
Lecture 21: Data Level Parallelism
-- SIMD ISA Extensions for Multimedia and

Roofline Performance Model

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu

www.secs.oakland.edu/~yan

2

Topics for Data Level Parallelism (DLP)
§  Parallelism (centered around …)

–  Instruction Level Parallelism
–  Data Level Parallelism
–  Thread Level Parallelism

§  DLP Introduction and Vector Architecture
– 4.1, 4.2

§  SIMD Instruction Set Extensions for Multimedia
– 4.3

§  Graphical Processing Units (GPU)
– 4.4

§  GPU and Loop-Level Parallelism and Others
– 4.4, 4.5, 4.6, 4.7

Finish in three sessions

3

Acknowledge and Copyright
§  Slides adapted from

– UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

– UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

– Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

– Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

§  https://passlab.github.io/CSE564/copyrightack.html

4

REVIEW

5

Flynn’s Classification (1966)
Broad classification of parallel computing systems

–  based upon the number of concurrent Instruction

(or control) streams and Data streams

§  SISD: Single Instruction, Single Data

–  conventional uniprocessor
§  SIMD: Single Instruction, Multiple Data

–  one instruction stream, multiple data paths
–  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
–  shared memory SIMD (STARAN, vector computers)

§  MIMD: Multiple Instruction, Multiple Data
–  message passing machines (Transputers, nCube, CM-5)
–  non-cache-coherent shared memory machines (BBN Butterfly, T3D)
–  cache-coherent shared memory machines (Sequent, Sun Starfire,

SGI Origin)
§  MISD: Multiple Instruction, Single Data

–  Not a practical configuration

Michael J. Flynn:

http://arith.stanford.edu/~flynn/

6

SIMD: Single Instruction, Multiple Data
(Data Level Paralleism)

§  SIMD architectures can exploit
 significant data-level parallelism for:

– matrix-oriented scientific computing
– media-oriented image and sound processors

§  SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation

processing multiple data elements
– Makes SIMD attractive for personal mobile devices

§  SIMD allows programmer to continue to think
sequentially

7

SIMD Parallelism
§  Vector architectures
§  SIMD extensions
§  Graphics Processor Units (GPUs)

§  For x86 processors:
–  Expect two additional cores per chip per year (MIMD)
–  SIMD width to double every four years
–  Potential speedup from SIMD to be twice that from MIMD!

8

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]
VLR Vector Length Register

v1
Vector Load and

Store Instructions
LV v1, (r1, r2)

Base, r1 Stride in r2
Memory

Vector Register

9

VMIPS Vector Instructions
§  Suffix

–  VV suffix
–  VS suffix

§  Load/Store
–  LV/SV
–  LVWS/SVWS

§  Registers
–  VLR (vector

length
register)

–  VM (vector
mask)

10

AXPY (64 elements) (Y = a * X + Y) in MIPS
and VMIPS

§  # instrs:
–  6 vs ~600

§  Pipeline stalls
–  64x higher by

MIPS
§  Vector chaining

(forwarding)
–  V1, V2, V3 and V4

for (i=0; i<64; i++)
 Y[i] = a* X[i] + Y[i];

The starting addresses of X and Y
are in Rx and Ry, respectively

11

History: Supercomputers
§  Definition of a supercomputer:

–  Fastest machine in world at given
task

–  A device to turn a compute-bound
problem into an I/O bound problem

–  Any machine costing $30M+
–  Any machine designed by

Seymour Cray (originally)

§  CDC6600 (Cray, 1964) regarded as
first supercomputer

–  A vector machine

§  In 70s-80s, Supercomputer ≡
Vector Machine

§  www.cray.com: The
Supercomputer Company

https://en.wikipedia.org/wiki/Seymour_Cray

http://www.cray.com/company/history/seymour-cray

The Father of Supercomputing

12

Vector Instruction Execution with
Pipelined Functional Units

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined
functional units

Lane	

13

Vector Length Register
§  Vector length not known at compile time?
§  Use Vector Length Register (VLR)
§  Use strip mining for vectors over the maximum length

(serialized version before vectorization by compiler)
low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
 Y[i] = a * X[i] + Y[i] ; /*main operation*/
 low = low + VL; /*start of next vector*/
 VL = MVL; /*reset the length to maximum vector length*/

}

14

Vector Mask Registers
 for (i = 0; i < 64; i=i+1)
 if (X[i] != 0)
 X[i] = X[i] – Y[i];

§  Use vector mask register to “disable” elements (1 bit
per element):
 LV V1,Rx ;load vector X into V1
 LV V2,Ry ;load vector Y
 L.D F0,#0 ;load FP zero into F0
 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
 SUBVV.D V1,V1,V2 ;subtract under vector mask
 SV Rx,V1 ;store the result in X

§  GFLOPS rate decreases!
–  Vector operation becomes bubble (“NOP”) at elements where

mask bit is clear

15

Stride
DGEMM (Double-Precision Matrix Multiplication)
for (i = 0; i < 100; i=i+1)

 for (j = 0; j < 100; j=j+1) {
 A[i][j] = 0.0;
 for (k = 0; k < 100; k=k+1)
 A[i][j] = A[i][j] + B[i][k] * D[k][j];
 }

§  Must vectorize multiplication of rows of B with columns of D
–  Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes)

§  Use non-unit stride
–  LDWS R3, (R1, R2) where R2 = 800

§  Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
–  #banks / LCM(stride,#banks) < bank busy time

16

Scatter-Gather
§  Sparse matrix:

– Non-zero values are compacted to a smaller value array (A[])
–  indirect array indexing, i.e. use an array to store the index to

value array (K[])

for (i = 0; i < n; i=i+1)
 A[K[i]] = A[K[i]] + C[M[i]];

§  Use index vector:

 LV Vk, Rk ;load K
 LVI Va, (Ra+Vk) ;load A[K[]]
 LV Vm, Rm ;load M
 LVI Vc, (Rc+Vm) ;load C[M[]]
 ADDVV.D Va, Va, Vc ;add them
 SVI (Ra+Vk), Va ;store A[K[]]

17

SIMD INSTRUCTION SET
EXTENSION FOR MULTIMEDIA

18

What is Multimedia
§  Multimedia is a combination of

text, graphic, sound,
animation, and video that is
delivered interactively to the
user by electronic or digitally
manipulated means.

https://en.wikipedia.org/wiki/Multimedia

Videos contains frame (images)

19

Image Format and Processing
§  Pixels

–  Images are matrix of pixels

§  Binary images
–  Each pixel is either 0 or 1

20

Image Format and Processing
§  Pixels

–  Images are matrix of pixels

§  Grayscale images

–  Each pixel value normally range from 0 (black) to 255 (white)
–  8 bits per pixel

21

Image Format and Processing
§  Pixels

–  Images are matrix of pixels
§  Color images

–  Each pixel has three/four values (4 bits or 8 bits each) each
representing a color scale

22

Image Processing
§  Mathematical operations by using any form of signal

processing
– Changing pixel values by matrix operations

23

Image Processing: The major of the filter
matrix

§  http://lodev.org/cgtutor/filtering.html
§  https://en.wikipedia.org/wiki/

Kernel_(image_processing)

24

Image Data Format and Processing for
SIMD Architecture

§  Data element
– 4, 8, 16 bits (small)

§  Same operations applied to every element
(pixel)
– Perfect for data-level parallelism

Can fit multiple pixels in a regular scalar
register

– E.g. for 8 bit pixel, a 64-bit register can take
8 of them

25

Multimedia Extensions (aka SIMD
extensions) to Scalar ISA

§  Very short vectors added to existing ISAs for microprocessors
§  Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

–  Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
–  Newer designs have wider registers

»  128b for PowerPC Altivec, Intel SSE2/3/4
»  256b for Intel AVX

§  Single instruction operates on all elements within register

16b	 16b	 16b	 16b	

32b	 32b	

64b	

8b	 8b	 8b	 8b	 8b	 8b	 8b	 8b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

+ + + + 4x16b	adds	

26

A Scalar FU to A Multi-Lane SIMD Unit
§  Adder

–  Partitioning the
carry chains

27

MMX SIMD Extensions to X86
§  MMX instructions added in 1996

– Repurposed the 64-bit floating-point registers to perform 8 8-
bit operations or 4 16-bit operations simultaneously.

– MMX reused the floating-point data transfer instructions to
access memory.

–  Parallel MAX and MIN operations, a wide variety of masking
and conditional instructions, DSP operations, etc.

§  Claim: overall speedup 1.5 to 2X for 2D/3D graphics,
audio, video, speech, comm., ...
–  use in drivers or added to library routines; no compiler

+

28

MMX Instructions
§  Move 32b, 64b
§  Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

–  opt. signed/unsigned saturate (set to max) if overflow
§  Shifts (sll,srl, sra), And, And Not, Or, Xor

in parallel: 8 8b, 4 16b, 2 32b
§  Multiply, Multiply-Add in parallel: 4 16b
§  Compare = , > in parallel: 8 8b, 4 16b, 2 32b

–  sets field to 0s (false) or 1s (true); removes branches
§  Pack/Unpack

– Convert 32b<–> 16b, 16b <–> 8b
–  Pack saturates (set to max) if number is too large

29

SSE/SSE2/SSE3 SIMD Extensions to X86
§  Streaming SIMD Extensions (SSE) successor in 1999

– Added separate 128-bit registers that were 128 bits wide
»  16 8-bit operations, 8 16-bit operations, or 4 32-bit operations.
»  Also perform parallel single-precision FP arithmetic.

–  Separate data transfer instructions.
–  double-precision SIMD floating-point data types via SSE2 in

2001, SSE3 in 2004, and SSE4 in 2007.
»  increased the peak FP performance of the x86 computers.

–  Each generation also added ad hoc instructions to accelerate
specific multimedia functions.

30

AVX SIMD Extensions for X86
§  Advanced Vector Extensions (AVX), added in 2010
§  Doubles the width of the registers to 256 bits

–  double the number of operations on all narrower data types.
Figure 4.9 shows AVX instructions useful for double-
precision floating-point computations.

§  AVX includes preparations to extend to 512 or 1024
bits bits in future generations of the architecture.

31

AXPY

§  256-bit SIMD
exts
–  4 double FP

§  MIPS: 578 insts
§  SIMD MIPS: 149

–  4× reduction

§  VMIPS: 6 instrs
–  100× reduction

for (i=0; i<64; i++)
 Y[i] = a* X[i] + Y[i];

32

Multimedia Extensions versus Vectors
§  Limited instruction set:

–  no vector length control
–  no strided load/store or scatter/gather
–  unit-stride loads must be aligned to 64/128-bit boundary

§  Limited vector register length:
–  requires superscalar dispatch to keep multiply/add/load units

busy
–  loop unrolling to hide latencies increases register pressure

§  Trend towards fuller vector support in
microprocessors
– Better support for misaligned memory accesses
–  Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector

registers (expandable up to 1024b)

32

33

Programming Multimedia SIMD Architectures

§  The easiest way to use these instructions has been
through libraries or by writing in assembly language.
–  The ad hoc nature of the SIMD multimedia extensions,

§  Recent extensions have become more regular
– Compilers are starting to produce SIMD instructions

automatically.
»  Addvanced compilers today can generate SIMD FP instructions

to deliver much higher performance for scientific codes.
»  Memory alignment is still an important factor for performance

34

Why are Multimedia SIMD Extensions so
popular

§  Cost little to add to the standard arithmetic unit and
they were easy to implement.

§  Require little extra state compared to vector
architectures, which is always a concern for context
switch times.

§  Does not requires a lot of memory bandwidth to
support as what a vector architecture requires.

§  Others regarding to the virtual memory and cache
that make SIMD extensions less challenging than
vector architecture.

The state of the art is that we are putting a full
or advanced vector capability to multi/manycore

CPUs, and Manycore GPUs

35

State of the Art: Intel Xeon Phi Manycore
Vector Capability

§  Intel Xeon Phi Knight Corner, 2012, ~60 cores, 4-way SMT
§  Intel Xeon Phi Knight Landing, 2016, ~60 cores, 4-way SMT and HBM

–  http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-
Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-
Landing-Sodani-Intel.pdf

http://primeurmagazine.com/repository/
PrimeurMagazine-AE-PR-12-14-32.pdf

36

State of the Art: ARM Scalable Vector
Extensions (SVE)

§  Announced in August 2016
–  https://community.arm.com/groups/processors/blog/

2016/08/22/technology-update-the-scalable-vector-extension-
sve-for-the-armv8-a-architecture

–  http://www.hotchips.org/wp-content/uploads/hc_archives/
hc28/HC28.22-Monday-Epub/HC28.22.10-GPU-HPC-Epub/
HC28.22.131-ARMv8-vector-Stephens-Yoshida-ARM-v8-23_51-
v11.pdf

§  Beyond vector architecture we learned
–  Vector loop, predict and speculation
–  Vector Length Agnostic (VLA) programming

– Check the slide

37

The Roofline Visual Performance Model
§  Self-study: two pages of text

–  You need it for some question in assignment 4

§  More materials:
–  Slides:

https://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-
talk.pdf

–  Paper:
https://people.eecs.berkeley.edu/~waterman/papers/
roofline.pdf

– Website:
https://crd.lbl.gov/departments/computer-science/PAR/
research/roofline/

