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Topics for Data Level Parallelism (DLP) 
§  Parallelism (centered around … ) 

–  Instruction Level Parallelism 
–  Data Level Parallelism 
–  Thread Level Parallelism 

§  DLP Introduction and Vector Architecture 
– 4.1, 4.2 

§  SIMD Instruction Set Extensions for Multimedia  
– 4.3 

§  Graphical Processing Units (GPU) 
– 4.4 

§  GPU and Loop-Level Parallelism and Others 
– 4.4, 4.5, 4.6, 4.7 

Finish in three sessions 
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Acknowledge and Copyright 
§  Slides adapted from  
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Computer Architecture” of David E. Culler Copyright(C) 2005 
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REVIEW 
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Flynn’s Classification (1966) 
Broad classification of parallel computing systems 

–  based upon the number of concurrent Instruction 

(or control) streams and Data streams 
 
§  SISD: Single Instruction, Single Data 

–  conventional uniprocessor 
§  SIMD: Single Instruction, Multiple Data 

–  one instruction stream, multiple data paths 
–  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar) 
–  shared memory SIMD (STARAN, vector computers) 

§  MIMD: Multiple Instruction, Multiple Data 
–  message passing machines (Transputers, nCube, CM-5) 
–  non-cache-coherent shared memory machines (BBN Butterfly, T3D) 
–  cache-coherent shared memory machines (Sequent, Sun Starfire, 

SGI Origin) 
§  MISD: Multiple Instruction, Single Data 

–  Not a practical configuration 

Michael J. Flynn: 

http://arith.stanford.edu/~flynn/ 
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SIMD: Single Instruction, Multiple Data 
(Data Level Paralleism) 

§  SIMD architectures can exploit  
    significant data-level parallelism for: 

– matrix-oriented scientific computing 
– media-oriented image and sound processors 

§  SIMD is more energy efficient than MIMD 
– Only needs to fetch one instruction per data operation 

processing multiple data elements 
– Makes SIMD attractive for personal mobile devices 

§  SIMD allows programmer to continue to think 
sequentially 
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SIMD Parallelism 
§  Vector architectures 
§  SIMD extensions 
§  Graphics Processor Units (GPUs) 

§  For x86 processors: 
–  Expect two additional cores per chip per year (MIMD) 
–  SIMD width to double every four years 
–  Potential speedup from SIMD to be twice that from MIMD! 
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Vector Programming Model 
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VMIPS Vector Instructions 
§  Suffix 

–  VV suffix 
–  VS suffix 

§  Load/Store 
–  LV/SV 
–  LVWS/SVWS 

§  Registers 
–  VLR (vector 

length 
register) 

–  VM (vector 
mask) 
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AXPY (64 elements) (Y = a * X + Y) in MIPS 
and VMIPS 

§  # instrs:  
–  6 vs ~600 

§  Pipeline stalls 
–  64x higher by 

MIPS  
§  Vector chaining 

(forwarding) 
–  V1, V2, V3 and V4 

for (i=0; i<64; i++) 
  Y[i] = a* X[i] + Y[i]; 

The starting addresses of X and Y 
are in Rx and Ry, respectively 
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History: Supercomputers 
§  Definition of a supercomputer: 

–  Fastest machine in world at given 
task 

–  A device to turn a compute-bound 
problem into an I/O bound problem  

–  Any machine costing $30M+ 
–  Any machine designed by 

Seymour Cray (originally) 

§  CDC6600 (Cray, 1964) regarded as 
first supercomputer 

–  A vector machine 

§  In 70s-80s, Supercomputer ≡ 
Vector Machine 

§  www.cray.com: The 
Supercomputer Company 

https://en.wikipedia.org/wiki/Seymour_Cray 

http://www.cray.com/company/history/seymour-cray 

The Father of Supercomputing 
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Vector Instruction Execution with 
Pipelined Functional Units 
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Vector Length Register 
§  Vector length not known at compile time? 
§  Use Vector Length Register (VLR) 
§  Use strip mining for vectors over the maximum length 

(serialized version before vectorization by compiler) 
low = 0; 
VL = (n % MVL); /*find odd-size piece using modulo op % */ 
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 
  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 
 low = low + VL; /*start of next vector*/ 
 VL = MVL; /*reset the length to maximum vector length*/ 

} 
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Vector Mask Registers 
 for (i = 0; i < 64; i=i+1) 
  if (X[i] != 0) 
   X[i] = X[i] – Y[i]; 

§  Use vector mask register to “disable” elements (1 bit 
per element): 
 LV   V1,Rx   ;load vector X into V1 
 LV   V2,Ry   ;load vector Y 
 L.D   F0,#0   ;load FP zero into F0 
 SNEVS.D  V1,F0   ;sets VM(i) to 1 if V1(i)!=F0 
 SUBVV.D  V1,V1,V2  ;subtract under vector mask 
 SV   Rx,V1   ;store the result in X 

§  GFLOPS rate decreases! 
–  Vector operation becomes bubble (“NOP”) at elements where 

mask bit is clear 
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Stride 
DGEMM (Double-Precision Matrix Multiplication)   
for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 
   A[i][j] = 0.0; 
   for (k = 0; k < 100; k=k+1) 
      A[i][j] = A[i][j] + B[i][k] * D[k][j]; 
  } 

§  Must vectorize multiplication of rows of B with columns of D 
–  Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes) 

§  Use non-unit stride 
–  LDWS R3, (R1, R2) where R2 = 800 

§  Bank conflict (stall) occurs when the same bank is hit faster than 
bank busy time: 
–  #banks / LCM(stride,#banks) < bank busy time 
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Scatter-Gather 
§  Sparse matrix: 

– Non-zero values are compacted to a smaller value array (A[ ]) 
–  indirect array indexing, i.e. use an array to store the index to 

value array (K[ ]) 

for (i = 0; i < n; i=i+1) 
  A[K[i]] = A[K[i]] + C[M[i]]; 

 
§  Use index vector: 

 LV   Vk, Rk    ;load K 
 LVI   Va, (Ra+Vk)   ;load A[K[]] 
 LV   Vm, Rm   ;load M 
 LVI   Vc, (Rc+Vm)   ;load C[M[]] 
 ADDVV.D  Va, Va, Vc   ;add them 
 SVI   (Ra+Vk), Va   ;store A[K[]] 
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SIMD INSTRUCTION SET 
EXTENSION FOR MULTIMEDIA 
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What is Multimedia 
§  Multimedia is a combination of 

text, graphic, sound, 
animation, and video that is 
delivered interactively to the 
user by electronic or digitally 
manipulated means.  

https://en.wikipedia.org/wiki/Multimedia 

Videos contains frame (images) 
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Image Format and Processing 
§  Pixels 

–  Images are matrix of pixels 

§  Binary images 
–  Each pixel is either 0 or 1 
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Image Format and Processing 
§  Pixels 

–  Images are matrix of pixels 

 
§  Grayscale images 

–  Each pixel value normally range from 0 (black) to 255 (white) 
–  8 bits per pixel 
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Image Format and Processing 
§  Pixels 

–  Images are matrix of pixels 
§  Color images 

–  Each pixel has three/four values (4 bits or 8 bits each) each 
representing a color scale 
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Image Processing 
§  Mathematical operations by using any form of signal 

processing 
– Changing pixel values by matrix operations 
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Image Processing: The major of the filter 
matrix 

§  http://lodev.org/cgtutor/filtering.html 
§  https://en.wikipedia.org/wiki/

Kernel_(image_processing) 
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Image Data Format and Processing for 
SIMD Architecture 

§  Data element 
– 4, 8, 16 bits (small) 

§  Same operations applied to every element 
(pixel) 
– Perfect for data-level parallelism 
 

Can fit multiple pixels in a regular scalar 
register 

– E.g. for 8 bit pixel, a 64-bit register can take 
8 of them 
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Multimedia Extensions (aka SIMD 
extensions) to Scalar ISA 

§  Very short vectors added to existing ISAs for microprocessors 
§  Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b 

–  Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b 
–  Newer designs have wider registers 

»  128b for PowerPC Altivec, Intel SSE2/3/4 
»  256b for Intel AVX  

§  Single instruction operates on all elements within register 

16b	 16b	 16b	 16b	

32b	 32b	

64b	

8b	 8b	 8b	 8b	 8b	 8b	 8b	 8b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

+ + + + 4x16b	adds	
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A Scalar FU to A Multi-Lane SIMD Unit 
§  Adder 

–  Partitioning the 
carry chains 
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MMX SIMD Extensions to X86 
§  MMX instructions added in 1996  

– Repurposed the 64-bit floating-point registers to perform 8 8-
bit operations or 4 16-bit operations simultaneously.  

– MMX reused the floating-point data transfer instructions to 
access memory.  

–  Parallel MAX and MIN operations, a wide variety of masking 
and conditional instructions, DSP operations, etc. 

§  Claim: overall speedup 1.5 to 2X for 2D/3D graphics, 
audio, video, speech, comm., ... 
–  use in drivers or added to library routines; no compiler 

+ 
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MMX Instructions 
§  Move 32b, 64b 
§  Add, Subtract in parallel: 8 8b, 4 16b, 2 32b 

–  opt. signed/unsigned saturate (set to max) if overflow 
§  Shifts (sll,srl, sra), And, And Not, Or, Xor  

in parallel: 8 8b, 4 16b, 2 32b 
§  Multiply, Multiply-Add in parallel: 4 16b 
§  Compare = , > in parallel: 8 8b, 4 16b, 2 32b 

–  sets field to 0s (false) or 1s (true); removes branches 
§  Pack/Unpack 

– Convert 32b<–> 16b, 16b <–> 8b 
–  Pack saturates (set to max) if number is too large 
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SSE/SSE2/SSE3 SIMD Extensions to X86 
§  Streaming SIMD Extensions (SSE) successor in 1999 

– Added separate 128-bit registers that were 128 bits wide 
»  16 8-bit operations, 8 16-bit operations, or 4 32-bit operations.  
»  Also perform parallel single-precision FP arithmetic.  

–  Separate data transfer instructions.  
–  double-precision SIMD floating-point data types via SSE2 in 

2001, SSE3 in 2004, and SSE4 in 2007.  
»  increased the peak FP performance of the x86 computers.  

–  Each generation also added ad hoc instructions to accelerate 
specific multimedia functions.  
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AVX SIMD Extensions for X86 
§  Advanced Vector Extensions (AVX), added in 2010 
§  Doubles the width of the registers to 256 bits  

–  double the number of operations on all narrower data types. 
Figure 4.9 shows AVX instructions useful for double-
precision floating-point computations. 

§  AVX includes preparations to extend to 512 or 1024 
bits bits in future generations of the architecture.  
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AXPY 

§  256-bit SIMD 
exts 
–  4 double FP 

§  MIPS: 578 insts 
§  SIMD MIPS: 149 

–  4× reduction 

§  VMIPS: 6 instrs 
–  100× reduction 

for (i=0; i<64; i++) 
  Y[i] = a* X[i] + Y[i]; 
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Multimedia Extensions versus Vectors 
§  Limited instruction set: 

–  no vector length control 
–  no strided load/store or scatter/gather 
–  unit-stride loads must be aligned to 64/128-bit boundary 

§  Limited vector register length: 
–  requires superscalar dispatch to keep multiply/add/load units 

busy 
–  loop unrolling to hide latencies increases register pressure 

§  Trend towards fuller vector support in 
microprocessors 
– Better support for misaligned memory accesses 
–  Support of double-precision (64-bit floating-point) 
– New Intel AVX spec (announced April 2008), 256b vector 

registers (expandable up to 1024b)  

32 
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Programming Multimedia SIMD Architectures  

§  The easiest way to use these instructions has been 
through libraries or by writing in assembly language. 
–   The ad hoc nature of the SIMD multimedia extensions,  

§  Recent extensions have become more regular  
– Compilers are starting to produce SIMD instructions 

automatically.  
»  Addvanced compilers today can generate SIMD FP instructions 

to deliver much higher performance for scientific codes.  
»  Memory alignment is still an important factor for performance 
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Why are Multimedia SIMD Extensions so 
popular 

§  Cost little to add to the standard arithmetic unit and 
they were easy to implement.  

§  Require little extra state compared to vector 
architectures, which is always a concern for context 
switch times.  

§  Does not requires a lot of memory bandwidth to 
support as what a vector architecture requires.  

§  Others regarding to the virtual memory and cache 
that make SIMD extensions less challenging than 
vector architecture. 

The state of the art is that we are putting a full 
or advanced vector capability to multi/manycore 

CPUs, and Manycore GPUs 
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State of the Art: Intel Xeon Phi Manycore 
Vector Capability 

§  Intel Xeon Phi Knight Corner, 2012, ~60 cores, 4-way SMT 
§  Intel Xeon Phi Knight Landing, 2016, ~60 cores, 4-way SMT and HBM 

–  http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-
Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-
Landing-Sodani-Intel.pdf 

http://primeurmagazine.com/repository/
PrimeurMagazine-AE-PR-12-14-32.pdf 
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State of the Art: ARM Scalable Vector 
Extensions (SVE) 

§  Announced in August 2016 
–  https://community.arm.com/groups/processors/blog/

2016/08/22/technology-update-the-scalable-vector-extension-
sve-for-the-armv8-a-architecture 

–  http://www.hotchips.org/wp-content/uploads/hc_archives/
hc28/HC28.22-Monday-Epub/HC28.22.10-GPU-HPC-Epub/
HC28.22.131-ARMv8-vector-Stephens-Yoshida-ARM-v8-23_51-
v11.pdf 

§  Beyond vector architecture we learned 
–  Vector loop, predict and speculation 
–  Vector Length Agnostic (VLA) programming 

– Check the slide 
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The Roofline Visual Performance Model  
§  Self-study: two pages of text 

–  You need it for some question in assignment 4 

§  More materials: 
–  Slides: 

https://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-
talk.pdf 

–  Paper: 
https://people.eecs.berkeley.edu/~waterman/papers/
roofline.pdf 

– Website: 
https://crd.lbl.gov/departments/computer-science/PAR/
research/roofline/ 


