
 1

ITSC 3181 Introduction to Computer Architecture, Spring 2023
Homework #3, Due on 03/07
Covered topics: Numbers, CPU performance, C to assembly, and logic design

5% of the grade of this homework will be added to your final grade.
Submission:

1. Only electronic submissions on Canvas are accepted. All your solutions should
be included in a SINGLE PDF file. Include your full name in the PDF file.

2. Number your solutions in the same way and in the same order as the
questions are numbered in this document.

3. You must show the necessary steps when you solve each question. 0 point will
be given to the question if the answer only includes the final answer with no
necessary steps.

4. Scanned copy of handwritten work will be accepted and graded only if it is
written clearly and readable.

1. Convert the following decimal numbers to 6-bit 2’s complement binary numbers and perform

additions. Indicate whether or not the sum overflows a 6-bit result.
a. 16 + 9
b. 27 + 31
c. -4 + 19
d. 3 + -32
e. -16 + -9
f. -27 + -32

2. Using only add, addi, sub, bne, beq (branch if equal) and bgt (branch if greater than) to implement

the R-type instruction for multiplication “mul rd, rs1, rs2” for unsigned integer which could positive or
zero, and assume no overflow. You can use temp register t0, … t6.

3. Suppose you must write a sequence of instructions that scans an array of 3 integers to find its

minimum value (which is stored in register $s2). You are considering the following two
implementations.

Implementation #1 Implementation #2
 li $s0,0
 li $s1,12
 li $s2,1000
loop: beq $s0,$s1,exit
 lw $t0,vals($s0)
 blt $t0,$s2,gotone
 j skip
gotone: or $s2,$0,$t0
skip: addi $s0,$s0,4
 j loop
exit:

 li $s0,0
 li $s1,12
 li $s2,1000
loop: lw $t0,vals($s0)
 bge $t0,$s2,skip
 or $s2,$0,$t0
skip: addi $s0,$s0,4
 blt $s0,$s1,loop

Question 1 2 3 4 5 6 7 Total

Total Points 15 15 15 15 15 15 30 120

Grade

 2

The number of cycles required for each instruction type are shown below:

Instruction type Cycles #instrs of Impl #1 #instrs of Impl #2
R-type and ADDI 2
Branch and Jump 5
Load and Store 9
Load Immediate 1
Total Cycles: X

Assume the values stored in the vals array is [12,10,8]. Determine which implementation is
faster and by how much. In this question, you need to simulate the execution manually and
count how many instructions are executed for each of the instruction type. And then calculate
the total number of cycles used by each implementation and compare which uses less (faster)
and the ratio of cycles.

4. The following C program fill in an array C with the larger elements from another two arrays A and B.

Convert the code to its RISC-V assembly code. For reference to array elements A[i], you can use
A(i) as its base+offset representation in the LW/SW instruction, e.g. to load an integer from A[i], you
can use LW x5, A(i); Use register t0 and t1 for storing i and N respectively.

int i;
for (i=0; i < N; i++) {
 if (A[i] >= B[i])
 C[i] = A[i];

else
 C[i] = B[i];

}

5. We use a processor with CPIs for the following classes of instructions to execute the following C-
code. 1) Count how many instructions are to be executed for each of the class, and 2) calculate the
total number of cycles for each class and overall total cycles for all classes, and 3) calculate the
percentage of total cycles by each class with respect to the overall total cycles. Addition used for
calculating memory effective address for load and store instructions should NOT be considered. But
loop count increment is considered as addition.

Instruction class CPI
add 1
mul 20

load/store 2
branch 2

int N = 1000,000;
int A[N], B[N], i;
for (i=0; i < N; i++) {
 A[i] += 3.14 * B[i]
}

Instruction class CPI # instructions x106 Total Cycles x106 Cycles Percentage
add 1
mul 20

load/store 2
branch 2

 3

Overall Total cycles =

6. For the same processor as problem 4, answer the same questions for the following C code.

int N = 1000;
int A[N][N], B[N]
int i, j;
for (i=0; i < N; i++) {
 int temp = 0;
 for (j=0; j < N; j++) {
 temp += A[i][j] * B[j]
 }
 C[i] = temp;
}

Instruction class CPI # instructions x106 Total Cycles x106 Cycles Percentage

add 1
mul 20

load/store 2
branch 2

Overall Total cycles =

7. 1) Write a Boolean equation in sum-of-products canonical form for each of the following five truth

tables. 2) Then minimize each of the Boolean equation, and 3) sketch a combinational circuit that
implement the minimized Boolean equation using only NOT, AND and OR gates.

 4

The following exercise, together with provided answers is for your study. They are the
similar question to question 7. 1) Write a Boolean equation in sum-of-products canonical form for
each of the following truth tables. 2) Then minimize each of the Boolean equations, and 3) sketch a
combinational circuit that implements each minimized Boolean equations using only NOT, AND and
OR gates.

1) Boolean equation in SoP forms of the above truth tables:

2) Minimized Boolean equation:

3) Circuit implementation using AND, NOT and OR:

 5

