SRAM)

Each cell stores a bit with a six-
transistor circuit, a flip-flop

Faster and more expensive than
DRAM.

°* Dynamic RAM (DRAM)

— Data stored as a charge in a capacitor

Single transistor used to access the
charge

Dynamic: need to be “refreshed”
regularly, every 10-100 ms.

Sensitive to disturbances.
Slower and cheaper than SRAM.

WL

Vbp

M, My
M5 —— F— —4 __;‘ Is
TL

Q
! BL

-

Address line

|

Transistor

Storage

capacitor

bit line

Ground 49

To Refresh a DRAM Caell

* Refresh: Read its content and write it back Addre[SS fine
— Every several milliseconds
Transistor
* Refreshing conflicts with normal read/write Storase
— Two-level decoding = refresh one row a time capacitor
— Refresh consume 1% - 2% of active cycles
— 98% - 99% cycles for normal read and write bitline Ground

150

Two-Level Decoder for DRAM

®* Row access
— Select one of a number of rows and A 1;,;22358 | S
activate words of the row Address[21-11]

— Store words in the column latches 12/

Address[10-0] Column latches

®* Column access
— Select data from column latches —(mw)

* 4M x 1 DRAM built with a 2048 x 2048 Array

— 22-bit address line
— Address[21-11]: Row address
e Select a row and latch 2048 bits in the column latches

— Address[10-0]: Column address
e Select one bit from the 2048 latches

151

Two-Level Decoder for DRAM

Row access

— Select one of a number of rows and ! 1?.‘“2?,(‘.)’233;8 e
activate words of the row Address[21-11]

— Store words in the column latches 12/

Column access odresslioo —

— Select data from column latches ()

)

Use the same address wire for row address and column

address

— RAS (Row Access Strobe) and CAS (Column Access Strobe) are
used to signal DRAM either a row or column address is being

supplied

Refreshing:
— Reading data into column latch and write them back

152

Two-Level Decoder for DRAM

®* Row access
— Select one of a number of rows and q 12’.‘“2?,(‘.)’23328 |
activate words of the row Address[21-11]
— Store words in the column latches 12/

Address[10-0] Column latches

®* Column access —i—
— Select data from column latches |

Dout

* DRAM Access Time
— Because of two-level decoding and internal circuitry,
— 5-10 times slower than SRAM access time, e.g. 45-65 ns

153

Increase in cost per bit

Increase in Capacity & Access Time

Memory Hierarchy of Computer in Real

Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $5000 per Gl
Dynamic RAM (DRAM)

50ns — 70ns, $20 — $75 per GB
Magnetic disk

5ms — 20ms, $0.20 — $2 per GB

LEVEL 4

LEVEL 3

MEMORY HIERARCHY DESIGN

154

Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large not expensiv

PCSrc

Northbridge (with heatsink) ~ SOuthbridge gy —
AGP Slo By

= X2
DRAM Memory b‘“
20-pjn ATX Power -
(onnector ~at
N >
: N
€

Y | <2
> P A N s

» : '-' _ g
e . E ’ CMO¢
v . 3 g Backu
~ :‘0 Jﬁ . Batter

Connectors For
Integrated Peripherals

Add l

Read
register 1 Read
Read data 1
register 2

Regist
Write egisters Ro,q

Instruction register data 2
memory

Read
address

Heatsink
Mounting
Points

Instruction

Write

data i
Write ~ Data
RegWrite I data memory

viemRead

16

Processor

Control

: merfict]l L3¢
o [el A s——

Eahetheeeb
| :2:Cache

ip

i

Datapath

..........

----------- LRIETRYRTRIE (2 17 155

Lecture Ends Here

156

Appendix A: The Basics of Logic Design

— A.llntroduction _ 2; CMIZ(r:ll:f)r Elements: Flip
— A. Yy : Flip-
- A.Z.Gates, 'I:ruth Tables, and Flops, Latches, and Registers
Logic Equation e Labs
° Lecture 13 * Lecture 16
— A.3 Combinational Logic — A.9 Memory Elements: SRAMs
—A:4-Using-aHardware and DRAMs
Deseription-Language * Lab9
I Lecture-17
° Lab?7 . :
— A.10 Finite-State Machines
° Lecture 14 —A-11 Fiminga Methodologies
— A.5 Constructing a Basic —A-12-Field-Programmable
Arithmetic Logic Unit Dewvices
TP — A.13 Concluding Remarks
oelehead
°* Lab 10

157

Combinational and Sequential Circuits

* Combinational circuit, such as
mux, decoder, ALU
n Inputs m Outputs
— Operate on data RO
— Output is a function of input : st

Combinational Circuit

Vs
* State (sequential) circuit, such as Sequontial: Circalt
. Input X) Output
register or memory Combinational ————
Circuit 5
— Store information I cI. Ik
— Outputs determined by previous L= ey — st

and current values of inputs

158

Three Steps of Logic Design in Theory,
Mostly for Combinational Circuit, so far

X V z F

O 0 O 0

o 0 1 1

O 1 0 0

o 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1 n Inputs m Outputs
1 1 1 1 Combinational

Circuit

Boolean Combinational Circuit
unctio

| o

X
Logic
, y
ate Diagrap ——
z

m
|
X
+
<
N\l

Y
e

159

Sequential System is described as a Finite-state
Machine (FSM)

Input, output and states

State: Given n bits of storage
(memory)

— 2" state

Next-state function

— Combinational logic, given
inputs and current states,
determines the next state of
the system

Output function

— Produce outputs from currer
state and inputs

Inputs

Sequential Circuit
Input i) Qutput
Combinational -
Circuit _|_|_
Po:ltlve Clock
Feedback Signal
Memory

Next
state

Clock

» Outp!

160

Finite State Machines (FSMs)

* Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

— These two types are equivalent in capabilities, can convert from
one to the other

— We are only going to deal with the Moore machine.

Moore FSM
CLK
M noxt) k next _| K N
i t tput
Inputs Isct;i state state c;ggpi;l outputs
Mealy FSM

CLK
|

M next \k Next k N
inputs +— state | State 4 state olutput outputs
logic o91e

Intelligent Traffic Controller

* We want to use a finite state machine to control the
traffic lights at an intersection of a north-south route
and an east-west route

— We consider only the green and red lights

— We want the lights to change no faster than 30 seconds in each
direction
* So we use a 0.033 Hz clock

West ‘
[

162

Intelligent Traffic Controller

* There are two output signals:

— NSlite: When the signal is asserted, the light on the north-south
route is green; otherwise, it should be red

— EWIite: When the signal is asserted, the light on the east-west
route is green; otherwise, it should be red

1/ EWlite I « EO @

1/ NS|I. g ' =

Pictures adapted from: https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino

Control

163

https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino

Intelligent Traffic Controller

* There are two inputs

— NScar: Indicates that there is at least one car that is over the
detectors placed in the roadbed in the north-south road

— EWecar: Indicates that there is at least one car that is over the
detectors placed in the roadbed in the east-west road

Control

164

Intelligent Traffic Controller

* Here we need two states
— NSgreen: The traffic light is green in the north-south direction
— EWagreen: The traffic light is green in the east-west direction

NSgreen

EWgreen

Control

165

Intelligent Traffic Controller: Traffic Lights
Change only When They Need To

* The traffic lights should only change from one direction to
the other only if there is a car waiting in the other direction

— Otherwise, the light should continue to show green in the same
direction

NSgreen

EWgreen

Control

166

Next State Function

Curront state [Wcar | EWear

Next state

NSgreen 0 0 NSgreen
NSgreen 0 1 EWgreen
NSgreen 1 0 NSgreen
NSgreen 1 1 EWgreen
EWgreen 0 0 EWgreen
EWgreen 0 1 EWgreen
EWgreen 1 0 NSgreen
EWgreen 1 1 NSgreen

NSgreen

EWgreen

Control

1/ EWlite @ ‘

e =5

¥

167

Next State Function: If cars are in both directions,

alternate
 wputs
mm- Noxt stato
NSgreen 0 0 NSgreen
NSgreen 0 1 EWgreen
NSgreen 1 0 NSgreen
NSgreen 1 1 EWgreen
EWgreen 0 0 EWgreen
EWgreen 0 1 EWgreen
EWgreen 1 0 NSgreen
EWgreen 1 1 NSgreen

NSgreen

EWgreen

Control

1/ EWIlite I‘
@ Y-
1/ NSIi-|th

168

Output Function

Current state

NSgreen 1 0
EWgreen 0 1
NSgreen

EWgreen

Control

169

Graphical Representation

Curront stote [Wocwr | EWewr | Nextstats

* Node: state g 8 2 e
— Inside: a list of output that are — = : : Fvgeen
. EWgreen 0 0 EWgreen
active for the state Sigeon 0 : Sigeen
EWgreen 1 1 NSgreen
* Directed Arch: next-state func
. NSgreen
— Labels: input
EWgreen
— Control
NSgreen EWgreen

NSlite EWilite

NScar

170

Implementation: State Assignment

* We need to assign state numbers to the states
— Only two states: assign 0 to NSgreen and 1 to EWgreen
— Therefore we only need 1 bit in the state register
— CurrentState:
* 0: NSGreen
* 1: EWgreen

I CurrentState

Control

1/ EWite “

e =y

171

Combinational Logic for Next State Function

Current state
0

[Weowr | EWewr | Nextstats

RrlR| R R|O|C|O
Rlr|O|Oo|r|r|o|O
RrRlo|lr|lo|lr|o|r|O
OQ|O || PO PO

NextState = (CurrentState - EWcar) + (CurrentState - NScar)

172

Combinational Logic for Ouptput Function

NextState = (CurrentState - EWcar) + (CurrentState - NScar)
— CurrentState:

* 0: NSGreen
* 1: EWgreen
Curront state [Nsite | EWite
NSgreen 1 0
EWgreen 0 1

NSlite = CurrentState

EWlite = CurrentState

173

Implementing Intelligent Traffic Controller

NextState = (CurrentState - EWcar) + (CurrentState - NScar

NSlite = CurrentState
EWIlite = CurrentState
Nslite —¢mm—t—<| (— Nscar
EWlite —¢ {mmm— Ewcar
Control _ =
1/ _EWlite I‘ EO@

Clock

CurrentState

174

Implementing Intelligent Traffic Controller

* The state is updated at the edge of the clock cycle

* The next state is computed once every clock.

NextState = (CurrentState - EWcar) + (CurrentState - NScar)

NSlite %:

]

EWIite #

NextState

o
<mm—

Clock

CurrentState

NScar
EWcar

NSlite = CurrentState

EWlite = CurrentState

CurrentState

Control

1/ _EWiite E*‘

1/ NSIi- %

175

Implementing the Design using Verilog

NSlite = CurrentState

NextState = (CurrentState - EWcar) + (CurrentState - NScar)
EWlite = CurrentState

module TrafficLite (EWCar,NSCar,EWLite,NSLite,clock);:

input EWCar, NSCar,clock;
output EWLite,NSLite;

reg state;
initial state=0; //set initial state

//following two assignments set the output, which is based
only on the state variable
assign NSLite = ~ state; //NSLite on if state

=O:
assign EWLite = state; //EWLite on if state =1

always @(posedge clock) // all state updates on a positive
clock edge
case (state)
0: state = EWCar; //change state only if EWCar

1: state = ~ NSCar; // change state only if NSCar

endcase
endmodule

176

FSM

. NSlite —((mm—] ¢mmm— NScar
* More complicated FSM EWite — (o 2 = rvear

— More states =2 more flip-flops

— More inputs and output

— Inputs/outputs are more than 1 bit
— More complicated state transition

Clock

— E.g. extension to support Green/Red/Yellow light in Exercise
A.41

* FSM is used to control processor execution
— Chapter4 and 5
— Appendix C: Mapping Control to Hardware

177

Five Steps to Build a Finite State Machine

* There are no set procedures and diagrams. Application dependent

Step 1: Identify inputs, outputs and states
Step 2: State diagram and state table

— Choose a state to be the starting state when power is turned on the

first time

— Draw a state diagram by a graph with regards to input/outputs and

state transition
— List in the tables for state transition and for output =2 Boolean

function for each tables 2 next-state function and output function

Step 3: State assignment
— Assign a unique binary number to each state
— Rewrite the state table using the assighed number for each state

Step 4: Combinational logic for next state function and output
function

Step 5: Logic Implementation

178

CircuitVerse-Related Slides

179

Lab 07

* https://circuitverse.org/

Mux Main 32-bit register 32 32-bit register file ~1-bit ALU | 4-bit ALU = 32-bit ALU Memory test

Input
Output
(e Blnvert E
Em carryin [3}
1-bit ALU
D CarryOut
° a Result
ey 4 L pooq
L O O O O] Result
=+ Operation 0:1 _ e
:)D Blnvert 1:2
Operation IO C: 2:3
1-bit ALU 3:4
CarryOut ==
Decoders & Plexers o T a Result
1~.z 1 Carryln Zero?
Sequential Elements : 3
2: i
3 Blnvert
Test Bench ajOO0O 0O 3:4 m L
Misc
1-bit ALU
CarryOut §4
a Result
PROJECT PROPERTIES = Carryln Zero?
) Operation
Project : CPUDesign 01 Blnvert
Circuit : 4-bit ALU 1:2
Clock Time : 500 =
CCCIINS 2 b[0 00O 3:4
: 1-bit ALU
Clock Enabled : [NV . 0] carryout
Lite Mode : - » Result
Delete Circuit Edit layout pt CarryIn Zero? ==
Operation
Blnvert

180

https://circuitverse.org/

