
Lecture 23: Thread Level Parallelism
-- Introduction, SMP and Snooping Cache

Coherence Protocol

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu

www.secs.oakland.edu/~yan

2

CSE 564 Class Contents
§  Introduction to Computer Architecture (CA)
§  Quantitative Analysis, Trend and Performance of CA

–  Chapter 1
§  Instruction Set Principles and Examples

–  Appendix A
§  Pipelining and Implementation, RISC-V ISA and Implementation

–  Appendix C, RISC-V (riscv.org) and UCB RISC-V impl
§  Memory System (Technology, Cache Organization and Optimization,

Virtual Memory)
–  Appendix B and Chapter 2
–  Midterm covered till Memory Tech and Cache Organization

§  Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction,
Hardware Speculation, Superscalar, VLIW and SMT)

–  Chapter 3
§  Data Level Parallelism (Vector, SIMD, and GPU)

–  Chapter 4

§  Thread Level Parallelism
–  Chapter 5

3

Topics for Thread Level Parallelism (TLP)
§  Parallelism (centered around …)

–  Instruction Level Parallelism
–  Data Level Parallelism
–  Thread Level Parallelism

§  TLP Introduction
– 5.1

§  SMP and Snooping Cache Coherence Protocol
– 5.2

§  Distributed Shared-Memory and Directory-Based
Coherence
– 5.4

§  Synchronization Basics and Memory Consistency
Model
– 5.5, 5.6

§  Others

4

Acknowledge and Copyright
§  Slides adapted from

– UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

– UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

– Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

– Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

– UH Edgar Gabrial, Computer Architecture Course: http://
www2.cs.uh.edu/~gabriel/courses/cosc6385_s16/index.shtml

§  https://passlab.github.io/CSE564/copyrightack.html

5

Moore’s Law
•  Long-term trend on the density of transistor per integrated

circuit
•  Number of transistors/in2 double every ~18-24 month

6

What do we do with that many
transistors?

§  Optimizing the execution of a single instruction
stream through
–  Pipelining

» Overlap the execution of multiple instructions
»  Example: all RISC architectures; Intel x86 underneath the

hood
– Out-of-order execution:

» Allow instructions to overtake each other in accordance
with code dependencies (RAW, WAW, WAR)

»  Example: all commercial processors (Intel, AMD, IBM,
Oracle)

– Branch prediction and speculative execution:
» Reduce the number of stall cycles due to unresolved

branches
»  Example: (nearly) all commercial processors

7

What do we do with that many
transistors? (II)

– Multi-issue processors:
» Allow multiple instructions to start execution per clock

cycle
»  Superscalar (Intel x86, AMD, …) vs. VLIW architectures

–  VLIW/EPIC architectures:
» Allow compilers to indicate independent instructions per

issue packet
»  Example: Intel Itanium

–  SIMD units:
» Allow for the efficient expression and execution of vector

operations
»  Example: Vector, SSE - SSE4, AVX instructions

Everything we have learned so far

8

Limitations of optimizing a single
instruction stream

§  Problem: within a single instruction stream we do not find
enough independent instructions to execute
simultaneously due to
–  data dependencies
–  limitations of speculative execution across multiple branches
–  difficulties to detect memory dependencies among

instruction (alias analysis)
§  Consequence: significant number of functional units are

idling at any given time
§  Question: Can we maybe execute instructions from

another instructions stream
– Another thread?
– Another process?

9

Thread-level parallelism
§  Problems for executing instructions from multiple

threads at the same time
–  The instructions in each thread might use the same register

names
–  Each thread has its own program counter

§  Virtual memory management allows for the execution
of multiple threads and sharing of the main memory

§  When to switch between different threads:
–  Fine grain multithreading: switches between every instruction
– Course grain multithreading: switches only on costly stalls

(e.g. level 2 cache misses)

10

Convert Thread-level parallelism to
instruction-level parallelism

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

11

ILP to Do TLP: e.g. Simultaneous Multi-
Threading

§  Works well if
– Number of compute intensive threads does not exceed the

number of threads supported in SMT
–  Threads have highly different characteristics (e.g. one thread

doing mostly integer operations, another mainly doing
floating point operations)

§  Does not work well if
–  Threads try to utilize the same function units

»  e.g. a dual processor system, each processor supporting
2 threads simultaneously (OS thinks there are 4
processors)

»  2 compute intensive application processes might end up
on the same processor instead of different processors
(OS does not see the difference between SMT and real
processors!)

12

Power, Frequency and ILP
§  Moore’s Law to processor speed (frequency)

Note: Even Moore’s Law
is ending around 2021:
http://spectrum.ieee.org/
semiconductors/devices/
transistors-could-stop-
shrinking-in-2021

https://
www.technologyreview.com/s/
601441/moores-law-is-dead-
now-what/

http://www.forbes.com/sites/
timworstall/2016/07/26/
economics-is-important-the-
end-of-moores-law

CPU frequency increase was
flattened around 2000-2005

Two main reasons:
1.  Limited ILP and
2.  Power consumption and

heat dissipation

13

History – Past (2000) and Today

14

Flynn’s Taxonomy

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

✔
✔

✖

15

Examples of MIMD Machines
§  Symmetric Shared-Memory

Multiprocessor (SMP)
– Multiple processors in box with

shared memory communication
– Current Multicore chips like this
–  Every processor runs copy of OS

§  Distributed/Non-uniform Shared-
Memory Multiprocessor
– Multiple processors

»  Each with local memory
»  general scalable network

–  Extremely light “OS” on node
provides simple services

»  Scheduling/synchronization
– Network-accessible host for I/O

§  Cluster
– Many independent machine

connected with general network
– Communication through messages

P P P P

Bus

Memory

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Network

16

Symmetric (Shared-Memory)
Multiprocessors (SMP)

§  Small numbers of cores
–  Typically eight or fewer, and

no more than 32 in most cases
§  Share a single centralized

memory that all processors
have equal access to,
– Hence the term symmetric.

§  All existing multicores are
SMPs.

§  Also called uniform memory
access (UMA)
multiprocessors
–  all processors have a uniform

latency

20

Distributed Shared-Memory
Multiprocessor

§  Large processor count
–  64 to 1000s

§  Distributed memory
– Remote vs local memory
–  Long vs short latency
– High vs low latency

§  Interconnection network
– Bandwidth, topology, etc

§  Nonuniform memory
access (NUMA)

§  Each processor may has
local I/O

21

Distributed Shared-Memory
Multiprocessor (NUMA)

§  Reduces the memory bottleneck compared to SMPs
§  More difficult to program efficiently

–  E.g. first touch policy: data item will be located in the memory
of the processor which uses a data item first

§  To reduce effects of non-uniform memory access,
caches are often used
–  ccNUMA: cache-coherent non-uniform memory access

architectures
§  Largest example as of today: SGI Origin with 512

processors

22

Shared-Memory Multiprocessor
§  SMP and DSM are all shared memory multiprocessors

– UMA or NUMA
§  Multicore are SMP shared memory
§  Most multi-CPU machines are DSM

– NUMA

§  Shared Address Space (Virtual Address Space)
– Not always shared memory

23

Bus-Based Symmetric Shared Memory
§  Still an important architecture – even on chip (until very recently)

–  Building blocks for larger systems; arriving to desktop
§  Attractive as throughput servers and for parallel programs

–  Fine-grain resource sharing
–  Uniform access via loads/stores
–  Automatic data movement and coherent replication in caches
–  Cheap and powerful extension

§  Normal uniprocessor mechanisms to access data
–  Key is extension of memory hierarchy to support multiple processors

I/O devices Mem

P 1

$ $

P n

Bus

24

Performance Metrics (I)
§  Speedup: how much faster does a problem run on p

processors compared to 1 processor?

– Optimal: S(p) = p (linear speedup)
§  Parallel Efficiency: Speedup normalized by the

number of processors

– Optimal: E(p) = 1.0

)(
)1()(
pT

T
pS

total

total=

p
pSpE)()(=

25

Amdahl’s Law (I)
§  Most applications have a (small) sequential fraction,

which limits the speedup

 f: fraction of the code which can only be executed
sequentially

§  Assumes the problem size is constant
–  In most applications, the sequential part is independent of the

problem size
–  The part which can be executed in parallel depends.

p
ffT

p
ff

T
pS

total

total

−
+

=
−

+
= 1

1

)1()1(

)1()(

TotalTotalparallelsequentialtotal TffTTTT)1(−+=+=

26

Challenges of Parallel Processing
§  1. Limited parallelism available in programs

– Amdahl’s Law

§  0.25% can be
 sequential

28

Cache in Shared Memory System (UMA or
NUMA)

P 1
Switch

Main memory

P n

(Interleaved)

(Interleaved)

First-level $

P 1

$

Inter connection network

$

P n

Mem Mem

P 1

$

Inter connection network

$

P n

Mem Mem Shared Cache

UMA

Scale

NUMA

29

Caches and Cache Coherence
§  Caches play key role in all cases

– Reduce average data access time
– Reduce bandwidth demands placed on shared interconnect

§  Private processor caches create a problem
– Copies of a variable can be present in multiple caches
– A write by one processor may not become visible to others

»  They’ll keep accessing stale value in their caches

⇒ Cache coherence problem

§  What do we do about it?
– Organize the mem hierarchy to make it go away
– Detect and take actions to eliminate the problem

30

Example Cache Coherence Problem

Things to note:
Processors see different values for u after event 3
With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value and when

Processes accessing main memory may see very stale value
Unacceptable to programs, and frequent!

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4
u = ?

u :5
1

u :5

2

u :5

3

u = 7

int count = 5;
int * u= &count;
….
a1 = *u;
 a3 = *u;
 *u = 7;
b1 = *u
 a2 = *u

31

Cache coherence (II)
§  Typical solution:

– Caches keep track on whether a data item is shared between
multiple processes

– Upon modification of a shared data item, ‘notification’ of other
caches has to occur

– Other caches will have to reload the shared data item on the
next access into their cache

§  Cache coherence is only an issue in case multiple
tasks access the same item
– Multiple threads
– Multiple processes have a joint shared memory segment
–  Process is being migrated from one CPU to another

32

Cache Coherence Protocols
§  Snooping Protocols

–  Send all requests for data to all processors, the address
–  Processors snoop a bus to see if they have a copy and

respond accordingly
– Requires broadcast, since caching information is at

processors
– Works well with bus (natural broadcast medium)
– Dominates for centralized shared memory machines

§  Directory-Based Protocols
– Keep track of what is being shared in centralized location
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
–  Send point-to-point requests to processors via network
–  Scales better than Snooping
– Commonly used for distributed shared memory machines

33

Snoopy Cache-Coherence Protocols

§  Works because bus is a broadcast medium & Caches
know what they have

§  Cache Controller “snoops” all transactions on the
shared bus
–  relevant transaction if for a block it contains
–  take action to ensure coherence

»  invalidate, update, or supply value
–  depends on state of the block and the protocol

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

34

Basic Snoopy Protocols
§  Write Invalidate Protocol:

– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

»  Write-through: memory is always up-to-date
»  Write-back: snoop in caches to find most recent copy

§  Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop,

and update any copies
– Read miss: memory is always up-to-date

§  Write serialization: bus serializes requests!
– Bus is single point of arbitration

35

Write Invalidate Protocol
§  Basic Bus-Based Protocol

–  Each processor has cache, state
– All transactions over bus snooped

§  Writes invalidate all other caches
–  can have multiple simultaneous readers

of block,but write invalidates them
§  Two states per block in each cache

–  as in uniprocessor
–  state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
–  other blocks can be seen as being in

invalid (not-present) state in that cache I

V
BusWr / -

PrRd/ --

PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devices Mem

P 1

$ $

P n

Bus

State Tag Data

36

Example: Write Invalidate

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4
u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

u :7

37

Write-Update (Broadcast)
§  Update all the cached copies of a data item when that

item is written.
–  Even a processor may not need the updated copy in the

future
§  Consumes considerably more bandwidth
§  Recent multiprocessors have opted to implement a

write invalidate protocol

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4
u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

 u=7

38

Implementation of Cache Coherence
Protocol -- 1

§  When data are coherent, the cache block is shared
–  “Memory” could be the last level shared cache, e.g. shared L3

1. When there is a write by CPU 0, Invalidate the shared copies in
the cache of other processors/cores

–  Copy in CPU 0’s cache is exclusive/unshared,
–  CPU 0 is the owner of the block
–  For write-through cache, data is also written to the memory

»  Memory has the latest
–  For write-back cache: data in memory is obsoleted
–  For snooping protocol, invalidate signals are broadcasted by CPU 0

»  CPU 0 broadcasts; and CPU 1 snoops, compares and invalidates

Memory

CPU 0

Cache

CPU 1

Cache
Written by CPU 0

Invalidated by CPU 0

39

Implementation of Cache Coherence
Protocol -- 2

§  CPU 0 owned the block (exclusive or unshared)
2. When there is a read/write by CPU 1 or others à Miss since
already invalidated

–  For write-through cache: read from memory
–  For write-back cache: supply from CPU 0 and abort memory access
–  For snooping: CPU 1 broadcasts mem request because of a miss;

CPU 0 snoops, compares and provides cache block (aborts the
memory request)

Memory

CPU 0

Cache

CPU 1

Cache
Owned by CPU 0

Read/write miss

40

Finite State Machine (FSM) for
Implementation

§  Mathematical model of computation
used to design both computer programs
and sequential logic circuits
–  Events trigger state change

§  Snooping protocol FSM
–  Implemented as part of cache controller

– Responds to requests from the processor in
the core and from the bus (or other broadcast
medium): Events

– Changing the state of the selected cache
block, as well as using the bus to access data
or to invalidate it: Change state and action

41

An Example Snoopy Protocol
§  Invalidation protocol, write-back cache
§  Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

§  Each cache block is in one state (track these):
–  Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

§  Read misses: cause all caches to snoop bus
§  Writes to clean line are treated as misses

42

State Table of Snoopy Protocol

43

Snoopy-Cache State Machine-I
§  State machine

for CPU requests
for each
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss on bus

Place Write
Miss on bus

CPU Write miss
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

CPU read hit

44

Snoopy-Cache State Machine-II
§  State machine

for bus requests
 for each
cache block

Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Invalidate for this block

Read miss

45

Snoopy-Cache State Machine-III
§  State machine

for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Place read miss
on bus

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

46

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2

Processor 1 Processor 2 Bus Memory

Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

CPU Write Miss

Write Back

CPU Read Miss

47

Example: Step 1

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2.

Active arrow =

Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

CPU Write Miss

Write Back

CPU Read Miss

48

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2
Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

CPU Write Miss

Write Back

CPU Read Miss

49

Example: Step 3

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2.

Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

A1
A1

CPU Write Miss

Write Back

CPU Read Miss

50

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2
Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

A1
A1
A1

CPU Write Miss

Write Back

CPU Read Miss

51

Remote

 Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit

CPU write hit

Remote Read
 Write Back

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state

is invalid and A1 and A2 map
to same cache block,

but A1 != A2

A1
A1
A1

CPU Write Miss

Write Back

CPU Read Miss

52

Snooping Cache Variations

§  Owner can update via bus invalidate operation
§  Owner must write back when replaced in cache

–  If read sourced from memory, then Private Clean
–  if read sourced from other cache, then Shared
– Can write in cache if held private clean or dirty

Berkeley
Protocol

Owned Exclusive

Owned Shared

Shared

Invalid

Basic
Protocol

Exclusive

Shared

Invalid

Illinois
Protocol

Private Dirty

Private Clean

Shared

Invalid

MESI
Protocol

Modfied (private,!=Memory)

Exclusive (private,=Memory)

Shared (shared,=Memory)

Invalid

53

Shared Memory Multiprocessor

 Use snoopy mechanism to keep all
processors’ view of memory coherent

M1

M2

M3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache DISKS

54

Cache Line for Snooping
§  Cache tags for implementing snooping

– Compares the addresses on the bus with the tags of the
cache line

§  Valid bit for being invalidated
§  State bit for shared/exclusive

§  We will use write-back cache
–  Lower bandwidth requirement
than write-through cache
– Dirty bit for write-back
– Write-buffer complicates things

70

Categories of cache misses
§  Up to now:

– Compulsory Misses: first access to a block cannot be in the
cache (cold start misses)

– Capacity Misses: cache cannot contain all blocks required for
the execution

– Conflict Misses: cache block has to be discarded because of
block replacement strategy

§  In multi-processor systems:
– Coherence Misses: cache block has to be discarded because

another processor modified the content
»  true sharing miss: another processor modified the

content of the request element
»  false sharing miss: another processor invalidated the

block, although the actual item of interest is unchanged.

71

False Sharing

§  A cache line contains more than one word

§  Cache-coherence is done at the line-level and not
word-level

§  Suppose M1 writes wordi and M2 writes wordk and
–  both words have the same line address.

§  What can happen?

71

state line addr data0 data1 ... dataN

72

Example: True v. False Sharing v. Hit?

72

Time	 P1	 P2	 True,	False,	Hit?	Why?	
1	 Write	x1	

2	 Read	x2	

3	 Write	x1	

4	 Write	x2	

5	 Read	x2	

• 	Assume	x1	and	x2	in	same	cache	line.		
		P1	and	P2	both	read	x1	and	x2	before.	

True	miss;	invalidate	x1	in	P2	
False	miss;	x1	irrelevant	to	P2	
False	miss;	x1	irrelevant	to	P2	
True	miss;	x2	not	writeable	

True	miss;	invalidate	x2	in	P1	

73

Performance

§  Coherence influences cache miss rate
– Coherence misses

» True sharing misses
• Write to shared block (transmission of invalidation)
• Read an invalidated block

» False sharing misses
• Read an unmodified word in an invalidated block

74

Performance Study: Commercial Workload

75

Performance Study: Commercial Workload

76

Performance Study: Commercial Workload

77

Performance Study: Commercial Workload

