
Appendix A: The Basics of Logic Design

ITSC 3181, Introduction to Computer Architecture

https://passlab.github.io/ITSC3181/

Department of Computer Science
Yonghong Yan

yyan7@uncc.edu
https://passlab.github.io/yanyh/

1

https://passlab.github.io/ITSC3181/
mailto:yyan7@uncc.edu
https://passlab.github.io/yanyh/

Appendix A: The Basics of Logic Design

2

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛ • Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 18
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

Introduction

• CPU performance factors
– Instruction count
• Determined by ISA and compiler

– CPI and Cycle time
• Determined by CPU hardware

• A small subset of RISC-V ISA that can support most
high-level programming constructs
– Memory reference: load and store such as lw, sw
– Arithmetic/logical: add, sub, and, or
– Control transfer: beq, j

3

§A.1 Introduction

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

Instruction and Data (1/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them
• Each byte/word has its memory address

4

Instruction and Data (2/2)

• Are all numbers stored as binary format in memory
– It is up to the CPU on how to interpret and do with them

• Each byte/word has its memory address

5

Appendix A and Chapter 4 and 5

• Study how a processor is designed
and its implication to software and
performance
– Foundation of CPU design
•
• Bottom-up approach to study
– Appendix A: logic design
– Chapter 4: CPU design
– Chapter 5: Memory design

6

fo
cu

s
of

 th
is

 c
ou

rs
e

programs

device drivers

instructions
registers

datapaths
controllers

adders
memories

AND gates
NOT gates

amplifiers
filters

transistors
diodes

electronscycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

Processor

Control Logic

Datapath

Components of a Computer

7

Program Counter (PC)

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Read/Write

Address

Write Data

Read Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

§A.2 G
ates, Truth Tables, and Logic Equation

Appendix A: logic design
Chapter 4: CPU design Chapter 5: Memory design

Logic Design Basics

• To represent and store data, and to perform operation
– 0 and 1
– Start with addition
• Electrics inside a computer are digital

• Information encoded in binary
• Digital circuits use voltage levels to represent 1 and 0
– Low voltage = 0, FALSE, deasserted
– High voltage = 1, TRUE, asserted
– One wire per bit
– Multi-bit data path is encoded via multi-wire buses

8

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

inputs outputs
functional spec

timing spec

Logic Circuit

9

add x6, x4, x5

[x4]
[X5]

To [x6]add

• Nodes
– Inputs: A, B, C
– Outputs: Y, Z
– Internal: n1
• Circuit elements
– E1, E2, E3

A E1

E2
E3B

C

n1

Y

Z

Logic Circuits

10

Combinational and Sequential Circuits

• To perform operation and store
data

• Combinational circuit, such as
adder
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as
register or memory
– Store information
– Outputs determined by previous

and current values of inputs

11

Three Steps of Logic Design in Theory

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram

12

Step 1: Truth Table for Binary Logic

• Given N input binary variables, list the output for all the
possible inputs
– N input è 2n number of input combinations of 0 and 1
– It is digital version of a function, e.g. D = f (A, B, C)

– Computing is a function of binary input, and output is binary

13

Step 2: Boolean Algebra

• Logic equation to express binary logic function using binary
variable, instead of a truth table

• Three fundamental operators
– OR operator, logic sum, written as +
• Y = A + B

– AND operator, logic product, written as * or .
• Y = A * B, or AB

– NOT operator, inverse, written as ~A, A’ or A
• ~~A = A

14

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A ~A
0 1
1 0

George Boole, 1815-1864

• Born to working class parents
• Taught himself mathematics and

joined the faculty of Queen’s
College in Ireland

• Wrote An Investigation of the
Laws of Thought (1854)

• Introduced binary variables
• Introduced the three

fundamental logic operations:
AND, OR, and NOT

15

Laws of Boolean Algebra (1/3)

• Basic operators of Boolean algebra
– AND, *
– OR, +
– NOT, ~

1. Identity Law
– A + 0 = A
– A * 1 = A

2. Zero and One Laws:
– A + 1 = 1
– A * 0 = 0

3. Inverse Laws:
– A + ~A = 1
– A * A~ = 0

16

Laws of Boolean Algebra (2/3)

• Basic operators of Boolean algebra
– AND, *
– OR, +
– NOT, ~

4. Commutative Law
– A + B = B + A
– A * B = B * A

5. Associative Laws:
– A + (B + C) = (A + B) + C
– A * (B * C) = (A * B) * C

6. Distributive Laws:
– A * (B + C) = (A * B) + (A * C)
– A + (B * C) = (A + B) * (A + C)

17

Laws of Boolean Algebra (3/3)

• Basic operators of Boolean algebra
– AND, *
– OR, +
– NOT, ~

7. DeMorgan’s Laws:
– ~(A * B) = ~A + ~B
– ~(A + B) = ~A * ~B
• Extended
– (x1 + x2 + ... + xn)’ = x1’x2’... xn’
– (x1x2 ... xn)’ = x1' + x2' +...+ xn'

• Easy way to remember: each TERM is complemented, ANDàOR,
ORàAND

18

Operators and Laws of Boolean Algebra: Summary

• Basic operators of Boolean
algebra
– AND, *
– OR, +
– NOT, ~

1. Identity Law
– A + 0 = A
– A * 1 = A

2. Zero and One Laws:
– A + 1 = 1
– A * 0 = 0

3. Inverse Laws:
– A + ~A = 1
– A * A~ = 0

19

4. Commutative Law
– A + B = B + A
– A * B = B * A

5. Associative Laws:
– A + (B + C) = (A + B) + C
– A * (B * C) = (A * B) * C

6. Distributive Laws:
– A * (B + C) = (A * B) + (A * C)
– A + (B * C) = (A + B) * (A + C)

7. DeMorgan’s Laws:
– ~(A * B) = ~A + ~B
– ~(A + B) = ~A * ~B

• Extended
– (x1 + x2 + ... + xn)’ = x1’x2’... xn’
– (x1x2 ... xn)’ = x1' + x2' +...+ xn'

Derive Logic Equation from Truth Table 1/2

• Write down the Boolean equation for each line in the truth
table where the output is 1

• Simplify the equation using Boolean Algebra Laws
• F = A * B * C
• E = ~A*B*C + A*~B*C + A*B*~C

20

Derive Logic Equation from Truth Table 2/2

• Write down the Boolean equation for each line in the truth
table where the output is 0, and do NOT

• Simplify the equation using Boolean Algebra Laws
• D = ~(~A * ~B * ~C) = A + B + C

21

More Examples

22

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-
deriving-boolean-expressions-from-truth-tables

http://theteacher.info/index.php/fundamentals-of-cs/2-logical-operations/topics/2642-deriving-boolean-expressions-from-truth-tables

Simplifying Boolean Equations

Y = AB + ~AB 6
= B(A + ~A) 3
= B(1) 1
= B

law #:

Y = A(AB + ABC) 1,6
= A(AB(1 + C)) 2
= A(AB(1)) 1
= A(AB) 5
= (AA)B
= AB

23

Law #:

Step 3: Logic Gates

• Implement the Boolean equation in circuits

• Perform logic functions:
– inversion (NOT), AND, OR, NAND, NOR, etc.

• Single-input:
– NOT gate, buffer
• Two-input:
– AND, OR, XOR, NAND, NOR, XNOR
• Multiple-input

24

BUF

Y = A

A Y
0
1

A Y

NOT

Y = A

A Y
0
1

A Y

Single-Input Logic Gates

25

NOT

Y = A

A Y
0 1
1 0

A Y

BUF

Y = A

A Y
0 0
1 1

A Y

Single-Input Logic Gates

26

AND

Y = AB

A B Y
0 0
0 1
1 0
1 1

A
B Y

OR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

Two-Input Logic Gates

27

AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

Two-Input Logic Gates

28

XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0
0 1
1 0
1 1

A B Y
0 0
0 1
1 0
1 1

A B Y
0 0
0 1
1 0
1 1

A
B Y A

B Y A
B Y

More Two-Input Logic Gates

29

XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B Y A

B Y A
B Y

1
0
0
1

More Two-Input Logic Gates

30

NOR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

Multiple-Input Logic Gates

AND3

Y = ABC

A
B Y
C

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

31

NOR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
0
0
0
0
0
0

• Multi-input XOR: Odd parity

Multiple-Input Logic Gates

AND3

Y = ABC

A
B Y
C

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
1

32

33

Bubble to Invert (NOT) Inputs or Outputs

• Two-level logic: ANDs followed by ORs
• Example: Y = ABC + ABC + ABC

From Logic to Gates

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

34

Circuit Schematics Rules

• Inputs on the left (or top)
• Outputs on right (or bottom)
• Gates flow from left to right
• Straight wires are best

35

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Circuit Schematic Rules (cont.)

wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

• Wires always connect at a T junction
• A dot where wires cross indicates a connection between

the wires
• Wires crossing without a dot make no connection

36

Equivalent Circuits

F = ABC + ABC’ + A’C …… (1)
= AB(C + C’) + A’C ……..…. (2)
= AB • 1 + A’C
= AB + A’C ….....…. (3)

(1)

(2)

(3)

A
B
C

F

A
B

C
F

F

A
B

C

Many different logic diagrams are possible for a given function

37

Simplified function
uses less gates.

Gates are Implemented Using Transistors

38

• Moore’s Law: number of
transistors on a computer
chip doubles every year
(observed in 1965)

• Since 1975, transistor
counts have doubled every
two years.

g

s

d

g = 0

s

d

g = 1

s

d

OFF ON

• Logic gates built from transistors
• 3-ported voltage-controlled switch

– 2 ports connected depending on voltage of 3rd
– d and s are connected (ON) when g is 1

Transistors

39

Silicon Lattice

Si SiSi

Si SiSi

Si SiSi

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

Free electron Free hole

n-Type p-Type

• Transistors built from silicon, a semiconductor
• Pure silicon is a poor conductor (no free charges)
• Doped silicon is a good conductor (free charges)

– n-type (free negative charges, electrons)
– p-type (free positive charges, holes)

Silicon

40

n

p

gatesource drain

substrate

SiO2

nMOS

Polysilicon

n

gate

source drain

• Metal oxide silicon (MOS) transistors:
– Polysilicon (used to be metal) gate
– Oxide (silicon dioxide) insulator
– Doped silicon

MOS Transistors

41

n

p

gate
source drain

substrate

n n

p

gatesource drain

substrate

n

GND

GND
VDD

GND

+++++++
- - - - - - -

channel

Gate = 0

OFF (no connection
between source and
drain)

Gate = 1

ON (channel between
source and drain)

Transistors: nMOS

42

Appendix A: The Basics of Logic Design

43

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

44

• Two-level of logic and PLA
– Product of Sum and
– Sum of Product
– PLA
• ROM
• Don’t Care
• Multiplexer
• Decoder

Combinational Logic
§A.3 C

om
binational Logic

Three Steps of Logic Design in Theory

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram

45

Two-Levels of Logic and PLA

• A general approach to derive Boolean function from truth
table and then construct logic circuit

46

• Complement: variable with a bar or ’ over it (NOT)
A’, B’, C’

• Literal: variable or its complement
A, A’, B, B’, C, C’

• Minterm: product that includes all input variables (AND)
AB’C, A’BC, AB’C’
– 0, the minimum, determines the value, so it is called minterm

• Maxterm: sum that includes all input variables (OR)
(A+B’+C’), (A’+B+C), (A’+B’+C)
– 1, the maximum, determines the value, so it is called maxterm

Some Definitions

47

• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where the output is TRUE
• Thus, a sum (OR) of products (AND terms)

Y = F(A, B) =

Sum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

Sum-of-Products (SOP) Form

48

• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where the output is TRUE
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) FormSum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

Y = F(A, B) = AB + AB = Σ(1, 3)
49

• All Boolean equations can be written in POS form
• Each row has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• Form function by ANDing the maxterms for which the

output is FALSE
• Thus, a product (AND) of sums (OR terms)

Y = F(A, B) = (A + B)(A + B) = Π(0, 2)

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Product-of-Sums (POS) Form

50

SOP & POS Form

• SOP – sum-of-products

• POS – product-of-sums

O C E
0 0
0 1
1 0
1 1

minterm
O C
O C
O C
O C

O + C
O C E
0 0
0 1
1 0
1 1

maxterm

O + C
O + C
O + C

51

SOP & POS Form

• SOP – sum-of-products

• POS – product-of-sums

O + C
O C E
0 0
0 1
1 0
1 1

0
0
1
0

maxterm

O + C
O + C
O + C

O C E
0 0
0 1
1 0
1 1

0
0
1
0

minterm

O C
O C
O C

O C

E = (O + C)(O + C)(O + C)
= Π(0, 1, 3)

E = OC
= Σ(2)

52

Sum of Produce (SOP) is easy to use

• Write down the Boolean equation for each line in the truth
table where the output is 1

• E = ~A*B*C + A*~B*C + A*B*~C in SOP Form
53

Sum of Products Example

• Boolean function for D
• D = A’*B’ + A’*B + A*B’ + A*B

54

Sum of Product è Programmable Logic Array
(PLA)

D = A’*B’*C + A’*B*C + A*B’*C’ + A*B*C
• Sum of Product representation is two stages of logic
– Array of AND operations for the minterms
– Array of OR operations to sum logically up the minterms
• Programmable Logic Array (PLA) to implement
– Very easy and efficient to implement

55

• PLA impl based
on SOP Boolean
equation

56

• Another form to represent
the PLA array
– Use dot to represent AND

or OR gate

57

Read-Only-Memory (ROM) Logic for the Truth
Table

• Hard-code the truth table in the logic so the output can be
read given an input

• The truth table is stored as in memory
– Address is the input
– Value is the output
• ROM for the truth table has 3*8 bits for the three outputs

58

PLA vs ROM

• ROM is fully decoded, contain the full output for every
possible input
– Number of entries grows exponentially with regards to the

number of inputs
• PLA partially decoded, no need for all the possible input most

of the time

59

Don’t Care

• Output don’t cares and input don’t cares

• Consider a logic function with inputs A, B, and C defined as
follows:
– If A or C is true, then output D is true, whatever the value of B.
– If A or B is true, then output E is true, whatever the value of C.
– Output F is true if exactly one of the inputs is true, although we

don’t care about the value of F, whenever D and E are both true.

60

Truth Table without Don’t Cares

61

Truth Table with Don’t Cares

62

Multiplexors

• Selectors: the output is from one of the two inputs (A
and B) according to a control input (S)
– C = A * S + B * S
– 1-bit multiplexor

– Extended to select x-bit width input/output
– Extended to select from n number of inputs
• Need log2n select bits

63

A B S C
0 x 0 0
1 x 0 1
x 0 1 0
x 1 1 1

4-to-1 Multiplexor

64

Q = abA + abB + abC + abD

https://www.electronics-tutorials.ws/combination/comb_2.html

N-to-1 Mux

65

https://www.electrical4u.com/multiplexer/

Multiplexors for Selecting Reading from 32
Registers

• Register read: all the 32 registers
are being read at the same time

• Only the output of the needed one
is selected and sent out

• 32-bit registers
– Input/output are 32-bit data
• 32 registers, we need 5 bit to select
– For 32è1 selector

• Instruction: add x5, x11, x20

66

x0
x1

x11

x31

32 bitwidth

32/

Decoder

• Translate n-bit input into a single bit that corresponds to the
binary value of the n-bit input

• 3-to-8 decoder
– Inputs are bits of an address
• Address to enable access to a specific location for that address
• Access is turned on/off by the single OutX bit.

67

3-to-8 encoder

• Boolean equation and logic circuit
for 3-to-8 decoder

• A, B, C (or 10, 11, 12) are symbols
or bit position of an address

68

Decoder for Register Write

69

Decoder for Enabling Write to a Register

• Register write: data are sent to all
the registers

• Only the selected one is written
– Write-enable (WE) bit is set to 1 (asserted)
– We use a decoder for set the WE bit
• 32 registers, we need 5 bit to address a register
– For each address, the corresponding bit is set

• Instruction: add r10, rs1, rs2

70

1 bit WE signal

Decoder and Mux for Register Write-Read

71

Lab 7

• Digital for digital logic design and experiment
from https://github.com/hneemann/Digital
– A Java software that you download and launch the program

72

https://github.com/hneemann/Digital

Organization and Do it as Art Work

73

https://passlab.github.io/ITSC3181/notes/Lab_07_IntroMuxDecoder.pdf

Being able to organize complicated things is a skill and ability that can be trained by
practice, but hardly a talent.

https://passlab.github.io/ITSC3181/notes/Lab_07_IntroMuxDecoder.pdf

Appendix A: The Basics of Logic Design

74

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

ALU and Bitwidth

• Arithmetic logic unit (ALU) is the brawn of the computer
– Perform add, sub, AND, OR, etc.
– A unit to perform all supported operations

• 64-bit machine (registers are 64-bit wide), we need 64-bit ALU
• 32-bit machine (registers are 32-bit wide), we need 32-bit ALU
– We will focus 32-bit machine starting from now for the lecture
– Choose your bitwidth of your CPU design for your labs 07 – 10
• 32-bit, 16-bit, 8-bit
• More bitwidth à more wire/complexity
• 8-bit is good choice, 16-bit is nice, 32-bit is challenging

• Starting with 1-bit ALU first
– Logic, and then Arithmetic

75

§A.6 C
onstructing a Basic Arithm

etic Logic U
nit

1-Bit ALU: Logic Unit (AND and OR)

• Logics circuit does AND and OR operations, operation is used
to select the output of the gate as the result.
– 0: AND
– 1: OR

76

1-Bit ALU adder

• For add, 1-bit adder
– 3 Inputs: a, b, and CarryIn
– 2 Outputs: sum and CarryOut

77

XOR Gate

• It does addition, no CarryIn or CarryOut
– Sum = A XOR B = A⊕ B

78

1-Bit Half-Adder

• 1-Bit Half-Adder
– Two inputs: A and B
– Two outputs: S and CarryOut

– Sum = A XOR B = A⊕ B
– CarryOut = A*B

79

1-Bit Full Adder

• 1-Bit Full-Adder
– Three inputs: A, B and CarryIn
– Two outputs: S and CarryOut

• Combine two half-adder to a full adder

80

1-Bit Full Adder

81

1-Bit ALU that can do add, AND, and OR.

• 1-Bit Full Adder + AND/OR logic unit

• Operation has 2 bits for the mux
– AND: 00
– OR: 01
– ADD: 10

82

64-Bit ALU

• 64 input bits are split and fed
to each 1-bit ALU

• Results/sums of each 1-bit
ALU are combined into a
single 64-bit double word
as the result of the ALU

• CarryOut goes to CarryIn
of the ALU for next bit
– CarryOut of 63-rd bit is

the overflow
• Operation bits go to

all adders
83

2/

Extending ALU to DO
A Little More: sub
• Starting from the 1-Bit ALU
– Can do add, AND and OR

• Add substraction to the ALU
– a – b = a + (-b) = a + b’ + 1 since
• For 2’s complement

representation, -b = b’ + 1
– Thus we just need to revert (NOT)

b and “add 1”
• Use the carryIn for “add 1”
• A Mux to select b or b’

– if doing sub
• Binvert is 1
• CarryIn is 1
• Operation is still add (10)

84

2/

Extending ALU to DO
A Little More: NOR
• Current 1-Bit ALU
– Can do add, sub, AND and OR

• Add NOR operation
– (a + b)’ = a’ * b’
– Just need to add NOT for a, and

a mux to select a or a’

• For doing NOR
– Operation is AND (00)
– Ainvert is 1
– Binvert is 1

85

2/

Extending ALU to DO
A Little More: SLT (1/2)
• Current 1-Bit ALU
– Can do add, sub, AND, OR and NOR

• slt (set less than) instruction
– slt rd, rs1, rs2
• if ([rs1] < [rs2]) [rd] = 1

else [rd] = 0
– slti rd, rs1, #immediate
• if ([rs1] < #immediate) [rd] = 1

else [rd] = 0
– For the ALU, a is [rs1], b is [rs2]

and result is [rd]

86

2/

Extending ALU to DO
A Little More: SLT (2/2)
• Current 1-Bit ALU
– Can do add, sub, AND, OR and NOR

• slt (set less than) instruction
– Implementation:
• (a < b) == (a-b) < 0
• Thus slt is to perform sub and

then check the sign bit of the result.
• A set bit from the adder output

is used to pass through the
sign bit from MSB to LSB

• SLT has its own operation
code (11) and less goes to the output

87

2/

SLT in 64-Bit ALU

88

• For SLT (set less than)
– Operation is 11
– MSB set, bit 63, which

is the sign bit goes to
LSB as the result
• If negative, set of 63

is 1, thus [rd] = 1
• All others are 0

2/

ALU control lines

Check zero in 64-Bit ALU

89

• Check zero of any
operations
– NOR of all result bit
• Usage, e.g.
– For beq rs1, rs2, label

instruction
• Which do [rs1] – [rs2]

first, and check whether
result is zero or not

2/

ALU control lines

Extending ALU to DO
A Little More: overflow
• Current 1-Bit ALU
– Can do add, sub, AND, OR, NOR

and SLT

• Overflow detection is optional
– Can be just CarryOut
• We will NOT do this in the lab

90

2/

64-Bit ALU

91

• Operation:
– AND: 00
– OR: 01
– ADD: 10
– SUB: 10 (same as ADD)
– SLT: 11
– NOR: 00 (same as AND)
• 4 bits ALU controls:
– Ainvert: for NOR
– Bnegate: for sub and slt
– 2-bit operation

2/

ALU control lines

ALU Symbol

• 4-bit ALU operation
– Ainvert, Bnegate, 2-bit operation

92

Examples using Hardware Description Language:
Verilog for Half-adder

• HDL describe the behavior of the logic
– logic synthesis converts to gates

• Half-adder
– Sum = A XOR B = A⊕ B
– CarryOut = A*B

93

Verilog for 4-to-1 Mux

• 4-to-1 Mux (32-bit in the picture, 64-bit in the code)

• always @(list of signals that cause reevaluation)
– Re-evaluate the assignment if any of the sensitive list changes

94

Verilog for ALU

• HDL describe the behavior of the logic
– logic synthesis converts to gates

95

Verilog for a Complete ALU for RISC-V

• 6-bit function code derived from the instruction decoding
– Pick the needed bits from, e.g. opcode/func3/funct7
• Use function code to assign the 2-bit ALUop code
– E.g. for Load and store instruction, add ALUop is used to signal

the ALU to perform add operation of base and offset

96

Appendix A: The Basics of Logic Design

97

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

Processor

Control Logic

Datapath

Components of a Computer

98

Program Counter (PC)

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Read/Write

Address

Write Data

Read Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Appendix A: logic design
Chapter 4: CPU design Chapter 5: Memory design

Combinational and Sequential Circuits

• Combinational circuit, such as
mux, decoder, ALU
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as
register or memory
– Store information
– Outputs determined by

previous and current
values of inputs
• e.g. previous inputs

are stored
99

§A.7 C
locks

100

• Mostly consists of combinational logic + Memory
• Memory is used to store state
– Update memory according to both input and previous state
• Combinational logic to drive output
– It uses both input and internal state to drive the output
• Controlled by clock
– Update at specific time

Sequential Circuits

101

• Are needed in sequential logic to decide when an element that
contains state (memory) should be updated (written or stored).
– It is a real clock, but in different form
• E.g. update the memory every 125 ns, not anytime one wants. But

since it is very fast, not a big deal.
– Cycle time, or clock period (inverse of clock frequency)
• High and Low

• Edge-triggered clocking
– State change (0 à 1 or 1à 0) on a clock edge
– Rising edge and falling edge
– Active edge causes stage change
• Could be just rising or falling, or both
• State change in the rising edge in the above figure

Clocks

Rising edge

Falling edge

1
0

Clocking Methodology

• Synchronous systems
– Clock and input MUST be synchronized to make sure update is

stabilized.
• Combinational logic transforms data during clock cycles
– Between clock edges
– Input from state elements (memory), output to state element
– Longest delay determines clock period

102

Read and Write in the Same Cycle

• Both rising and falling edge are active
– Update twice per cycle

• E.g. Double data rate (DDR) memory

• Register files work in this way as well
– Read and write to a register file in the same cycle
– Read and write a register (x6) in the same cycle
– Write to a register (x6) and then read it (x6) in the same cycle for

two instructions
add x6, x4, x6
add x7, x6, x8 103

104

• ALU is used for doing computation

• Memory: to store information
– State: information at a particular time
– Registers, cache and main memory are all “memory”
• Different type of technologies, e.g. SRAM and DRAM, detailed in

Chapter 5
• Memory element in circuit
– The output from any memory element depends both on the inputs

and on the value that has been stored inside the memory element.
– All logic blocks containing a memory element contain state are

sequential, e.g. registers, cache and main memory

Memory Element

Some Terms about Memory

• Outputs of sequential logic depend on current and prior input
values – it has memory.

• Some definitions:
– State: all the information about a circuit necessary to explain its

future behavior
– Latches and flip-flops:

state elements (circuits) that
store one bit of state

– Sequential circuits are synchronous
combinational logic followed by
a bank of flip-flops (memory)
controlled by clock

• We start studying how to design logic to store a single-bit
– Then extend to create logics for storing multiple bits
– 1-bit ALU è 32/64-bit ALU

105

SR (Set/Reset) Latch

R

S

Q

Q

N1

N2

• SR Latch
• Cross-coupled structure

• Consider the four possible cases of the 2 inputs:
– S = 1, R = 0
– S = 0, R = 1
– S = 0, R = 0
– S = 1, R = 1

106

– S = 1, R = 0:
then Q = 1 and Q = 0

– S = 0, R = 1:
then Q = 0 and Q = 1

R

S

Q

Q

N1

N2

0

1

1

00

0

R

S

Q

Q

N1

N2

1

0

0

10

1

SR Latch Analysis

107

– S = 1, R = 0:
then Q = 1 and Q = 0
Set the output to 1

– S = 0, R = 1:
then Q = 0 and Q = 1
Reset the output to 0

R

S

Q

Q

N1

N2

0

1

1

00

0

R

S

Q

Q

N1

N2

1

0

0

10

1

SR Latch Analysis

108

R

S

Q

Q

N1

N2

0

0

R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1

1

– S = 0, R = 0:
then Q = Qprev

– S = 1, R = 1:
then Q = 0, Q = 0

R

S

Q

Q

N1

N2

1

1

0

00

0

SR Latch Analysis

109

R

S

Q

Q

N1

N2

0

0

R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1– S = 0, R = 0:
then Q = Qprev

Memory!

– S = 1, R = 1:
then Q = 0, Q = 0
Invalid State
Q ≠ NOT Q

R

S

Q

Q

N1

N2

1

1

0

00

0

SR Latch Analysis

110

S

R Q

Q

SR Latch
Symbol

• SR stands for Set/Reset Latch
– Stores one bit of state (Q)

• Control what value is being stored with S, R
inputs
– Set: Make the output 1

(S = 1, R = 0, Q = 1)
– Reset: Make the output 0

(S = 0, R = 1, Q = 0)
• Must do something to avoid

invalid state (when S = R = 1)

SR Latch Symbol

111

D Latch
Symbol

CLK
D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes
– D (the data input): controls what the output changes to

• Function
– When CLK = 1, (0à1, rising edge)

D passes through to Q (transparent)
– When CLK = 0,

Q holds its previous value (opaque)

• Avoids invalid case when
Q ≠ NOT Q

D Latch

112

S R Q QCLK D
0 X
1 0
1 1

D

D Latch Internal Circuit

113

S

R Q

Q

Q

QD

CLK
D

R

S

CLK
D Q

Q

S

R Q

Q

Q

QD

CLK
D

R

S

CLK
D Q

Q
S R Q
0 0 Qprev
0 1 0
1 0 1

Q

1
0

CLK D
0 X
1 0
1 1

D
X
1
0

Qprev

D Latch Internal Circuit

114

When the clock,
CLK, is asserted
(rising edge, i.e.
0à1), the latch is
open and the Q
output immediately
assumes the value
of the D input.

CLK

Rising edge

Q does not
change even
D is changed
since CLK is
not on the
rising edge
(0à1).

D Flip-Flop
Symbols

D Q
Q

• Inputs: CLK, D
• Function

– Samples D on falling edge of CLK
• When CLK falls from 1 to 0, D

passes through to Q
• Otherwise, Q holds its previous value

– Q changes only on falling edge of CLK

• Called edge-triggered
• Activated on the clock edge

D Flip-Flop

115

• Two back-to-back latches (L1 and L2) controlled by
complementary clocks

• When CLK = 1
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 0
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the falling edge of the clock (when CLK falls from
1 à 0)
– D passes through to Q

116

L1 L2

N1

D Flip-Flop: Falling Edge Triggered

CLK

• Two back-to-back latches (L1 and L2) controlled by complementary clocks
• When CLK = 1

– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 0
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the falling edge of the clock (when CLK falls from 0 à 1)
– D passes through to Q

117

L1 L2

N1

D Flip-Flop: Falling Edge Triggered

Timing

• For a falling-edge triggered D flip-flop
– The input must be stable for a period of time before the clock edge, as

well as after the clock edge, for the latches to sample
• Setup time: the minimum time that the input must be valid before

the clock edge;
• Hold time: the minimum time during which it must be valid after

the clock edge
• Thus the inputs to any flip-flop (or anything built using flip- flops)

must be valid during a window that begins at time tsetupbefore the
clock edge and ends at tholdafter the clock edge,

118
CLK

CLK

• Two back-to-back latches (L1 and L2) controlled by
complementary clocks

• When CLK = 0
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 1
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the rising edge of the clock (when CLK rises from
0 à 1)
– D passes through to Q

119

D Flip-Flop: Rising Edge Triggered

CLK

D Flip-Flop, Rising Edge Triggered

• Verilog description:

• always@(posedge clock): at the positive/rising edge of the clock
• always@(negedge clock): at the negative/falling edge of the clock
• They are used to describe sequential Logic, or Registers.

120

Registers in a Processors

• General purpose registers
– 32 32-/64-bit registers

• Instruction register
– Store the current instruction word
• Program counter (PC)
– Store the address of the current instruction
• Status registers
• Others: page table register, etc.

• A 32- or 64-bit register: a kind of memory
– Created with 32 or 64 D-flip-flops and combinational logics to read and

write
– Can be read from and written to

121

1-Bit and 4-bit Register

• A D Flip-flop is a 1-bit register
– D is write input port
– Q is read output port
– Clk is the input control to write

• A 4-bit register
– Needs 4 D flip-flops

• Same for a 32- or 64-bit register

122

CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

D Flip-Flop
Symbols

D Q
Q

A Register File
• Has multiple registers
– E.g. 32 32-bit registers
– Numbered from 0 to 31
• Needs 5 bit to address each

• Read: (does not change state)
– Input: register number
– Output: data of the register

• We want to read (at least) two registers the same time
– add x7, x6, x5 (two register reads and one register write)
– Two read ports

• Write: (change state)
– 3 Inputs:
• Register number
• Data to be written to the register
• Write signal (1-bit): to tell register that this is a write (clock signal)

– No output
• A D flip-flops:
– Read anytime
– Write on the rising edge of the clock (write signal)

123

D Flip-Flop
Symbols

D Q
Q

Design a Register File with 32 32-bit Registers from
Digital

• Design a single 32-bit register
– A 32 bitwidth D flip-flop
– D is “write data” input
– Q is ”read data” output
– Clk is the “Write” input, or called WE (Write-Enable)

124

D Flip-Flop
Symbols

D Q
Q

Design the Read Port of the Register File

• Stack up 32 32-bit registers and
label them from x0 to x31
– Leave some space between

registers for wires
• Each Read Port:
– Since the output (Q of D flip-flop)

of each register is always available,
to read from one register is just to
select which output to become the
output of the register file.
• Select one from 32: use a Mux
– 5-bit selection (register number)

– Two read ports since for most
instructions, there are two source
operands, e.g.
• add x7, x6, x5
• sd x6, 0(x5)
• beq x1, x2, label

125

Use the 32-1 Mux You Designed Before

• Need two Mux’s, one for reach read port

126

x0
x1

x11

x31

Design the Write Port of the Register File (1/2)

• Three inputs:
– Register number to be written to
– Data to be written to the register: which is D
– Write signal (1-bit): to tell that this is a write: which is clock

• Design:
– Write data sent to all registers (write data wired to D of all).
– Use writer register number to turn on the write signal (1-bit

clock) of the target register
• A decoder to set one of 32 output,
• and then AND with the write signal
• and then send the output of AND to the clock input of each

register

127

D Flip-Flop
Symbols

D Q
Q

Design the Write Port of the Register File (2/2)

• Three inputs:
– Write register number
– Data to be written to the register:

which is D
– write signal (1-bit): to tell that this is

a write: which is clock

• Design:
– Write data sent to all registers (write

data wired to D of all).
– Use writer register number to turn

on the write signal (1-bit clock) of
the target register
• A decoder to set one of 32 output,
• and then AND with the write signal
• and then send the output of AND

to the clock input of each register
128

Use the 32-Output Decoder You Designed Before

• Add AND gate for each register for write

129

Lab 09: Design a Register File with 32 32-bit (16- or
8-bit) Registers (1/2)

130

D Flip-Flop
Symbols

D Q
Q

Lab 09: Design a Register File with 32 32-bit (16- or
8-bit) Registers (2/2)

1. Design 1 32/16/8-bit register
– Use the system provided D flip-flop
– You can design your own D flip-flop and use yours

2. Stack up 32 32/16/8-bit registers
– Leave room between registers for wires

3. Design the two read ports
– Use the Mux you designed before

4. Design the write inputs
– Use the decoder you designed before

5. Label input/output correctly, wire neatly.

131

Rising Edge Triggered Register Can be Written and
Read in the Same Clock Cycle

• D is written to D flip-flop (register) at the rising edge, and
data is available in the same cycle for read

132

Clk

D

Q

Enableff

Read Data (Q)

Write Data (D)

Clk
Enable

One clock period

Appendix A: The Basics of Logic Design

133

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

134

• We learned
– how to design ALU, adder, gate, Mux, Registers, etc
– how to program, both high-level and assembly

• Random Access Memory
– Thinking of extending
a register file to have
larger capacity
• 32 64-bit registers

A Typical Single-Cycle Processor

Memory Arrays

Address

Data

ArrayN

M

• Efficiently store large amounts of data
• 3 common types:

– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)
– Read only memory (ROM)

• M-bit data value read/ written at each unique N-bit address

135

Memory Arrays

Address

Data

ArrayN

M

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells
• Consider it as a bigger register file

• Each bit cell stores one bit
• N address bits and M data bits:

– 2N rows and M columns
– Depth: number of rows (number of words)
– Width: number of columns (size of word)
– Array size: depth × width = 2N × M

136

Memory Array Example

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array
• Number of words: 4
• Word size: 3-bits
• For example, the 3-bit word stored at address 10 is 100

137

Memory Arrays

• 10-bit address: 210 = 1024 word
• Each word is 32-bit
• Total: 1024 * 32 bits = 32K bits = 4K bytes

Address

Data

1024-word x
32-bit
Array

10

32

long int a = A[8]; A[4] = b;

Instructions that access memory:
• Load: e.g. ld x5 64(s0)

• Address: 64+[s0]
• Store: e.g. sd x6, 32(s0)

• Address: 32 + [s0]

138

Types of RAMRandom-Access Memory (RAM)

• Historically called random access memory (RAM) because any data
word accessed as easily as any other (in contrast to sequential
access memories such as a tape recorder)

• Volatile:
– loses its data when power off
– Read and written quickly
– Main memory in your computer is RAM (DRAM)

• Two types:
– DRAM (Dynamic random access memory), main memory of computer
– SRAM (Static random access memory)
• Differ in how they store data:
– DRAM uses a capacitor
– SRAM uses cross-coupled inverters

Address

Data

1024-word x
32-bit
Array

10

32

139

SRAM and DRAM Technology Differences

• Static RAM (SRAM)
– Each cell stores a bit with a six-transistor

circuit, a flip-flop
– Retains value indefinitely, as long as it is

kept powered.
– Relatively insensitive to disturbances such

as electrical noise.
– Faster and more expensive than DRAM.
• Dynamic RAM (DRAM)
– Data stored as a charge in a capacitor
– Single transistor used to access the

charge
– Dynamic: need to be “refreshed”

regularly, every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.

140

141

• Data is stored statically in flip-flop
– As long as it is powered, data (high/low voltage) will be stored.
– RAM (random access): fixed access time to any datum
• Not like spinning disk.

– Same as register
• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220

bits = 4MByte)

SRAM (Static Random Access Memory)
L1 L2

N1

142

• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220 bits =

4MByte)
• Read
– Input:
• Chip select
• Output enable
• Address

– Output:
• Dout

• Read access time (latency): time to initiate read to when data is
available on Dout
– 2-4 ns

Read of SRAM (Static Random Access Memory)

143

• A 2M x 16 SRAM module: 2 M (2*220) 16-bit entries
– Address line has 21 bits à 221, which is 2 * 220 = 2M rows
– Each row has 16 bits, thus total 2M x 16 = 32M bits = 32 * 220

bits = 4MByte)
• Write
– Input:
• Chip select
• Write enable (not clock, but pulse)
• Address
• Din

– Output: (not output)
• Write time: setup time, hold time and pulse width

Write of SRAM (Static Random Access Memory)

Memory Read Implementation

• Recall register read:
– A 32-1 Mux to select one of the

register
• 32 registers

• Not practical for select from one of
the large amount of memory word
using the regular centralized Mux
– 64k x 1 memory array needs a 64k-

1 mux
• Memory use tristate buffer to

create a mux
– “Mux” is distributed to the memory

cell
144

Tristate Buffer

• Tristate buffer, or Three-state buffer
– 1: asserted
– 0: deasserted
– Hi-Z state: to allow other control the output

• “Driver” in Digital

145

4-1 Distributed Mux Using Tristate Buffer

• Select bit is the output of a decoder whose input is the
address

• Select bit to select one of the data from memory to drive the
output line (become the output)
– No need Mux to select
• Create a distributed Mux

146

Another Design for Not Using Centralized Large
Mux

• 4x2

147

Two-level of Decoding

• 4M x 8 SRAM: 4K rows and each has 8 bits
• First decoder: select 8 1024-bit-wide data from 4K
• Second: 8 Muxes, each to select 1 bit from each 1024-bit-

wide data
• Two steps: Increate read latency

148

DRAM (Dynamic Random Access Memory)

• Static RAM (SRAM)
– Each cell stores a bit with a six-

transistor circuit, a flip-flop
– Faster and more expensive than

DRAM.
• Dynamic RAM (DRAM)
– Data stored as a charge in a capacitor
– Single transistor used to access the

charge
– Dynamic: need to be “refreshed”

regularly, every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.

149

To Refresh a DRAM Cell

• Refresh: Read its content and write it back
– Every several milliseconds

• Refreshing conflicts with normal read/write
– Two-level decoding à refresh one row a time
– Refresh consume 1% - 2% of active cycles
– 98% - 99% cycles for normal read and write

150

Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• 4M x 1 DRAM built with a 2048 x 2048 Array
– 22-bit address line
– Address[21-11]: Row address
• Select a row and latch 2048 bits in the column latches

– Address[10-0]: Column address
• Select one bit from the 2048 latches

151

Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• Use the same address wire for row address and column
address
– RAS (Row Access Strobe) and CAS (Column Access Strobe) are

used to signal DRAM either a row or column address is being
supplied

• Refreshing:
– Reading data into column latch and write them back

152

Two-Level Decoder for DRAM

• Row access
– Select one of a number of rows and

activate words of the row
– Store words in the column latches
• Column access
– Select data from column latches

• DRAM Access Time
– Because of two-level decoding and internal circuitry,
– 5-10 times slower than SRAM access time, e.g. 45-65 ns

153

Memory Hierarchy of Computer in Real

154

Static RAM (SRAM)
0.5ns – 2.5ns, $2000 – $5000 per GB
Dynamic RAM (DRAM)
50ns – 70ns, $20 – $75 per GB
Magnetic disk
5ms – 20ms, $0.20 – $2 per GB

Green Boxes: Cache, on-chip, SRAM, fast, small, expensive
Blue Boxes: Main memory, off-chip, DRAM, slower, large not expensive

Control

Datapath

Off-Chip
Memory

Processor
Input

Output

155

CPU is The chip.

156

Lecture Ends Here

Appendix A: The Basics of Logic Design

157

• Lecture 12
– A.1 Introduction
– A.2 Gates, Truth Tables, and

Logic Equation
• Lecture 13
– A.3 Combinational Logic
– A.4 Using a Hardware

Description Language
• Lab 7
• Lecture 14
– A.5 Constructing a Basic

Arithmetic Logic Unit
– A.6 Faster Addition: Carry

Lookahead

☛

• Lecture 15
– A.7 Clocks
– A.8 Memory Elements: Flip-

Flops, Latches, and Registers
• Lab 8
• Lecture 16
– A.9 Memory Elements: SRAMs

and DRAMs
• Lab 9
• Lecture 17
– A.10 Finite-State Machines
– A.11 Timing Methodologies
– A.12. Field Programmable

Devices
– A.13 Concluding Remarks
– A.14 Exercises
• Lab 10

Combinational and Sequential Circuits

• Combinational circuit, such as
mux, decoder, ALU
– Operate on data
– Output is a function of input

• State (sequential) circuit, such as
register or memory
– Store information
– Outputs determined by previous

and current values of inputs

158

§A.10 Finite-State M
achines

Three Steps of Logic Design in Theory,
Mostly for Combinational Circuit, so far

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F = x + y’z

x
y
z

F

Truth
Table

Boolean
Function

Logic
Gate Diagram

159

160

• Input, output and states
• State: Given n bits of storage

(memory)
– 2n state

• Next-state function
– Combinational logic, given

inputs and current states,
determines the next state of
the system

• Output function
– Produce outputs from current

state and inputs

Sequential System is described as a Finite-state
Machine (FSM)

• Two types of finite state machines differ in output logic:
– Moore FSM: outputs depend only on current state
– Mealy FSM: outputs depend on current state and inputs
– These two types are equivalent in capabilities, can convert from

one to the other
– We are only going to deal with the Moore machine.

Finite State Machines (FSMs)

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Intelligent Traffic Controller

• We want to use a finite state machine to control the
traffic lights at an intersection of a north-south route
and an east-west route
– We consider only the green and red lights
– We want the lights to change no faster than 30 seconds in each

direction
• So we use a 0.033 Hz clock

162

Intelligent Traffic Controller

• There are two output signals:
– NSlite: When the signal is asserted, the light on the north-south

route is green; otherwise, it should be red
– EWlite: When the signal is asserted, the light on the east-west

route is green; otherwise, it should be red

163Pictures adapted from: https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino

EWlite

NSlite

Control
1/

1/

https://arduining.com/2015/09/18/traffic-light-states-machine-with-arduino

Intelligent Traffic Controller

• There are two inputs
– NScar: Indicates that there is at least one car that is over the

detectors placed in the roadbed in the north-south road
– EWcar: Indicates that there is at least one car that is over the

detectors placed in the roadbed in the east-west road

164

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

Intelligent Traffic Controller

• Here we need two states
– NSgreen: The traffic light is green in the north-south direction
– EWgreen: The traffic light is green in the east-west direction

165

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

Intelligent Traffic Controller: Traffic Lights
Change only When They Need To

• The traffic lights should only change from one direction to
the other only if there is a car waiting in the other direction
– Otherwise, the light should continue to show green in the same

direction

166

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

Next State Function

167

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

Next State Function: If cars are in both directions,
alternate

168

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

Output Function

169

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

Graphical Representation

170

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

NSgreen

EWgreen

• Node: state
– Inside: a list of output that are

active for the state
• Directed Arch: next-state func
– Labels: input

Implementation: State Assignment

• We need to assign state numbers to the states
– Only two states: assign 0 to NSgreen and 1 to EWgreen
– Therefore we only need 1 bit in the state register
– CurrentState:
• 0: NSGreen
• 1: EWgreen

171

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

CurrentState

Combinational Logic for Next State Function

172

Combinational Logic for Ouptput Function

– CurrentState:
• 0: NSGreen
• 1: EWgreen

173

Implementing Intelligent Traffic Controller

174

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

CurrentState

CurrentState

NextState

Implementing Intelligent Traffic Controller

• The state is updated at the edge of the clock cycle
• The next state is computed once every clock.

175

EWlite

NSlite

Control
1/

1/

NScar1/

EWcar1/

CurrentState

CurrentState

NextState

Implementing the Design using Verilog

176

FSM

• More complicated FSM
– More states à more flip-flops
– More inputs and output
– Inputs/outputs are more than 1 bit
– More complicated state transition

– E.g. extension to support Green/Red/Yellow light in Exercise
A.41

• FSM is used to control processor execution
– Chapter 4 and 5
– Appendix C: Mapping Control to Hardware

177

Five Steps to Build a Finite State Machine

• There are no set procedures and diagrams. Application dependent
• Step 1: Identify inputs, outputs and states
• Step 2: State diagram and state table
– Choose a state to be the starting state when power is turned on the

first time
– Draw a state diagram by a graph with regards to input/outputs and

state transition
– List in the tables for state transition and for output à Boolean

function for each tables à next-state function and output function
• Step 3: State assignment
– Assign a unique binary number to each state
– Rewrite the state table using the assigned number for each state
• Step 4: Combinational logic for next state function and output

function
• Step 5: Logic Implementation

178

CircuitVerse-Related Slides

179

Lab 07

• https://circuitverse.org/

180

https://circuitverse.org/

