
Introduction to Microcoded Implementation of a CPU Architecture

N.S. Matloff, revised by D. Franklin

January 30, 1999, revised March 2004

1 Microcoding

Throughout the years, Microcoding has changed dramatically. The debate over simple computers
vs complex computers once raged within the architecture community. In the end, the most popular
microcoded computers survived for three reasons - marketshare, technological improvements, and
the embracing of the principles used in simple computers. So the two eventually merged into one.
To truly understand microcoding, one must understand why they were built, what they are, why
they survived, and, finally, what they look like today.

1.1 Motivation

Strictly speaking, the term architecture for a CPU refers only to “what the assembly language
programmer” sees—the instruction set, addressing modes, and register set. For a given target

architecture, i.e. the architecture we wish to build, various implementations are possible. We could
have many different internal designs of the CPU chip, all of which produced the same effect, namely
the same instruction set, addressing modes, etc. The different internal designs could then all be
produced for the different models of that CPU, as in the familiar Intel case. The different models
would have different speed capabilities, and probably different prices to the consumer. But the
same machine languge program, say a .EXE file in the Intel/DOS case, would run on any CPU in
the family.

When desigining an instruction set architecture, there is a tradeoff between software and hardware.
If you provide very few instructions, it takes more instructions to perform the same task, but the
hardware can be very simple. If you provide a rich set of instructions, it takes fewer instructions
to execute the same task, but a purely hardware implementation can get prohibitively complex.

Why are fewer instructions, or a smaller overall program, desirable? Instructions are stored in
memory, and memory can be incredibly slow, as you will learn when we reach the caches section
of the class. At one time, all memory operations took several cycles, so the more work a single
instruction could perform, the better.

On the other hand, simple hardware is desired. Simple hardware has two large advantages. First,
they are easy to design and verify, which means quicker time-to-market and lower design costs. In
addition, the chips will be smaller, making them cheaper to manufacture.

The ideal would be a complex instruction set (requiring fewer instructions to run the same program)
with simple harware. The two do not match, so a compromise was struck. Create a program that

1



1 MICROCODING 1.2 Hardwired Versus Microcoded Implementation

runs strictly on the hardware, stored in the hardware, that takes complex instructions and breaks
them down into simple instructions for the simple hardware. This is an attempt to get the best of
both worlds - complex instruction set with simple hardware.

1.2 Hardwired Versus Microcoded Implementation

There are two major approaches to developing these internal designs, one being hardwired and the
other the microcoded approach. The former is the more “straightforward” one, in the sense that
it is a straight digital design (and layout) problem. It is feasible for simple CPUs, as is the case
for today’s RISC (Reduced Instruction Set Computer) processors. However, for CISC (Complex
Instruction Set Computer, such as the Intel family) processors, hardwired design takes so long that
a “shortcut” is often used, in the form of microcoded design.

In the latter, we first build a very simple CPU, called the microengine (itself implemented via the
hardwired approach), and then write a program to run on it. The function of that program, called
the microcode, is to implement the target architecture. In essence, the microcode is a simulator for
the target architecture. (Or one can view the microcode as similar to the interpreter code for an
interpreted language such as BASIC or Java.)

Different designs within the same CPU family would have different microengines. The microengines
could differ in many respects, such as in the number of internal buses (the more the better, since
more buses means that more transfers among registers can be done in parallel). Of course, having
different microengines means having different microcode even though the target architecture is the
same.

Another consideration is the size of the microcode. The microcode is stored in a section of the
CPU called the control store (since it is controlling the operation of the target architecture). The
faster models in the family may need larger control stores, which requires more chip space. Larger
chips are more expensive, but the larger control store will net better performance.

The execution of an instruction in the target architecture occurs via the execution of several instruc-
tions (microinstructions in the microengine. For example, suppose again that our target family is
Intel. Suppose the user is currently running a game program. What actually occurs inside?

The game program is composed of Intel machine language (produced either by the compiler or
assembler from the game programmer’s source code). This program is stored in the RAM of the
computer, having been loaded there by the operating system when the user gave a command to play
the game. One of the game program’s instructions might be, say, MOV AX,3, which copies the value
3 to the AX register. The microcode inside the CPU would make the CPU fetch this instruction
from RAM and then execute it; altogether there might be seven or eight microinstructions executed
in order to fetch and execute MOV AX,3. Note that the microengine fetches the microinstructions
from the control store, and causes their execution.

As mentioned earlier, the microcode “shortcut” shortens the development time for a CPU, which
may be an important consideration, e.g. when market share is at stake. However, a microcoded
CPU is typically slower-running than a hardwired one. The control store is usually implemented
as a ROM (Read Only Memory), and fetching from it slows down the show. Plus, decoding the
instruction takes several cycles, whereas hard-coded decoding takes only one cycle.

Some of the VAX-family machines implemented the control store in RAM, loaded at boot time, so as

Microcode: 2



2 EXAMPLE: MIC-1 AND MAC-1

to enable the user to add instructions to the VAX instruction set by adding to the microcode. If, for
example, a user anticipated doing a lot of sorting in his/her software, the user could add a QSORT
instruction to the VAX instruction set, performing Quicksort. The basic Quicksort algorithm would
still be used, but by implementing it in microcode instead of in VAX machine code, performance
should be faster. There would be many fewer instruction fetches from the system (i.e. external
to the CPU) RAM, and in addition microcode allows multiple simultaneous register transfers,
something which of course could not be done at the machine language level. The problem with
users adding machine-level instructions is that assemblers would not recognize the new instruction,
nor would compilers generate it. Instead, one could make a separate subroutine out of it and put
calls to the routine in one’s assembly or high-level language source code. But users found that it was
not worth the trouble. This library approach is often used in the DSP (Digital Signal Processing)
market because manufacturers have added special instructions for specific algorithms (like FFT),
and the compiler is not intelligent enough to figure out when to use them.

By the way, the microcode has an interesting “Is it fish or fowl?” status. On the one hand, because
it is a program, it might be considered software. Yet on the other hand, because it is used to
implement a CPU (the target CPU) and is typically stored in a ROM, it might be considered
hardware. This duality has created much confusion in court cases involving work-alike chips.

2 Example: MIC-1 and MAC-1

The machines in the example here come from the text Structured Computer Organization, by
Andrew Tanenbaum (Prentice-Hall, 1990). This has been one of the most popular undergraduate
computer architecture texts in the nation, so much so that MIC-1 and MAC-1 became important
teaching tools in their own right, independent of the textbook. A number of simulators have been
written for these machines.

MAC-1 is the target architecture, and MIC-1 is the microengine.

2.1 MIC-1

2.1.1 Hardware

MIC-1 is Tanenbaum’s example microengine. It is loosely modeled after the AMD 2900 bitslice
microprocessor series.1

The MIC-1 operates on 16-bit words, has 16 registers and 32-bit instructions. A block diagram
appears at the end of this document. In the diagram, thin lines are control lines, and thick lines
are data lines (both result computation and NextPC).

The entire diagram would be on a single chip (assuming a single-chip CPU, as is almost always
the case these days). The contents of the control store determine what architecture this chip
implements. If the control store contains the microcode for MAC-1, then this chip will be a MAC-1
chip.

1Not to be confused with the later AMD 29000, a RISC machine which is quite different from the 2900.

Microcode: 3



2 EXAMPLE: MIC-1 AND MAC-1 2.1 MIC-1

2.1.2 Micro-code control

In keeping with its eventual “CPU within a CPU” status, MIC-1 is a CPU microcosm. Just like
other CPUs, it has a program counter, labeled “mpc” for “microprogram counter.” The program
which runs on it, the microprogram, is of course stored in memory. That memory is typically
called the control store, since it controls the operation of the outer (i.e. target) CPU. Just as the
program counter in other machines serves as a pointer to the current instruction in memory, the
microprogram counter here points to the current microinstruction in the control store. Just as
other machines have instruction registers (IR) in which to hold the currently-executing instruction,
here we have a microinstruction register (mir) to do this for the current microinstruction. By the
way, the mir here has been drawn to display the various bit fields (amux, cond, etc.) within the
MIC-1 instruction format.

The incrementer, also seen in the diagram, adds 1 to the mpc to go sequentially through the mi-
croinstructions in the control store, just as program counters in other CPU’s are incremented after
each instruction. And, also as in other machines, we occasionally encounter a branch. At the micro-
engine level, branches are typically “folded” in with other microinstructions; each microinstruction
may include a branch, and a condition field indicating whether or not the branch will actually be
taken. In MIC-1, the corresponding fields are cond (when to branch) and addr (where to branch).
The digital logic (consisting of a multiplexor and miscellaneous logic) in mmux chooses between
the incremented mpc value or the branch address in addr.

Again, our eventual goal is to use MIC-1 to build our target machine, which will be named MAC-
1. It is important to note that these two machines will share some components in common. For
example, the register file we see in MIC-1 (which consists of 16 16-bit registers) will serve as the
registers not only for MIC-1, but also for MAC-1 as well.

2.1.3 ALU operations

The ALU can perform four operations: a+b, a & b, a, and a. It may seem odd to include the
operation ’a’, which merely passes the first value through. Sometimes you want to inspect a value
without changing it (using the n and z bits, described below). This is also necessary when writing
to the mbr in a store memory operation.

The n and z bits are produced as a byproduct of every ALU operation. The n bit will be 1 if the
ALU operation produces a negative number (even if the bit string is not intended as a number, say
in the case of a fetched MAC-1 instruction), and will be 0 otherwise. Similarly, the z bit will be 1
if and only if the ALU produces the bit string which is all 0s. We will assume here that n and z
are recorded in flip-flops.

Note that the shifter is after the ALU. You may shift the result of an ALU operation one bit to the
left or right. This occurs after the ALU operation, so it is not considered when determining the n
and z bits.

2.1.4 Memory operations

Note that in the diagram, mar (Memory Address Register) and mbr (Memory Buffer Register, i.e.
sometimes called Memory Data Register) will be connected to the address and data pins of the

Microcode: 4



2 EXAMPLE: MIC-1 AND MAC-1 2.1 MIC-1

chip, respectively.

Say the CPU wishes to read from memory location 200. It places the 200 in the mar, and asserts a
Read line in the control section of the system bus (activated by rd in MIC-1, as we will see later).
Since the mar is connected to the address portion of the system bus, 200 will go out onto those bus
lines and will be seen by memory. Some time later (whatever the gate delay is for the memory, 2
cycles in the case of of MIC-1) the memory will place the contents of 200, say 12, onto the data
portion of the bus. Since the mbr is connected to that portion of the bus, the mbr will now contain
12 and will be available for internal use by the CPU.

Say the CPU wishes to write something to location 200, say 5. Then the CPU will place 200 in the
mar and 5 in the mbr, from which the 5 will flow out onto the data lines of the bus, and so on.

Here are a few things to remember when using memory in MIC-1:

• To read from memory, write the address to mar (mar := a) and assert the read line for two

instructions (rd). The data must be read from mbr in the third cycle (b := mbr); See lines
12-14 of the given microcode implementation for MAC-1 for an example.

• To write to memory, write the address to mar (mar := a) and the data to mbr (mbr := b) in
the same instruction, and assert the write line for two instructions (wr). See lines 9-10 of the
given microcode implementation for MAC-1 for an example.

• The physical address space in MIC-1 is only 12 bits wide, whereas the data path is 16 bits
wide. This means that when you write into mar, only the lower 12 bits of the value are used.
The upper bits do not matter at all.

• There is no physical connection from the output of the alu to mar, so you can not place the
result of an alu operation into mar.

2.1.5 Register file

MIC-1 features 16 registers (marked “register file” in our diagram). Unfortunately, instead of
naming them, say, r0, r1, ..., r15, Tanenbaum gave the registers names chosen according to their
anticipated usage in MAC-1. For example, register 0 is used as the program counter in MAC-1, so
Tanenbaum named it “pc.” This is misleading, because we ought to be able to use MIC-1 to build
other target architectures besides MAC-1, and some of them may have different register names and
functions than MAC-1’s. We are stuck with Tanenbaum’s names, but keep in mind that we can
use those registers for other things, in spite of their names.

Similarly, since MAC-1 has 12-bit addresses, Tanenbaum set MIC-1’s pc, sp and mar registers to
be 12 bits wide. All of the other registers are 16 bits wide. You must be careful with pc, ac, and
sp. At the end of each macrocode instruction, they must be the correct value. If ac is not specified
as changing in that macrocode operation, its value must be the same as in the beginning. There
are several registers that are hard-coded for your convenience since there is no ”addi” instruction
with which to bring constants into the microcode. Finally, registers a-f may be used for anything
you wish.

Microcode: 5



2 EXAMPLE: MIC-1 AND MAC-1 2.1 MIC-1

2.1.6 Execution on MIC-1

Here are the steps to execution in mic-1:

1. The current microinstruction is fetched from the control store into mir.

2. The registers (if any) which are specified in the microinstruction are copied to the a and b
buses.

3. The amux is used to decide between the data from the mbr (used when loading from memory)
and the a bus. The ALU then computes a result, n, and z bits, and that result is put through
the shifter. In addition, if memory is being initiated, the mar takes the value from the b bus.

4. Store ALU output to mbr (for a store) and/or destination register. The mmux takes the
n,z, and cond bits and decides between the next mpc (mpc+1) and the addr field in the
instruction.

Instead of the usual format of op code and so on, microinstructions typically have fields to control
components directly. For example, in mir we see fields labeled amux, alu, etc. whose bits are
connected to wires which do control these components. Below is a summary of the fields in the
instruction format.

The fields a, b and c in the instruction each consist of four bits, to indicate one of the 16 registers.
The ‘a’ field indicates which register will be copied to the ‘a’ bus, and the b field does the same
thing for the b bus. The c field controls which register the ALU output is copied to. These would
be loosely analogous to rs, rt, and rd fields in MIPS, except that ’b’ is always used as a source
register, never a destination register.

The c field could have been 16 bits wide (holding four register numbers), allowing multiple registers
to be written simultaneously from the c bus. This would be useful, for instance, if we would like
to have a target-architecture instruction that does something like the two Intel instructions MOV
AX,CX and MOV BX,CX, which load the AX and BX registers from the CX register, in a single
target-architecture instruction. This would give us a faster machine, at the expense of having wider
microinstructions and thus a more space-hogging control store. By the way, this wider instruction
format is said to be more horizontal, whereas the original one is called more vertical.2

2The Intel Pentium, for instance, is very horizontal, with 118 bits per microinstruction.

Microcode: 6



2 EXAMPLE: MIC-1 AND MAC-1 2.1 MIC-1

reg number Tanenbaum name comments

---------- -------------- ------------

0 pc MAC-1’s program counter

1 ac MAC-1’s accumulator

2 sp MAC-1’s stack pointer

3 ir

4 tir

5 0 hardwired value 0x0000

6 +1 hardwired value 0x0001

7 -1 hardwired value 0xffff

8 amask hardwired value 0x0fff

9 smask hardwired value 0x00ff

10 a

11 b

12 c

13 d

14 e

15 f

------ MIC-1 instruction format - (analagous DLX control signals) -----

amux (bit 31) (MemToReg) cond (bits 30-29) (Branch,Jump)

------------- -----------------

0 = input from ‘a’ latch 00 = no branch

1 = input from mbr 01 = branch if n = 1

10 = branch if z = 1

11 = unconditional branch

alu (bits 28-27) (ALUOp) sh (bits 26-25) (shamt field)

---------------- ---------------

00 = a + b 00 = no shift

01 = a and b 01 = shift right 1 bit

10 = a 10 = shift left 1 bit

11 = not a 11 = (not used)

mbr (bit 24) mar (bit 23)

------------ ------------

1 = load mbr from shifter 1 = load mar from B latch

0 = do not load mbr 0 = do not load mar

rd,wr (bits 22-21)(MemRd,MemWr) enc (bit 20) (RegWrite)

---------------------- -----------------------

1 = yes, 0 = no 1 = yes, 0 = no

c,b,a (bits 19-8) addr (bits 7-0)

---------------- --------------

4-bit register number branch target

Microcode: 7



2 EXAMPLE: MIC-1 AND MAC-1 2.2 Microprogramming

2.2 Microprogramming

Programming in machine language, either with 0’s and 1’s or in hex, would be extremely tedious.
That is why assemblers were invented, so as to replace the numbers with something that looks like
English. For the same reason, microprogrammers use a microassembly language. Tanenbaum calls
the microassembly language he invented for MIC-1 “mal.”

In order to introduce mal, here is an example instruction:

mar:=sp; mbr:=ac; wr; goto 10;

(Note that the 10 here means location 10 in the control store.)

What will this assemble to? Well, the field mar:=sp says that we wish to copy sp (register 2) to
the mar. As you can see, the only bus connection to mar is that of the b bus. Thus the assembler
will put 0010 in the b field of the instruction. It will also put a 1 in the mar field. Similarly, for
mbr:=ac it will put 0001 in the ‘a’ field (since ac is register 1), 1 in the mbr field, and 10 in the
alu field. For wr, it will put 1 in the wr field, and 0 in the rd field. For goto 10, it will put 11 in
the cond field and 00001010 (the binary coding for the decimal number 10) in addr. Since nothing
is to be written back to the register file, enc will be set to 0; this also allows us to put anything at
all in the c field, but we might as well make it 0000. No shifting is to be done, so we put 00 in the
sh field. The coding for the entire instruction will then be 71a0210a.3

You can learn the other mal mnemonics by looking at the microcode for MAC-1, presented in the
next section. Note that “band” refers to “boolean and,” the logical AND-ing operation, and “inv”
is inversion, i.e. logical complement. The construct “alu:=” means that an ALU operation will be
performed on the specified operands, but that neither the mbr nor a register will be loaded.

One obvious question is, what can I do in a single microcode instruction? The key is, if you can
encode it, you can run it. You can figure it out in one of two ways - look at the diagram at the
back of the handout and see if all of the things you want to do have datapaths on the computer
that do not conflict with each other. You can also look at the encoding bits and see if you can set
the bits such that all that you want to get done gets done.

Look at the diagram and figure out whether or not the following instructions are legal (the answers
are given near the end of the handout). Note that each instruction has several statements in it.
Semi-colons do not separate instructions. Only linebreaks separate instructions.

• mar := sp; mbr:=ac; wr; goto contWR;

• mar := a+c; rd;

• mar := sp; rd; b := sp+1;

• mar := a; mbr := a+c; d := a+c; wr; if n then goto F110orF11;

• ac := mbr; a := sp+1

• ac := mbr + a;

3Make sure you verify this for yourself. Note too that other codings would be equally valid, depending for instance
on what value we put into the “don’t care” field for c.

Microcode: 8



2 EXAMPLE: MIC-1 AND MAC-1 2.3 MAC-1

2.3 MAC-1

MAC-1 is an accumulator machine. It has a program counter PC, a stack pointer SP, and an
accumulator AC. Addressing modes are direct, indirect and local. Instructions are summarized
below, all of which are 16 bits.

Local addressing, which is common in many architectures, is a stack-relative mode intended for
accessing local variables. An example is given on the next page that shows the allocation and use
of local variables in MAC code.

MAC-1’s memory consists of 4096 16-bit words, and the mar register is accordingly 12 bits wide.
(Thus mar’s connection to the b bus is only to the less-significant 12 lines of that bus.) Memory
access is assumed to take two full cycles within functions. Memory is word addressable.

Microcode: 9



2 EXAMPLE: MIC-1 AND MAC-1 2.3 MAC-1

machine language mnemonic long name action

---------------- -------- --------- ------

0000xxxxxxxxxxxx LODD load direct ac:=m[x]

0001xxxxxxxxxxxx STOD store direct m[x]:=ac

0010xxxxxxxxxxxx ADDD add direct ac:=ac+m[x]

0011xxxxxxxxxxxx SUBD subtract direct ac:=ac-m[x]

0100xxxxxxxxxxxx JPOS jump positive if ac >= 0 then pc:=x

0101xxxxxxxxxxxx JZER jump zero if ac = 0 then pc:=x

0110xxxxxxxxxxxx JUMP jump pc:=x

0111xxxxxxxxxxxx LOCO load constant ac:=x, x unsigned

1000xxxxxxxxxxxx LODL load local ac:=m[sp+x]

1001xxxxxxxxxxxx STOL store local m[x+sp]:=ac

1010xxxxxxxxxxxx ADDL add local ac:=ac+m[sp+x]

1011xxxxxxxxxxxx SUBL subtract local ac:=ac-m[sp+x]

1100xxxxxxxxxxxx JNEG jump negative if ac < 0 then pc:=x

1101xxxxxxxxxxxx JNZE jump nonzero if ac != 0 then pc:=x

1110xxxxxxxxxxxx CALL call procedure sp:=sp-1; m[sp]:=pc; pc:=x

1111000000000000 PUSHI push indirect sp:=sp-1; m[sp]:=m[ac]

1111001000000000 POPI pop indirect m[ac]:=m[sp]; sp:=sp+1

1111010000000000 PUSH push sp:=sp-1; m[sp]:=ac

1111011000000000 POP pop ac:=m[sp]; sp:=sp+1

1111100000000000 RETN return pc:=m[sp]; sp:=sp+1

1111101000000000 SWAP swap ac and sp tmp:=ac; ac:=sp; sp:=tmp

11111100yyyyyyyy INSP increment sp sp:sp+y, y unsigned

11111110yyyyyyyy DESP decrement sp sp:sp-y, y unsigned

--------------- C code to MAC translation example ----------------------

int SumToN(int N){ DESP 2 sp := sp - 2

int i,sum; LOCO 0 ac := 0

sum = 0; STOL 0 m[sp+0] := ac (sum := 0)

i = 0; STOL 1 m[sp+1] := ac (i := 0)

while (i < num) 5: SUBL 2 ac := ac - m[sp+3] (i - N)

{ JZER 15 jump if (i == N)

JPOS 15 jump if (i > N)

sum = sum + i; LODL 0 ac := m[sp+0] (sum)

ADDL 1 ac := ac + m[sp+1] (sum + i)

STOL 0 m[sp+0] := ac (sum = sum + i)

i++; LOCO 1 ac := 1

ADDL 1 ac := ac + m[sp+1] (1 + i)

STOL 1 m[sp+1] := ac (i = 1+i)

} JUMP 5

15: LODL 0 ac := m[sp+0] (sum)

return sum; INSP 2 sp := sp + 2

} STOL 1 m[sp+1] := sum (return sum)

RETN return to caller

Microcode: 10



2 EXAMPLE: MIC-1 AND MAC-1 2.3 MAC-1

2.3.1 MIC-1 Implementation of MAC-1

Here is the microcode for the implementation: (Each line is a single instruction)

0 BEGIN: mar:=pc; rd;

1 pc:=pc + 1; rd;

2 L0or1: ir:=mbr; if n then goto L10or11;

3 L00or01: tir:=lshift(ir + ir); if n then goto L010or011;

4 L000or001: tir:=lshift(tir); if n then goto L0010or0011;

5 L0000or0001: alu:=tir; if n then goto STOD;

6 LODD: mar:=ir; rd; #0000 = LODD

7 contLODL: rd;

8 ac:=mbr; goto BEGIN;

9 STOD: mar:=ir; mbr:=ac; wr; #0001 = STOD

10 contWR: wr; goto BEGIN;

11 L0010or0011: alu:=tir; if n then goto SUBD; #ADDD or SUBD?

12 ADDD: mar:=ir; rd; #0010 = ADDD

13 contADDL: rd;

14 ac:=mbr + ac; goto BEGIN;

15 SUBD: mar:=ir; rd; #0011 = SUBD

16 contSUBL: ac:=ac + 1; rd;

17 a:=inv(mbr);

18 ac:=ac + a; goto BEGIN;

19 L010or011: tir:=lshift(tir); if n then goto L0110or0111;

20 L0100or0101: alu:=tir; if n then goto JZER;

21 JPOS: alu:=ac; if n then goto BEGIN; #0100 = JPOS

22 contJUMPS: pc:=band(ir,amask); goto BEGIN;

23 JZER: alu:=ac; if z then goto contJUMPS; #0101 = JZER

24 goto BEGIN;

25 L0110or0111: alu:=tir; if n then goto LOCO;

26 JUMP: pc:=band(ir,amask); goto BEGIN; #0110 = JUMP

27 LOCO: ac:=band(ir,amask); goto BEGIN; #0111 = LOCO

28 L10or11: tir:=lshift(ir + ir); if n then goto L110or111;

29 L100or101: tir:=lshift(tir); if n then goto L1010or1011;

30 L1000or1001: alu:=tir; if n then goto STOL;

31 LODL: a:=ir + sp; #1000 = LODL

32 mar:=a; rd; goto contLODL;

33 STOL: a:=ir + sp; #1001 = STOL

34 mar:=a; mbr:=ac; wr; goto contWR;

35 L1010or1011: alu:=tir; if n then goto SUBL;

36 ADDL: a:=ir + sp; #1010 = ADDL

37 mar:=a; rd; goto contADDL;

38 SUBL: a:=ir + sp; #1011 = SUBL

39 mar:=a; rd; goto contSUBL ;

40 L110or111: tir:=lshift(tir); if n then goto L1110or1111;

41 L1100or1101: alu:=tir; if n then goto JNZE;

42 JNEG: alu:=ac; if n then goto contJUMPS; #1100 = JNEG

Microcode: 11



2 EXAMPLE: MIC-1 AND MAC-1 2.3 MAC-1

43 goto BEGIN;

44 JNZE: alu:=ac; if z then goto BEGIN; #1101 = JNZE

45 pc:=band(ir,amask); goto BEGIN;

46 L1110or1111: tir:=lshift(tir); if n then goto F0orF1;

47 CALL: sp:=sp + (-1); #1110 = CALL

48 mar:=sp; mbr:=pc; wr;

49 pc:=band(ir,amask); wr; goto BEGIN;

50 F0orF1: tir:=lshift(tir); if n then goto F10orF11;

51 F00orF01: tir:=lshift(tir); if n then goto F010orF011;

52 F000orF001: alu:=tir; if n then goto POPI;

53 PSHI: mar:=ac; rd; #1111-0000 = PSHI

54 sp:=sp + (-1); rd;

55 mar:=sp; wr; goto contWR;

56 POPI: mar:=sp; sp:=sp + 1; rd; #1111-0010 = POPI

57 rd;

58 mar:=ac; wr; goto contWR;

59 F010orF011: alu:=tir; if n then goto POP;

60 PUSH: sp:=sp + (-1); #1111-0100 = PUSH

61 mar:=sp; mbr:=ac; wr; goto contWR;

62 POP: mar:=sp; sp:=sp + 1; rd; #1111-0110 = POP

63 rd;

64 ac:=mbr; goto BEGIN;

65 F10orF11: tir:=lshift(tir); if n then goto F110orF111;

66 F100orF101: alu:=tir; if n then goto SWAP;

67 RETN: mar:=sp; sp:=sp + 1; rd; #1111-1000 = RETN

68 rd;

69 pc:=mbr; goto BEGIN;

70 SWAP: a:=ac; #1111-1010 = SWAP

71 ac:=sp;

72 sp:=a; goto BEGIN;

73 F110orF111: tir:=lshift(tir); if n then goto F1110orF1111;

74 INSP: a:=band(ir,smask); #1111-1100 = INSP

75 contDESP: sp:=sp + a; goto BEGIN;

76 F1110orF1111: alu:=tir; if n then goto HALT; #HALT or DESP?

77 DESP: a:=band(ir, smask); #1111-1110 = DESP

78 a:=inv(a);

79 a:=a + 1; goto contDESP;

Microcode: 12



2 EXAMPLE: MIC-1 AND MAC-1 2.3 MAC-1

By the way, note the use of labels here. For example, BEGIN refers to location 0 in the control
store, L0or1 refers to location 2,4 and so on. Of course, the assembler will make the conversion, as
with other assemblers.

Let’s take a look at some of the code. For any MAC-1 instruction, the first few MIC-1 instructions
will be devoted to fetching and decoding the MAC-1 instruction. The fetching is seen in the first
two MIC-1 instructions:

BEGIN: mar:=pc; rd;

pc:=pc + 1; rd;

The rd must be asserted for two clock cycles, as that is the time needed to access MAC-1’S memory.

Then the (MAC-1) instruction decode begins. By the time we get to the third MIC-1 instruction,

L0or1: ir:=mbr; if n then goto L10or11;

the MAC-1 instruction has been fetched, and is now in mbr. 5 In executing ir:=mbr, the contents
of the mbr will pass through the ALU, thus affecting the n and z bits. So, in executing the if n
then goto L10or11, what we are really doing is saying, “If bit 15 of the MAC-1 instruction is a 1,
then go to L10or11.” Then at L10or11, we have the MIC-1 instruction

tir:=lshift(ir + ir); if n then goto L110or111;

Again this MIC-1 instruction has the goal of testing certain bits within the MAC-1 instruction.
Look very, very carefully at how this is done. You see an explicit shift there, in the form of the
mal mnemonic lshift (recall that the mal assembler will translate this to a 10 in the sh field). But
there also is an implicit shift: the operation ir+ir is equivalent to multiplying ir by 2, which in turn
is equivalent to a left shift of one bit. So, there are actually two left shifts. On the other hand,
though, the n bit will only reflect the first of these (the ir+ir), because it is the only one to have
been done by the ALU. So, the end result is that we are testing bit 14 of the MAC-1 instruction,
not bit 13. (But the second left shift is done in preparation for testing the latter bit.)

It is crucial that you go through the entire microcode for a few MAC-1 instructions, including at
least one that accesses the stack. Make absolutely sure that you understand all aspects.

Solutions to legal vs illegal questions:

• mar := sp; mbr:=ac; wr; goto contWR; legal - amux=0, cond=11, alu=10, sh=00, mbr=1,

mar=1, wr=1,rd=0,enc=0, c=dc, a=ac, b=sp, addr=contWR

• mar := a+c; rd; illegal - mar can not use the result of an alu operation

4These numbers, 0, 1, 2, ... are displayed here, to remind you which MIC-1 memory locations the microinstructions
will be stored in. They are not line numbers (though it is convenient to call them such), and the assembler will not
tolerate their presence in source code.

5The memory data register/memory buffer register and memory address register in a CPU are the CPU’s interface
to the data and address buses, respectively. This is how the CPU transfers data to and from memory.

Microcode: 13



3 SURVIVAL OF THE FITTEST - MICROCODING EVOLUTION

• mar := sp; rd; b := sp+1; legal - amux=0, cond=00, alu=00, sh=00, mbr=0, mar=1,

wr=0,rd=1,enc=1, c=b, a=1, b=sp, addr=dc

• mar := a; mbr := a+c; d := a+c; wr; if n then goto F110orF111; legal - amux=0, cond=01,

alu=00, sh=00, mbr=1, mar=1, wr=1,rd=0,enc=1, c=d, a=c, b=a, addr=F110orF111

• ac := mbr; a := sp+1 illegal - we can not write to both ac and a in the same instruction

• ac := mbr + a; legal - amux=1, cond=00, alu=00, sh=00, mbr=0, mar=0, wr=0,rd=0,enc=1,

c=ac, a=dc, b=a, addr=dc

3 Survival of the Fittest - Microcoding Evolution

As you can see from the microcode, to execute a single instruction, it takes several cycles to fetch,
decoded, and then finally execute it. This can be slower than the several instructions that a simple
instruction set would have provided! In fact, two factors made RISC chips much more desirable.
First, a large boost in memory performance provided by a cache (covered later in the course)
meant that instructions were no longer incredibly slow to fetch. In addition, increasingly complex
chips allowed simple instructions to be executed out of order, which was more difficult to do with
complex instructions. The complex instruction set itself inhibited both compiler and hardware
optimizations. This could have spelled the demise of the microcoded computer.

Two factors contributed to the survival of the Intel x86 family: market factors and technology. Once
enough companies have invested in software for a certain instruction set architecture, companies
are unlikely to change architectures. They would need to buy all new software when they upgraded
to a new chip. Investing in both hardware upgrades and completely new software at the same time
can be prohibitively expensive.

The larger factor was that advances in fabrication technology allowed much more logic to be placed
on a single chip. In the architecture presented above, each macrocode instruction is executed start
to finish with a sequence of microcode instructions. The increased real estate allowed for a vastly
different implementation. Macrocode instructions are fetched and decoded in hardware. This
hardware translates the macroinstruction into a set of microcode instructions that implements
the macro instruction. This hardware translation is faster than the fetch and decode done in
microcode. In addition, this set of microcode instructions can be fed into a simple computer core
which performs out of order execution with all of the hardware optimizations allowed in simple
cores. Again, microcoded computers try to get the best of both worlds - the small code size in
order to decrease the number of instructions fetched, but a RISC internal implementation to take
advantage of hardware optimizations. The only advantage lost is the fact that the compiler can
not perform optimizations on microcode - it is generated at run-time by hardware translation.

Where does the future of microcoded computers lie? Intel has developed an alternative to its x86
Pentium family - the Itanium. This is closer to a RISC instruction set than CISC, with the compiler
packaging parallel instructions into larger chunks of instructions. As compiler technology matures,
it is becoming a larger part of program performance, pulling architectures once again to RISC.

Microcode: 14



3 SURVIVAL OF THE FITTEST - MICROCODING EVOLUTION .1 MIC-1 Block Diagram

.1 MIC-1 Block Diagram

dcd

dcd

dcd

e

n
c

w
rd

r
m

a
r

m

b
r

s
h

a

u

l

a
d
d
r

abc

c
o

d
n

a
m
u
x

256x32 control store

mmux

alu

increment

register
file

mpc

c

b

a

mbr

mar

mir

n,z

ba

shifter

c

amux

Microcode: 15


