
9/25/2016 CS152,	Fall	2016

CS	152	Computer	Architecture	and	Engineering

Lecture	1	- Introduction	

John	Wawrzynek
Electrical	Engineering	and	Computer	Sciences

University	of	California	at	Berkeley

http://www.eecs.berkeley.edu/~johnw
http://inst.eecs.berkeley.edu/~cs152

9/25/2016 CS152,	Fall	2016

What	is	Computer	Architecture?

2

Application

Physics

Gap	too	large	to	bridge	
in	one	step

In	its	broadest	definition,	computer	architecture	is	the	design	of	
the abstraction	layers that	allow	us	to	implement	information	
processing	applications	efficiently	using	available	manufacturing	
technologies.

(but	there	are	exceptions,	e.g.	
magnetic	compass)

9/25/2016 CS152,	Fall	2016 3

Abstraction	Layers	in	Modern	Systems

Algorithm

Gates/Register-Transfer	Level	(RTL)

Application

Instruction	Set	Architecture	(ISA)

Operating	System/Virtual	Machines

Microarchitecture

Devices

Programming	Language

Circuits

Physics

EECS151

CS162

CS170
CS164

EE143

CS152

UCB	EECS	
Courses

9/25/2016 CS152,	Fall	2016

Cost	of	software	development	
makes	compatibility	a	major	
force	in	market

Architecture	continually	changing

4

Applications

Technology

Applications	
provide	need	
to	improve	
technology,	
provide	
revenue	to	
fund	
development

Improved	
technologies	
make	new	
applications	
possible

9/25/2016 CS152,	Fall	2016 5

Computing	Devices	Then…

EDSAC,	University	of	Cambridge,	UK,	1949

9/25/2016 CS152,	Fall	2016 6

Computing	Devices	Now

Robots

Supercomputers
Automobiles

Laptops

Set-top
boxes

Smart
phones

Servers
Media

Players

Sensor Nets

Routers

Cameras
Games

9/25/2016 CS152,	Fall	2016 7

[from Kurzweil]

Major
Technology
Generations Bipolar

nMOS

CMOS

pMOS

Relays

Vacuum
Tubes

Electromechanical

?

9/25/2016 CS152,	Fall	2016 8

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance

• VAX :	25%/year	1978	to	1986
• RISC	+	x86:	52%/year	1986	to	2002
• RISC	+	x86:	??%/year	2002	to	present

From	Hennessy	 and	Patterson,	Computer	
Architecture:	A	Quantitative	Approach,	4th	
edition,	October,	2006

9/25/2016 CS152,	Fall	2016 9

The	End	of	the	Uniprocessor Era

Single	biggest	change	in	the	history	of	
computing	systems

9/25/2016 CS152,	Fall	2016 10

This	Year’s	CS152
• CS152	focuses	on	interaction	of	software	and	hardware

– more	architecture	and	less	digital	engineering
– more	useful	for	OS	developers,	compiler	writers,	performance	programmers

• Much	of	the	material	you’ll	learn	this	term	was	previously	in	CS252
– Some	of	the	current	CS61C,	I	first	saw	in	CS252 over	20	years	ago!
– Maybe	every	10	years,	shift	CS252->CS152->CS61C?

• Class	contains	labs	based	on	various	different	machine	designs
– Experiment	with	how	architectural	mechanisms	work	in	practice	with	real	software.
– Designs	written	in	Chisel	hardware	description	language
– Get	to	see	(and	modify)	all	the	working	parts	of	a	modern	microprocessor
– Hopefully	FPGA	versions	later	in	course!

9/25/2016 CS152,	Fall	2016 11

Related	Courses

CS61C CS	152

EECS	151

Basic	computer	
organization,	first	look	at	
pipelines	+	caches

Computer	Architecture,	first	
look	at	parallel	architectures

Digital	Logic	Design,	FPGAs,	ASICs

Strong

Prerequisite

CS 250

VLSI Systems Design

CS	252

Graduate	Computer	
Architecture,	Advanced	

Topics

9/25/2016 CS152,	Fall	2016 12

CS152	Executive	Summary

The	processor	you	
built	in CS61C

Plus,	the	technology	
behind	chip-scale	
multiprocessors	 (CMPs)	
and	graphics	processing	
units	(GPUs)

What	you’ll	understand	and	
experiment with	in	CS152

9/25/2016 CS152,	Fall	2016 13

CS152	Administrivia
Instructor:			Prof.	John	Wawrzynek,	johnw@eecs

Office:	631	Soda	Hall
Office	Hours: Tuesday	12:30-1:30PM,	631	Soda

GSI: Martin	Maas,	maas@eecs
Office	Hours:	Friday	1-2PM,	9	Evans	(after	discussion	section)

Lectures: Tu/Th,	11-12:30PM,	306	Soda	(Possible	room	change!)
Section: F	1-2PM,	9	Evans
Text: Computer	Architecture:	A	Quantitative	Approach,

Hennessey	and	Patterson,	5th Edition (2012)
Readings	assigned	from	this	edition,	some	readings	available	in	older	

editions	–see	web	page.
Web	page:	http://inst.eecs.berkeley.edu/~cs152

Lectures	available	online by	noon	before	class
Piazza: http://piazza.com/berkeley/spring2013/cs152

9/25/2016 CS152,	Fall	2016 14

CS152	Structure	and	Syllabus
Five	modules

1. Simple	machine	design	(ISAs,	microprogramming,	
unpipelined machines,	Iron	Law,	simple	pipelines)

2. Memory	hierarchy	(DRAM,	caches,	optimizations)	plus	
virtual	memory	systems,	exceptions,	interrupts

3. Complex	pipelining	(score-boarding,	out-of-order	issue)
4. Explicitly	parallel	processors	(vector	machines,	VLIW	

machines,	multithreaded	machines)
5. Multiprocessor	architectures	(memory	models,	cache	

coherence, synchronization)

9/25/2016 CS152,	Fall	2016 15

CS152	Course	Components

• 15%	Problem	Sets	(one	per	module)
– Intended	to	help	you	learn	the	material.		Feel	free	to	discuss	with	other	
students	and	instructors,	but	must	turn	in	your	own	solutions.	Grading	
based	mostly	on	effort,	but	quizzes	assume	that	you	have	worked	
through	all	problems.		Solutions	released	after	PSs	handed	in.

• 40%	Labs	(one	per	module)
– Labs	use	advanced	full	system	simulators	(Chisel	simulators)
– Directed	plus	open-ended	sections	to	each	lab

• 45%	Quizzes	(one	per	module)
– In-class,	closed-book,	no	calculators,	no	smartphones,	no	laptops,...
– Based	on	lectures,	readings,	problem	sets,	and	labs

9/25/2016 CS152,	Fall	2016 16

CS152	Labs
• Each	lab	has	directed plus	open-ended	assignments
• Directed	portion	(50%)	is	intended	 to	ensure	you	learn	main	concepts	

behind	lab
– Everyone	must	perform	own	lab	and	hand	in	their	own	lab	report
– You	may	discuss	the	exercise	with	others

• Open-ended	 assignment	(50%)	is	to	allow	you	to	show	your	creativity
– Roughly	a	one-day	“mini-project”	(probably	more	if	working	alone)

» E.g.,	try	an	architectural	idea	and	measure	potential,	negative	results	OK	(if	
explainable!)

– You	can	work	individually	or	in	groups	of	two	or	three	(larger	groups	are	expected	to	
do	more	work!)

– Groups	turn	in	a	single	report.
– Need	to	fill	out	2	online	forms

» One	to	“register”	your	group	- (First	one	due	9/1)
» Another	to	provide	feedback	and	credit	each	group	member.	

– Students	encouraged	to	work	in	different	groups	for	different	assignments

• Lab	reports	must	be	readable	English	summaries	– not	dumps	of	log	
files!	In	PDF	format	and	with	posted	page	limit.

9/25/2016 CS152,	Fall	2016

RISC-V	ISA

• RISC-V	is	a	new	simple,	clean,	extensible	ISA	developed	at	
Berkeley	for	education	and	research
– RISC-I/II,	first	Berkeley	RISC	implementations
– Berkeley	research	machines	SOAR/SPUR	considered	RISC-III/IV	

• Both	of	the	dominant	ISAs (x86	and	ARM)	are	too	
complex	to	use	for	teaching

• RISC-V	ISA	manual	available	on	web	page	(riscv.org)
• Full	GCC-based	tool	chain	available

17

9/25/2016 CS152,	Fall	2016

Chisel	simulators

• Chisel	is	a	new	hardware	description	language	we	
developed	at	Berkeley	based	on	Scala
– Constructing	Hardware	in	a	Scala Embedded	Language

• Labs	will	use	RISC-V	processor	simulators	derived	from	
Chisel	processor	designs
– Gives	you	much	more	detailed	information	than	other	simulators
– Can	map	to	FPGA	or	real	chip	layout

• You	need	to	learn some	minimal	Chisel	in	CS152,	but	we’ll	
make	Chisel	RTL	source	available	so	you	can	see	all	the	
details	of	our	processors

• Can	do	lab	projects	based	on	modifying	the	Chisel	RTL	
code	if	desired

18

9/25/2016 CS152,	Fall	2016

Chisel	Design	Flow

19

Chisel	Design	
Description

C++	
code

FPGA	
Verilog

ASIC	
Verilog

C++	
Simulator

C++	Compiler

Chisel	Compiler

FPGA	
Emulation

FPGA	Tools

GDS	Layout

ASIC	Tools

9/25/2016 CS152,	Fall	2016 20

Computer	Architecture:
A	Little	History

Throughout	the	course	we’ll	use	a	historical	narrative	to	
help	understand	why	certain	ideas	arose

Why	worry	about	old	ideas?
• Helps	to	illustrate	the	design	process,	and	explains	why	
certain	decisions	were	taken

• Because	future	technologies	might	be	as	constrained	as	
older	ones

• Those	who	ignore	history	are	doomed	to	repeat	it
– Every	mistake	made	in	mainframe	design	was	also	made	in	
minicomputers,	then	microcomputers,	where	next?

9/25/2016 CS152,	Fall	2016 21

Charles	Babbage	1791-1871
Lucasian Professor	of	Mathematics,	
Cambridge	University,	1827-1839

9/25/2016 CS152,	Fall	2016 22

Charles	Babbage

• Difference	Engine						1823

• Analytic	Engine									1833
– The	forerunner	of	modern	digital	computer!

Application
– Mathematical	Tables	– Astronomy
– Nautical	Tables	– Navy

Background	
– Technique	from	Weierstrass

– Any	continuous	function	can	be	approximated	by	a	polynomial
– Any polynomial can be computed from difference tables

Technology
– mechanical	- gears,	Jacquard’s	loom

9/25/2016 CS152,	Fall	2016 23

Difference	Engine
A	machine	to	compute	mathematical	tables

Weierstrass:
– Any	continuous	function	can	be	approximated	by	a	polynomial
– Any	polynomial	can	be	computed	from	difference tables

An	example
f(n) =	n2	+	n	+	41
d1(n) =	f(n)	- f(n-1)	=	2n
d2(n) =	d1(n)	- d1(n-1)	=	2

f(n) =	f(n-1)	+	d1(n)	=	f(n-1)	+	(d1(n-1)	+	2)

all	you	need	is	an	adder!

n

d2(n)

d1(n)

f(n)

0

41

1

2

2

2

3

2

4

2

4 6 8

43 47 53 61

9/25/2016 CS152,	Fall	2016 24

Difference	Engine
1823

– Babbage’s	paper	is	published

1834
– The	paper	is	read	by	Scheutz &	his	son	in	

Sweden

1842	
– Babbage	gives	up	the	idea	of	building	it;	

he	is	onto	Analytic	Engine!

1855
– Scheutz displays	his	machine	at	the	Paris	

World	Fare
– Can	compute	any	6th	degree	polynomial
– Speed: 33	to	44		32-digit	numbers	per	

minute!

Now the machine is at the Smithsonian

9/25/2016 CS152,	Fall	2016 25

Analytic	Engine

1833:	Babbage’s	paper	was	published
– conceived	during	a	hiatus	in	the	development	of	the	difference	

engine

Inspiration:	Jacquard	Looms
– looms	were	controlled	by	punched	cards

» The	set	of	cards	with	fixed		punched	holes	dictated	the	pattern	
of	weave	⇒ program

» The	same	set	of	cards	could	be	used	with	different	colored	
threads	⇒ numbers

1871:	Babbage	dies
– The	machine	remains	unrealized.

It	is	not	clear	if	the	analytic	engine	could	be	built
using	the	mechanical	technology	of	the	time

9/25/2016 CS152,	Fall	2016 26

Analytic	Engine
The	first	conception	of	a	general-purpose	computer

1. The	store in	which	all	variables	to	be	operated	upon,	as	well	as	all	
those	quantities	which	have	arisen	from	the	results	of	the	
operations	are	placed.

2. The	mill into	which	the	quantities	about	to	be	operated	upon	are	
always	brought.

The	program
Operation variable1 variable2 variable3

An	operation	in	the	mill required	feeding	two	punched	cards	and	
producing	a	new	punched	card	for	the	store.

An	operation	to	alter	the	sequence	was	also	provided!

9/25/2016 CS152,	Fall	2016 27

The	first	programmer	
Ada	Byron	aka “Lady	Lovelace”		1815-52

Ada’s	tutor	was	Babbage	himself!

9/25/2016 CS152,	Fall	2016 28

Babbage’s	Influence

• Babbage’s	ideas	had	great	influence	later	
primarily	because	of
– Luigi	Menabrea,	who	published	notes	of	Babbage’s		lectures	
in	Italy

– Lady	Lovelace,who	translated	Menabrea’s notes	into	English	
and	thoroughly	expanded	 them.
“...	Analytic	Engine	weaves	algebraic	patterns....”	

• In	the	early	twentieth	century	- the	focus	
shifted	to	analog	computers	but
– Harvard	Mark	I	built	in	1944	is	very	close	in	spirit	to	the	
Analytic	Engine.	

9/25/2016 CS152,	Fall	2016 29

Harvard	Mark	I

•Built	in	1944	in	IBM	Endicott	laboratories
– Howard	Aiken	– Professor	of	Physics	at	Harvard
– Essentially	mechanical	but	had	some	electro-magnetically	
controlled	relays	and	gears

–Weighed	5	tons and	had	750,000 components
– A	synchronizing	clock	that	beat	every	0.015 seconds	(66Hz)

Performance:
0.3 seconds for addition
6 seconds for multiplication
1 minute for a sine calculation

Decimal arithmetic
No Conditional Branch!

Broke down once a week!

9/25/2016 CS152,	Fall	2016 30

Linear	Equation	Solver
John	Atanasoff,	Iowa	State	University

1930’s:	
– Atanasoff built	the	Linear	Equation	Solver.	
– It	had	300	tubes!	
– Special-purpose	binary	digital	calculator
– Dynamic	RAM	(stored	values	on	refreshed	

capacitors)

Application:
– Linear	and	Integral	differential	equations

Background:
– Vannevar Bush’s	Differential	Analyzer

--- an	analog	computer

Technology:
– Tubes	and	Electromechanical	 relays

Atanasoff decided	that	the	correct	mode	of	computation	was	
using	electronic	binary	digits.

9/25/2016 CS152,	Fall	2016 31

Electronic	Numerical	Integrator
and	Computer	(ENIAC)
• Inspired	by	Atanasoff and	Berry,	Eckert	and	Mauchly designed	and	

built	ENIAC	(1943-45)	at	the	University	of	Pennsylvania
• The	first,	completely	electronic,	operational,	general-purpose	

analytical	calculator!
– 30	tons,	72	square	meters,	200KW

• Performance
– Read	in	120	cards	per	minute
– Addition	took	200	µs,	Division	6	ms
– 1000	times	faster	than	Mark	I

• Not	very	reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
air density, temperature, weight of shell,
propellant charge, ...)

WWII Effort

9/25/2016 CS152,	Fall	2016 32

Electronic	Discrete	Variable	Automatic	
Computer	(EDVAC)

• ENIAC’s	programming	system	was	external
– Sequences	 of	instructions	were	executed	 independently	 of	the	results	
of	the	calculation

– Human	intervention	required	to	take	instructions	“out	of	order”

• Eckert,	Mauchly,	John	von	Neumann	and	others	designed	
EDVAC	(1944)	to	solve	this	problem
– Solution	was	the	stored	program	computer

⇒ “program	can	be	manipulated	as	data”
• First	Draft	of	a	report	on	EDVAC	was	published	in	1945,	but	
just	had	von	Neumann’s	signature!
– In	1973	the	court	of	Minneapolis	attributed	the	honor	of	inventing	the	
computer to	John	Atanasoff

9/25/2016 CS152,	Fall	2016 33

Stored	Program	Computer

manual	control calculators

automatic	control
external	(paper	tape) Harvard	Mark	I	,	1944

Zuse’s Z1,	WW2
internal	

plug		board ENIAC					1946
read-only	memory ENIAC					1948
read-write	memory EDVAC				1947

• The	same	storage	can	be	used	to	store	program	and	data

Program = A sequence of instructions

How to control instruction sequencing?

EDSAC 1950 Maurice Wilkes

9/25/2016 CS152,	Fall	2016 34

Technology	Issues

ENIAC EDVAC
18,000		tubes 4,000	tubes
20		10-digit	numbers 2000	word	storage

mercury	delay	lines

ENIAC	had	many	asynchronous	parallel	units
but	only	one	was	active	at	a	time

BINAC	:	Two	processors	that	checked	each	other
for	reliability.	

Didn’t	work	well	because	processors	never	
agreed

9/25/2016 CS152,	Fall	2016 35

Dominant	Problem:	Reliability

Mean	time	between	failures		(MTBF)	
MIT’s	Whirlwind	with	an	MTBF	of	20	min.	was	perhaps	the	
most	reliable	machine	!

Reasons	for	unreliability:

1.	Vacuum	Tubes
2.	Storage	medium

acoustic	delay	lines
mercury	delay	lines
Williams	tubes
Selections

Reliability	solved	by	invention	of	Core	memory	by										
J.	Forrester	1954	at	MIT	for	Whirlwind	project

9/25/2016 CS152,	Fall	2016 36

Commercial	Activity:	1948-52

IBM’s	SSEC	(follow	on	from	Harvard	Mark	I)

Selective	Sequence	Electronic	Calculator

– 150	word	store.
– Instructions,	constraints,	and	tables	of	data	were	read	from	paper	tapes.
– 66	Tape	reading	stations!
– Tapes	could	be	glued	together	to	form	a	loop!
– Data	could	be	output	in	one	phase	of	computation	and	read	in	the	next	
phase	of	computation.

9/25/2016 CS152,	Fall	2016 37

And	then	there	was	IBM	701

IBM	701	-- 30	machines	were	sold	in	1953-54
used	CRTs	as	main	memory,	72	tubes	of	32x32b	each

IBM	650		-- a	cheaper,	drum	based	machine,
more	than	120	were	sold	in	1954
and	there	were	orders	for	750	more!

Users	stopped	building	their	own	machines.
Why	was	IBM	late	getting	into	computer	
technology?

IBM	was	making	too	much	money!
Even	without	computers,	IBM	revenues	were	
doubling	every	4	to	5	years	in	40’s	and	50’s.

9/25/2016 CS152,	Fall	2016 38

Computers	in	mid	50’s

• Hardware	was	expensive
• Stores	were	small	(1000	words)

⇒ No	resident	system	software!		

• Memory	access	time	was	10	to	50	times	slower	than	the	
processor	cycle
⇒ Instruction	execution	 time	was	totally	dominated	by	the	memory	

reference	time.

• The	ability	to	design	complex	control	circuits	to	execute	an	
instruction	was	the	central	design	concern	as	opposed	to	the	
speed of	decoding	or	an	ALU	operation	

• Programmer’s	view	of	the	machine	was	inseparable	from	the	
actual	hardware	implementation	

9/25/2016 CS152,	Fall	2016 39

The	IBM	650	(1953-4)

[From	650	Manual,	©	IBM]

Magnetic	Drum	(1,000	
or	2,000

10-digit	decimal	
words)

20-digit	
accumulator

Active	instruction	
(including	next	

program	counter)

Digit-serial	
ALU

9/25/2016 CS152,	Fall	2016 40

Programmer’s	view	of	the	IBM	650
A	drum	machine	with	44	instructions

Instruction:						60	1234	1009
• “Load	the	contents	of	location	1234	into	the	distribution;	put	it	

also	into	the	upper	accumulator;	set	lower	accumulator to	zero;	
and	then	go	to	location	1009	for	the	next	instruction.”

Good programmers
optimized the
placement of
instructions on the
drum to reduce latency!

9/25/2016 CS152,	Fall	2016 41

The	Earliest	Instruction	Sets
Single	Accumulator - A	carry-over	from	the	calculators.

LOAD x AC	←M[x]
STORE x M[x]	←	(AC)

ADD x AC	←	(AC)	+	M[x]
SUB x

MUL x Involved	a	quotient	register
DIV x

SHIFT	LEFT AC	←	2	× (AC)
SHIFT	RIGHT

JUMP x PC	←	x
JGE x if	(AC)	>=	0	then	PC	←	x

LOAD	ADR	 x AC	←	Extract	address	field(M[x])
STORE	ADR x

Typically	less	than	2	dozen	instructions!

9/25/2016 CS152,	Fall	2016 42

Programming:	
Single	Accumulator	Machine

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci ← Ai + Bi, 1 ≤ i ≤ n

How to modify the addresses A, B and C ?

A

B

C

N
ONE

code

-n
1

9/25/2016 CS152,	Fall	2016 43

Self-Modifying	Code

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci ← Ai + Bi, 1 ≤ i ≤ n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

9/25/2016 CS152,	Fall	2016 44

Modify existing instructions
LOAD x, IX AC ← M[x + (IX)]
ADD x, IX AC ← (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC ← x

else IX ← (IX) + 1
LOADi x, IX IX ← M[x] (truncated to fit IX)
...

Index	Registers
Tom	Kilburn,	Manchester	University,	mid	50’s

One or more specialized registers to simplify
address calculation

Index registers have accumulator-like
characteristics

9/25/2016 CS152,	Fall	2016 45

Using	Index	Registers

LOADi -n, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT
• Program does not modify itself
• Efficiency has improved dramatically (ops / iter)

with index regs without index regs
instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs: Instructions are 1 to 2 bits longer
Index registers with ALU-like circuitry
Complex control

A

LASTA

Ci ← Ai + Bi, 1 ≤ i ≤ n

5(2)
2
1

9/25/2016 CS152,	Fall	2016 46

Operations	on	Index	Registers

To increment index register by k
AC ← (IX) new instruction
AC ← (AC) + k
IX ← (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi k, IX IX ← (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x] ← (IX) (extended to fit a word)
...

IX begins to look like an accumulator
⇒ several index registers

several accumulators
⇒ General Purpose Registers

9/25/2016 CS152,	Fall	2016 47

Evolution	of	Addressing	Modes
1. Single accumulator, absolute address

LOAD x
2. Single accumulator, index registers

LOAD x, IX
3. Indirection

LOAD (x) memory address x hold address
4. Multiple accumulators, index registers, indirection

LOAD R, IX, x
or LOAD R, IX, (x) the meaning?

R ← M[M[x] + IX]
or R ← M[M[x + IX]]

5. Indirect through registers
LOAD RI, (RJ) Reg RJ holds address

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base addr

9/25/2016 CS152,	Fall	2016 48

Variety	of	Instruction	Formats
• One	address	formats:	Accumulator	machines

– Accumulator	is	always	other	source	and	destination	operand

• Two	address	formats:	the	destination	is	same	as	one	of	
the	operand	sources

(Reg × Reg)		to	Reg RI	 ← (RI)		+	(RJ)
(Reg ×Mem)	to	Reg RI			← (RI)		+	M[x]

– x can	be	specified	directly	or	via	a	register
– effective	address	calculation	for x could	include	indexing,	indirection,	...

• Three	address	formats:	One	destination	and	up	to	two	
operand	sources	per	instruction

(Reg x Reg)		to	Reg RI		← (RJ)		+	(RK)
(Reg x Mem)	to	Reg RI		← (RJ)		+	M[x]

9/25/2016 CS152,	Fall	2016 49

Zero	Address	Formats

• Operands	on	a	stack

add	 M[sp-1]	← M[sp]	+	M[sp-1]	
load M[sp]	← M[M[sp]]

– Stack	can	be	in	registers	or	in	memory	(usually	top	of	stack	cached	
in	registers)

C

B

A
SP

Register

9/25/2016 CS152,	Fall	2016 50

Burrough’s	B5000	Stack	Architecture:	
An	ALGOL	Machine,	Robert	Barton,	1960

• Machine	implementation	can	be	completely	hidden	if	the	
programmer	is	provided	only	a	high-level	language	interface.

• Stack	machine organization	because	stacks	are	convenient	 for:
1. expression	evaluation;
2. subroutine	calls,	recursion,	nested	interrupts;
3. accessing	variables	in	block-structured	languages.

• B6700,	a	later	model,	had	many	more	innovative	features
– tagged	data
– virtual	memory
– multiple	processors	and	memories

9/25/2016 CS152,	Fall	2016 51

a
b
c

Evaluation	of	Expressions

(a + b * c) / (a + d * c - e)
/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c * + a d c * + e - /

push apush bpush cmultiply

*

Evaluation Stack

b * c

9/25/2016 CS152,	Fall	2016 52

a

Evaluation	of	Expressions

(a + b * c) / (a + d * c - e)
/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c * + a d c * + e - /

add

+

Evaluation Stack

b * c
a + b * c

9/25/2016 CS152,	Fall	2016 53

Hardware	organization	of	the	stack

• Stack	is	part	of	the	processor	state
 ⇒ stackmust	be	bounded	and	small
≈ number of	Registers,
not the	size	of	main	memory

• Conceptually	stack	is	unbounded
⇒ a part	of	the	stack	is	included	in	the	

processor	state;	the	rest	is	kept	in	the
main	memory

9/25/2016 CS152,	Fall	2016 54

Stack	Operations	and
Implicit	Memory	References

• Suppose	the	top	2	elements	of	the	stack	are	kept	in	
registers	and	the	rest	is	kept	in	the	memory.

Each	push operation⇒ 1	memory	reference
pop operation ⇒ 1	memory	reference

No	Good!

• Better	performance	by	keeping	the	top	N	elements in	
registers,	and	memory	references	are	made	only	when	
register	stack	overflows	or	underflows.

Issue	- when	to	Load/Unload	registers	?

9/25/2016 CS152,	Fall	2016 55

Stack	Size	and	Memory	References

program stack (size = 2) memory refs
push a R0 a
push b R0 R1 b
push c R0 R1 R2 c, ss(a)
* R0 R1 sf(a)
+ R0
push a R0 R1 a
push d R0 R1 R2 d, ss(a+b*c)
push c R0 R1 R2 R3 c, ss(a)
* R0 R1 R2 sf(a)
+ R0 R1 sf(a+b*c)
push e R0 R1 R2 e,ss(a+b*c)
- R0 R1 sf(a+b*c)
/ R0

a b c * + a d c * + e - /

4 stores (implicit), 4 fetches

9/25/2016 CS152,	Fall	2016 56

Stack	Size	and	Expression	Evaluation

program stack (size = 4)
push a R0
push b R0 R1
push c R0 R1 R2
* R0 R1
+ R0
push a R0 R1
push d R0 R1 R2
push c R0 R1 R2 R3
* R0 R1 R2
+ R0 R1
push e R0 R1 R2
- R0 R1
/ R0

a b c * + a d c * + e - /

a and c are
“loaded” twice
 ⇒
not the best
use of registers!

9/25/2016 CS152,	Fall	2016 57

Register	Usage	in	a	GPR	Machine

More control over register usage
since registers can be named
explicitly

Load Ri m
Load Ri (Rj)
Load Ri (Rj) (Rk)

⇒
- eliminates unnecessary

Loads and Stores
- fewer Registers

but instructions may be longer!

Load R0 a
Load R1 c
Load R2 b
Mul R2 R1

(a + b * c) / (a + d * c - e)

Reuse
R2

Add R2 R0
Load R3 d
Mul R3 R1
Add R3 R0

Reuse
R3

Load R0 e
Sub R3 R0
Div R2 R3

Reuse
R0

9/25/2016 CS152,	Fall	2016 58

Stack	Machines:	Essential	features

• In	addition	to	push,	pop,	+	
etc.,	the	instruction	set	
must	provide	the	capability	
to
– refer	to	any	element	in	the	
data	area

– jump	to	any	instruction	in	the	
code	area

– move	any	element	in	the	stack	
frame	to	the	top

machinery to
carry out
+, -, etc.

stack
SP

DP

PC

data

.

..

a
b
c

⇔

push a
push b
push c
*
+
push e
/

code

9/25/2016 CS152,	Fall	2016 59

Stack	versus	GPR	Organization
Amdahl,	Blaauw	and	Brooks,	1964

1.	The	performance	advantage	of	push	down	stack	organization	is	
derived	from	the	presence	of	fast	registers	and	not	the	way	they	are	
used.

2.“Surfacing”	of	data	in	stack	which	are	“profitable”	is	approximately	
50%	because	of	constants	and	common	subexpressions.

3.	Advantage	of	instruction	density	because	of	implicit	addresses	is	
equaled	if	short	addresses	to	specify	registers	are	allowed.

4.	Management	of	finite	depth	stack	causes	complexity.
5.	Recursive	subroutine	advantage	can	be	realized	only	with	the	help	of	
an	independent	 stack	for	addressing.

6.	Fitting	variable-length	fields	into	fixed-width	word	is	awkward.

9/25/2016 CS152,	Fall	2016 60

1.	Stack	programs	are	not	smaller	if	short	(Register)	addresses	
are	permitted.

2.	Modern	compilers	can	manage	fast	register	space	better	than	
the	stack	discipline.

Stack	Machines	(Mostly) Died	by	1980

GPR’s and caches are better than stack

Early language-directed architectures often did not
take into account the role of compilers!

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

Some would claim that an echo of this mistake is
visible in the SPARC architecture register windows -
more later…

9/25/2016 CS152,	Fall	2016 61

Stacks	post-1980
• Inmos	Transputers	(1985-2000)

– Designed	to	support	many	parallel	processes	in	Occam	language
– Fixed-height	 stack	design	simplified	implementation
– Stack	trashed	on	context	 swap	(fast	context	switches)
– Inmos	T800	was	world’s	fastest	microprocessor	in	late	80’s

• Forth	machines
– Direct	support	for	Forth	execution	in	small	embedded	 real-time	
environments

– Several	manufacturers	(Rockwell,	Patriot	Scientific)
• Java	Virtual	Machine

– Designed	for	software	emulation,	not	direct	hardware	execution
– Sun	PicoJava	implementation	 +	others

• Intel	x87	floating-point	unit
– Severely	broken	stack	model	for	FP	arithmetic
– Deprecated	 in	Pentium-4,	replaced	with	SSE2	FP	registers

9/25/2016 CS152,	Fall	2016 62

Software	Developments

up to 1955 Libraries of numerical routines
- Floating point operations
- Transcendental functions
- Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956
Operating Systems -

- Assemblers, Loaders, Linkers, Compilers
- Accounting programs to keep track of

usage and charges

Machines required experienced operators
⇒ Most users could not be expected to understand

these programs, much less write them

⇒ Machines had to be sold with a lot of resident
software

9/25/2016 CS152,	Fall	2016 63

Compatibility	Problem	at	IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

701 → 7094
650 → 7074
702 → 7080
1401 → 7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:

magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche

business, scientific, real time, ...

⇒ IBM 360

9/25/2016 CS152,	Fall	2016 64

IBM	360	:	Design	Premises	
Amdahl,	Blaauw	and	Brooks,	1964

• The	design	must	lend	itself	to	growth	and	successor	machines
• General	method	for	connecting	I/O	devices
• Total	performance	- answers	per	month	rather	than	bits	per	
microsecond	⇒ programming	aids

• Machine	must	be	capable	of	supervising	itself	without	manual	
intervention

• Built-in hardware	fault	checking	and	locating	aids	to	reduce	down	
time

• Simple	to	assemble	systems	with	redundant	I/O	devices,	memories	
etc.	for	fault	tolerance

• Some	problems	required	floating-point	larger	than	36	bits

9/25/2016 CS152,	Fall	2016 65

IBM	360:	A	General-Purpose	Register	
(GPR)	Machine
• Processor	State

– 16	General-Purpose	32-bit	Registers
»may	be	used	as	index	and	base	register

» Register	0	has	some	special	properties

– 4	Floating	Point	64-bit	Registers
– A	Program	Status	Word	(PSW)	

»PC,	Condition	codes, Control	flags

• A	32-bit	machine	with	24-bit	addresses
– But	no	instruction	contains	a	24-bit	address!

• Data	Formats
– 8-bit	bytes,	16-bit	half-words,	32-bit	words,	64-bit	double-words

The IBM 360 is why bytes are 8-bits long today!

9/25/2016 CS152,	Fall	2016 66

IBM	360:	Initial	Implementations
Model	30 .	.	.		 Model	70

Storage 8K	- 64	KB	 256K	- 512	KB
Datapath 8-bit 64-bit
Circuit	Delay 30	nsec/level 5	nsec/level
Local	Store Main	Store Transistor	Registers

IBM	360	instruction	set	architecture	(ISA)	completely	hid	the	
underlying	technological	differences	between	various	models.
Milestone:	The	first	true	ISA	designed	as	portable	hardware-
software	interface!

With	minor	modifications	it	still	survives	today!

9/25/2016 CS152,	Fall	2016 67

IBM	360:	47	years	later…
The	zSeries z11	Microprocessor

• 5.2	GHz	in	IBM 45nm	PD-SOI	CMOS	technology
• 1.4	billion	transistors	in 512	mm2

• 64-bit	virtual	addressing
– original	S/360	was	24-bit,	and	S/370	was	31-bit	extension

• Quad-core	design
• Three-issue out-of-order	superscalar pipeline
• Out-of-order	memory	accesses
• Redundant	datapaths

– every	instruction	performed	in	two	parallel	datapaths and	results	
compared

• 64KB	L1	I-cache,	128KB	L1	D-cache	on-chip
• 1.5MB	private	L2	unified	cache	per	core,	on-chip
• On-Chip	24MB	eDRAM L3	cache
• Scales	to	96-core	multiprocessor	with	768MB	of	
shared	L4	eDRAM[IBM, HotChips, 2010]

9/25/2016 CS152,	Fall	2016 68

And	in	conclusion	…

• Computer	Architecture	>>	ISAs and	RTL
• CS152	is	about	interaction	of	hardware	and	software,	and	
design	of	appropriate	abstraction	layers

• Computer	architecture	is	shaped	by	technology	and	
applications
– History	provides	lessons	for	the	future

• Computer	Science	at	the	crossroads	from	sequential	to	
parallel	computing
– Salvation	requires	innovation	in	many	fields,	including	computer	
architecture

• Read	Chapter	1	&	Appendix	A	for	next	time!

9/25/2016 CS152,	Fall	2016 69

Acknowledgements

• These	slides	contain	material	developed	and	copyright	by:
– Arvind	(MIT)
– Krste	Asanovic	(MIT/UCB)
– Joel	Emer	(Intel/MIT)
– James	Hoe	(CMU)
– John	Kubiatowicz	(UCB)
– David	Patterson	(UCB)

• MIT	material	derived	from	course	6.823
• UCB	material	derived	from	course	CS252

