
1. (20%) Integer Representations and Memory Address of Array Elements.

1) Write the hexadecimal representation of the word

0101 1001 1101 0111 1110 1111 0011 1001two

0x59D7EF39

2) What is the binary word (32-bit) of the decimal number -9 in two’s
complement?

11111 1111 1111 1111 1111 1111 1111 0111

3) For the half-word
 1111 1111 1111 1010two

in two’s complement. What is the word (32-bit) representation of same number?
what decimal (base 10) number does it represent.

1111 1111 1111 1111 1111 1111 1111 1010

-6

4) For a given two-dimensional array in C as follows
int A[8][16];

If the address of A[1][4] is 0x0FFA0040, what is the memory address of
A[3][6];

The offset from A[1][4] to A[3][6] is (3-1)*16 + (6-4) elements, which is 0x22.

The number of bytes of 0x22 elements is 0x22 * 4 = 0x88

Thus the address of A[3][6] is 0x0FFA0040 + 0x88 = 0x0FFA00C8

Name:___________________________ Student #:_______________________

Page 2 of 5

2. (10%) Compile C to MIPS. Assume that the variables f, g, i, and j are
assigned to registers $s0, $s1, $s2, and $s3 respectively. Assume that the
base address of array A is in register $s4 and each element is a 4-byte word. You
can use temp registers $t0, $t2, $t3, $t4 …

1) What is the corresponding MIPS assembly code for the C statement

f = g + i – j * 8;
 sll $t0, $s3, 3 # $t0 now has j * 8
 add $t1, $s1, $s2 # $t1 now has g + i
 sub $s0, $t1, $t0 # $s0 (f) now has g + i – j * 8

2) What is the corresponding MIPS assembly code for the C statement
A[4] = A[6] + g;

 lw $t0, 24($s4) # A[6] is now in $t0
 add $t1, $t0, $s1 # $t1 now has A[6] + g
 sw $t1, 16($s4) # A[4] now has A[6] + g

If the answer provide calculation of the offset of A[4] and A[6] and the solution is
correct, 5 points bonus should be given

 addi $t0, $zero, 6 # load 6 to $t0
 sll $t0, $t0, 2 # $t0 now has 6*4
 add $t0, $t0, $s4 # $t0 now has the address of A[6]
 lw $t0, 0($t0) # $t0 now has A[6]
 add $t1, $t0, $s1 # $t1 now has A[6] + g

 addi $t0, $zero, 4 # load 6 to $t0
 sll $t0, $t0, 2 # $t0 now has 4*4
 add $t0, $t0, $s4 # $t0 now has the address of A[4]

 sw $t1, 0($t0) # A[4] now has A[6] + g

3. (10%) Logical and Branch Instructions.
1) Suppose the register $t0 contains a (hexadecimal) value 0x0000004A, what

is the (hexadecimal or decimal) value of $t2 after the following instructions:
sll $t0, $t0, 4
addi $t2, $t0, 8

0x0000004A: after sll 4, $t0 has 0x4A0; after addi, $t2 has 0x4A8 or 1192
2) Suppose the register $t0 contains a (hexadecimal) value 0x0000004A, what

is the (hexadecimal or decimal) value of $t2 after the following instructions:
addi $t1, $zero, 64
bne $t0, $t1, Else
andi $t2, $t0, 1
j Done

 Else: ori $t2, $t0, 1
 Done: ……
$t1 has 64, which is 0x40 and it is not equal to $t0 (0x4A), thus Else branch is taken and
ori is executed. The ori instruction perform bitwise or operation of 0x4A and 1. It is 0100
1010 | 1 = 0100 1011 = 0x4B. Thus $t2 contains 0x4B or 75.

Name:___________________________ Student #:_______________________

Page 3 of 5

4. (20%) Compile C to MIPS.

Using the MIPS implementation of clear1 function given in the note as reference
to convert the following C code to MIPS assembly. The variables i and size are
assigned to registers $t0 and $a1 respectively. The base address of array array
is in register $a0 and each element is a 4-byte word. Feel free to use other registers
such as $t1 to $t7 and $s0 to $s7.

int array[], int size;
int i;
for (i=1; i<size-1; i+=1) {
 array[i] = array[i-1] + array[i] + array[i+1];
}

addi $t0, $zero, 1 # i = 1
 addi $a1, $a1, -1 # size = size – 1;
loop1: sll $t1,$t0,2 # $t1 = i * 4

add $t2,$a0,$t1 # $t2 = &array[i]
lw $t7, 0($t2) # $t7 has array[i]
lw $t6, -4($t2) # $t6 has array[i-1]
lw $t5, 4($t2) # $t5 has array[i+1]
add $t6,$t6,$t7 # $t6 has array[i] + array[i-1]
add $t5,$t5,$t6 # $t5 has array[i]+

 # array[i-1]+array[i+1]
 sw $t5, 0($t2) # array[i] now has the result
 addi $t0,$t0,1 # i = i + 1
 slt $t3,$t0,$a1 # $t3 = (i < size - 1)
 bne $t3,$zero,loop1 # if (…) goto loop1

In this answer, we use -4 and +4 as offset for the address of array[i-1] and
array[i+1] elements with regards to the address of array[i]. If in the solution,
the addresses for array[i], array[i-1] and array[i+1] are calculated separately,
they are correct as well.

Name:___________________________ Student #:_______________________

Page 4 of 5

5. (20%) Performance.
Assume processors P1, P2, P3 have same instruction set.

 P1 P2 P3
Clock Rate 4 GHz 5 GHz 2 GHz
CPI 3 2 5

1) Which processor has the best performance?
2) For processor P1, if it can execute a program in 10 seconds, find the number of

instructions and number of cycles for this processor.
3) For processor P2, we are trying to reduce the execution time by 30% but it

leads to an increase of 20% in the CPI. What should be the new clock rate of this
processor?

The solution needs the formula CPUTime = InstructionCount * CPI * CycleTime =
InstructionCount * CPI / ClockRate

For 1), for the same program, instruction count is the same.
Thus CPUTime(P1) = IC * 3/4 = 0.75 * IC
 CPUTime(P2) = IC * 2/5 = 0.4 * IC
 CPUTime(P3) = IC * 5/2 = 2.5 * IC
Thus processor P2 has the best performance.

For 2), Put the given parameters in the CPUTime formula, we have

10 = IC * 3 / 4 * 10-9,
Thus IC = 10 * 109 * 4/3 = 1.33 * 1010 number of instructions.
Number of cycles = IC * CPI = 4 * 1010 cycles

For 3), CPUTime(P2) = 0.4* IC. IC = CPUTime(P2)/0.4

For new P2, we reduce the execution time by 30% (CPUTime(P2) * 0.7) and increase
CPI by 20% (2*1.2), thus we have the following formula:

CPUTime(NewP2) = IC * NewCPI / NewClockRate

NewClockRate(P2) = IC * NewCPI/CPUTime(NewP2)
 = CPUTime(P2)/0.4 * 2*1.2/(CPUTime(P2) * 0.7)
 = 1.2 * 5 / 0.7 = 8.6GHz

Name:___________________________ Student #:_______________________

Page 5 of 5

6. (20%) Performance.
Consider a program with four classes of instructions A, B, C and D. Refer to
following table for the data.

 A B C D
CPI 1 2 5 3
% of instructions 20% 20% 50% 10%

1) Can we achieve a 2x overall speedup by only improving the CPI of instruction

C? If so, please calculate the new CPI of the instruction C. Show all the steps.

CPUTime = IC * CPI * CycleTime, since we only improve CPI, CycleTime does not
change and IC stays the same.

CPUTime = IC * (0.2 * 1 + 0.2 * 2 + 0.5 * 5 + 0.1 * 3) * CycleTime = IC * 3.4 *
CycleTime

To achieve 2x speedup, NewCPUTime should be CPUTime/2, which should be
IC*1.7*CycleTime

NewCPUTime = IC * (0.2*1 + 0.2*2 + 0.5*NewCPI(C) + 0.1*3) * CycleTime = IC * 1.7
* CycleTime.

Thus NewCPI(C) = 1.6, we can achieve 2x speedup by improving CPI for C to 1.6

