Lecture 21: Data Level Parallelism
-- SIMD ISA Extensions for Multimedia and
Roofline Performance Model

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics for Data Level Parallelism (DLP)

Parallelism (centered around ...)
— Instruction Level Parallelism
— Data Level Parallelism
— Thread Level Parallelism

DLP Introduction and Vector Architecture
—4.1,4.2

SIMD Instruction Set Extensions for Multimedia
—-4.3

Graphical Processing Units (GPU)
—-4.4

GPU and Loop-Level Parallelism and Others
—4.4,45,4.6,4.7

Finish in three sessions

Acknowledge and Copyright

= Slides adapted from

— UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

— UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

— Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

» https:/Ipasslab.github.io/CSES564/copyrightack.htmi

REVIEW

Flynn’s Classification (1966)

Broad classification of parallel computing systems
— based upon the number of concurrent Instruction

(or control) streams and Data streams

Michael J. Flynn:

= SISD: Single Instruction, Single Data http://arith.stanford.edu/~flynn/
— conventional uniprocessor
= SIMD: Single Instruction, Multiple Data
— one instruction stream, multiple data paths
— distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
— shared memory SIMD (STARAN, vector computers)
= MIMD: Multiple Instruction, Multiple Data
— message passing machines (Transputers, nCube, CM-5)
— non-cache-coherent shared memory machines (BBN Butterfly, T3D)

— cache-coherent shared memory machines (Sequent, Sun Starfire,
SGI Origin)

= MISD: Multiple Instruction, Single Data
— Not a practical configuration 5

SIMD: Single Instruction, Multiple Data
= SIMD architectures can exploit siMD (Instruction pool |

significant data-level parallelism for:
— matrix-oriented scientific computing
— media-oriented image and sound processors

)

Data Pool

=
(=
-
_
2
3
>

= SIMD is more energy efficient than MIMD -

— Only needs to fetch one instruction per data operation
processing multiple data elements

— Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think
sequentially

SIMD Parallelism

= Vector architectures
= SIMD extensions
* Graphics Processor Units (GPUs)

= For x86 processors:
— Expect two additional cores per chip per year (MIMD)
— SIMD width to double every four years
— Potential speedup from SIMD to be twice that from MIMD!

Vector Programming Model

Store Instructions

Vector Reglster

(Scalar Registers Vector Registers \
15— vl
ro VETI0T 11 121 [VLRMAX-1]
K Vector Length Register VLR)
]] vl | / | / | : | :] \
Vector Arithmetic v2— / | | —
Instructions
ADDV v3, vl, v2 v3 @ @ @ @ @ | @ .
_ [0] [1] [VLR-1]
4 Vector Load and)

_

Base, ri é‘otrlde in ri

Memory

R

VMIPS Vector Instructions

= Suffix
— VV suffix
— VS suffix

= Load/Store

— LV/SV
— LVWS/SVWS

= Registers

— VLR (vector
length
register)

— VM (vector
mask)

Instruction Operands Function

DVV.D Vi,v2,v3 Add elements of V2 and V3, then put each result in V1.
ADDVS.D V1,V2,F0 Add FO to each element of V2, then put each result in V1.
SUBVV.D vi,v2,v3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,FO0,V2 Subtract elements of V2 from F0, then put each result in V1.
MULVV.D V1i,v2,V3 Multiply elements of V2 and V3, then put each result in V1.
MULVS.D V1,vV2,F0 Multiply each element of V2 by FO0, then put each result in V1.
DIVVV.D V1i,v2,V3 Divide elements of V2 by V3, then put each result in V1.
DIVVS.D V1,vV2,F0 Divide elements of V2 by F0, then put each result in V1.

V1,R1 Load vector register V1 from memory starting at address R1.
SV R1,V1 Store vector register V1 into memory starting at address R1.
LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e., R1 + i x R2).
SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2).
LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+vV2),V1 Store V1 to vector whose elements are at R1 + V2 (1) (i.e., V2 is an index).

V1,Vv2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a
S--VS.D V1,FO 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in vector-mask register VM and store count in R1.
CVM Set the vector-mask register to all 1s.

MTC1 VLR,R1 Move contents of R1 to vector-length register VL.

MFC1 R1,VLR Move the contents of vector-length register VL to R1.

MVTM VM, FO Move contents of FO to vector-mask register VM.
NV FM FO,VM Move contents of vector-mask register VM to FO.

Figure 4.3 The VMIPS vector instructions, showing only the double-precision floating-point operations. |
addition to the vector registers, there are two special registers, VLR and VM, discussed below. These special registe

AXPY (64 elements) (Y=a* X +Y) in MIPS
— __ andVMIPS

for (i=0; i<64; i++) The starting addresses of Xand Y
Y[i] = a* X[i] + Y[i]; arein Rx and Ry, respectively
L.D FO,a ;1oad scalar a
DADDIU R4,Rx,#512 ;1ast address to load
» #instrs: Loop: L.D F2,0(Rx) ; 1oad XFi]
MUL.D F2,F2,F0 :a x X[i]
— 6 vs ~600 L.D F4,0(Ry) :Toad Y[i]
= Pipeline stalls QDB-D Ei,g‘(lﬁ ;atx X[j']t+ IF]]
i . ,9 (Ry ;store into Y[i
N ﬁn‘:)l:(,glgher by DADDIU Rx,Rx, #8 sincrement index to X
DADDIU Ry,Ry, #8 ;increment index to Y
= Vector chaini g DSUBU R20,R4,Rx ;compute bound
(forwarding) BNEZ R20, Loop scheck if done

L.D FO,a ;1oad scalar a
LV V1,Rx ;:load vector X
MULVS.D V2,V1,FO ;vector-scalar multiply

- V1,V2,V3 and V4

LV V3,Ry ;load vector Y
ADDVV.D V4,v2,V3 ;add
SV V4,Ry ;store the result

10

History: Supercomputers

= Definition of a supercomputer: The Father of Supercomputing

— Fastest machine in world at given
task

— A device to turn a compute-bound
problem into an I/O bound problem

— Any machine costing $30M+

— Any machine designed by =S
Seymour Cray (originally) Seymour Cray <

Electrical engineer

. C DC6600 (C I'ay, 1 964) rega rded as Seymour Roger Cray was an American electrical engineer and

supercomputer architect who designed a series of computers that were

fi rst s u pe rcom p ute r the fastest in the world for decades, and founded Cray Research which
built many of these machines. Wikipedia
- A VeCtor maChlne Born: September 28, 1925, Chippewa Falls, WI
Died: October 5, 1996, Colorado Springs, CO
= |n 70s-80s, Supercomputer = oo e e orace Spings

Awards: Eckert-Mauchly Award

VeCtOI' MaCh i ne Parents: Seymour R. Cray, Lillian Cray

Education: University of Minnesota, Chippewa Falls High School

Fields: Applied mathematics, Computer Science, Electrical engineering

= www.cray.com: The https://en.wikipedia.org/wiki/Seymour_Cray
SuPercomPUter Company http://www.cray.com/company/history/seymour-cray

11

Vector Instruction Execution with

— Pipelined Functional Units

ADDV C,A,B

Execution using
four pipelined
functional units

Execution using
one pipelined
functional unit

A[6] B[6] (A[24] B[24]\A[25] B[25]A[26] B[26]A[27] B[27]

A[5] B[5] A[20] B[20] |A[21] B[21]A[22] B[22]A[23] B[23]

A[4] B[4] A[16] B[16] |A[17] B[17]A[18] B[18]A[19] B[19]

A[3] B[3] A[12] B[12] |A[13] B[13]A[14] B[14]A[15] B[15]
' ' ' ' ' ' ' ' ' '

4 \ 1 | T T 4

\C[Z] / \C[8] / \C[Q] / \C[IO]/ \C[ll]/

cio] Lane —C[o] C[1] C[2] C[3]

12

Vector Length Register

= Vector length not known at compile time?
» Use Vector Length Register (VLR)

= Use strip mining for vectors over the maximum length
(serialized version before vectorization by compiler)

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { [*outer loop*/
for (i = low; i < (low+VL); i=i+1) [*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation®/
low = low + VL; /[*start of next vector®*/
VL = MVL; /*reset the length to maximum vector length*/

}
Value of | 0 1 2 3 ce e nMVL
Range of i 0 m (m+MVL) (m+2xMVL) ... - (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)

+MVL +2xMVL +3xMVL

13

Vector Mask Registers

for (i=0; i < 64; i=i+1)
if (X[i] !=0)
X[i] = X[i] = Y[i];
= Use vector mask register to “disable” elements (1 bit
per element):

LV V1,Rx :load vector X into V1

LV V2,Ry :load vector Y

L.D FO,#0 :load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D vV1,v1,V2 :subtract under vector mask
SV Rx,V1 :store the result in X

= GFLOPS rate decreases!

— Vector operation becomes bubble (“NOP”) at elements where
mask bit is clear

14

Stride

DGEMM (Double-Precision Matrix Multiplication)
for (i=0; i <100; i=i+1)
for (j=0;j <100; j=j+1) {
A[0G] = 0.0;
for (k = 0; k <100; k=k+1)
A[0] = ALiG] + Blil[k] * DIK]GI;

= Must vectorize multiplication of rows of B with columns of D
— Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes)

= Use non-unit stride
— LDWS R3, (R1, R2) where R2 = 800

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

— #banks / LCM(stride,#banks) < bank busy time

15

Scatter-Gather

= Sparse matrix:
— Non-zero values are compacted to a smaller value array (A[])

— indirect array indexing, i.e. use an array to store the index to
value array (K[])

/1.0 0 50 O 0 0 0 0 \
0 30 O 0 0 0 11.0 0
0 0 0 0 9.0 0 0 0
for (i=0; i < n; i=i+1) O 0 60 0 0 0 0 0
: .) o 0 0 70 0 0O 0 0
A[KIi]] = A[K[i]] + C[M[i]]; 20 0 0 0 0 100 0 0
0 0 0 80 O 0 0 0
\0 40 0 0 0 0 0 120/
= Use index vector:
LV VK, Rk ‘load K
LVI Va, (Ra+Vk) ;load A[KI]]
LV Vm, Rm :load M
LVI Vc, (Rc+Vm) ;load C[M[]]
ADDVV.D Va,Va, Vc :add them
SVi (Ra+Vk), Va ;store A[K]]]

16

SIMD INSTRUCTION SET
EXTENSION FOR MULTIMEDIA

17

What is Multimedia

Examples of individual content forms
combined in multimedia

= Multimedia is a combination of
text, graphic, sound,
animation, and video that is P
delivered interactively to the ““'wmta

user by electronic or digitally %m"“‘m

manipulated means. Text Audio Still Images
Medium Elements Time-dependence .‘K ﬁi: %y
Text Printable characters No i '
Graphic | Vectors, regions No Animation Video Interactivity

Footage
Image Pixels No
https://en.wikipedia.org/wiki/Multimedia

Audio Sound, Volume Yes
Video Raster images, graphics | Yes
Videos contains frame (images) > >

18

pixe

1111110111111 1111111111181 191999111
111110001 1111111111 1111¢C¢¢ 111199111

1111100000000 C 1111111100001 1C00111 11

FOO000000O0O -
COVO T OO0 OOO -
- —"OrOO"00
vooooOr-
voooorow

1111111911 1110000C11111¢¢CCC 11111111
1199919191111 1111000000000CG 11111919111

L
L

1]

ither 0 or 1

IS €l

Image Format and Processing

— Images are matrix of pixels

— Each pixel

Pixels
= Binary images

19

Image Format and Processing
A

= Pixels
— Images are matrix of pixels

v +/ pixel

X

= Grayscale images
— Each pixel value normally range from 0 (black) to 255 (white)
— 8 bits per pixel

But the camera sees this:

194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 221 209 205 191 167 147 115 129 163
114 126 140 188 176 165 152 140 170 106 78 88
87 103 115 154 143 142 149 153 173 100 57 7
102 112 106 131 122 138 152 147 128 B4 S8 66
oF 95 79 104 105 124 129 113 107 & & 67
68 71 6 98 89 92 98 95 89 88 76 6
41 56 68 99 63 45 &0 82 58 76 74 65
20 4 6 75 S6 41 S1 73 S5 70 63 &4
SO S0 S7 69 75 75 13 74 53 &8 5 W
72 59 53 66 84 92 B4 74 S7T 2 63 &
67 61 S8 65 75 18 16 73 59 15 & %0

Image Format and Processing

= Pixels
— Images are matrix of pixels
. pixel
= Color images = 4

— Each pixel has three/four values (4 bits or 8 bits each) each

representing a color scale__ B
.
A
Sample Length: 4 4 s 4
Channel Membership: Alpha Red Green Blue
Bit Number: 15 14 131211 10 9 8 7 6 5 4 3 2 1 0
Sample Length: 8 8 8 . 8
Channel Membership: Blue Green Red Alpha

BitNumber: 31 0 2 8 27 26252428227 20191817 1615141312110 9 8 7 6 § 4 3 2 1 0
21

Image Processing

= Mathematical operations by using any form of signal

processing

— Changing pixel values by matrix operations

Smoeothing Image(Gaussian blur

method)
(A1 X
" - / ’) 1 1/ 1/
AN BTA T N Iq ‘s ‘s
| 99 | TO6] 98 o Wy Vel Ve
{ (o5 | 9o | &5 Yal Vol Ve
_Driginal Image Fiker
7 AADOCME) Fixels
4 ¢ = 1.'.’ ll'h &
LI = 0+ RS +
VA0 < LN 4
Y leagefiny U495 = 1,090 + 11, *8S

98,3133
The above is repeated for every pixel in the
original image to generate the smoothed image

Blur the source
horizontally

Blur the blur
verticaly

Result

22

Image Processing: The major of the filter

= http://lodev.org/cqtutor/filtering.html

= https://en.wikipedia.org/wiki/ Identity
Kernel (image_processing)

Smoothing Image(Gaussian blur

method)
(g — i - g - Edge detection
™ T T T IIrm | ! ™ S| Jexv) oS 'Iq '_-:‘ "-:’
'___v Y Im s p-*" .4", ",‘. "a.‘
o5 | o | &5 YalVal'e
_Driginal Image Fiker
3 Pixels
S o l.o'Qll'"‘ b
104+ T T00 + RS + Sharpen
l‘l“A()q e l‘o A\'JN +
T Iegefiny 495 + 1,290 + 1,85
98,3335
Box blur

The above is repeated for every pixel in the
original image to generate the smoothed image

(normalized)

Gaussian blur
(approximation)

Image Data Format and Processing for

— SIMD Architecture

= Data element
—4, 8, 16 bits (small)

= Same operations applied to every element
(pixel)

— Perfect for data-level parallelism

Can fit multiple pixels in a regular scalar
register

—E.g. for 8 bit pixel, a 64-bit register can take

8 of them

24

Multimedia Extensions (aka SIMD

—___extensions) to Scalar ISA

64b

32b 32b

16b 16b 16b 16b

8b 8b 8b 8b 8b 8b 8b

8b

= Very short vectors added to existing ISAs for microprocessors
= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b
— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b

— Newer designs have wider registers
» 128b for PowerPC Altivec, Intel SSE2/3/4
» 256b for Intel AVX

= Single instruction operates on all elements within register

16b 16b 16b 16b

A\

\

A

N\ 16 \ 16b N\ 16 16b

¥y S © S & S O

16b 16b 16b 16b

25

A Scalar FU to A Multi-Lane SIMD Unit

= Adder
— Partitioning the

'

'

'

Aas..63 Bas..63 A32..47832..47 A16.31B16..31 A0..15B0..15

'

carry chains

16-bit 16-bit 16-bit 16-bit
LCU LCU LCU LCU
Adder Adder Adder Adder
Sa4s8..63 S32.4 S16..31 So..15
P48 948 Cag P32932 C32 P16916 Cis PO go
E 64-bit Lookahead Carry Unit PG GG

Instruction category

Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)

and quad-precision (128-bit) floating-point operations.

‘o

26

MMX SIMD Extensions to X86

= MMX instructions added in 1996

— Repurposed the 64-bit floating-point registers to perform 8 8-
bit operations or 4 16-bit operations simultaneously.

— MMX reused the floating-point data transfer instructions to
access memory.

— Parallel MAX and MIN operations, a wide variety of masking
and conditional instructions, DSP operations, etc.

= Claim: overall speedup 1.5 to 2X for 2D/3D graphics,
audio, video, speech, comm,, ...

— use in drivers or added to library routines; no compiler

27

MMX Instructions

Move 32b, 64b
Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

— opt. signed/unsigned saturate (set to max) if overflow

Shifts (sll,srl, sra), And, And Not, Or, Xor
in parallel: 8 8b, 4 16b, 2 32b

Multiply, Multiply-Add in parallel: 4 16b
Compare =, > in parallel: 8 8b, 4 16b, 2 32b

— sets field to 0s (false) or 1s (true); removes branches

Pack/Unpack
— Convert 32b<-> 16b, 16b <—> 8b
— Pack saturates (set to max) if number is too large

28

SSE/SSE2/SSE3 SIMD Extensions to X86

= Streaming SIMD Extensions (SSE) successor in 1999

— Added separate 128-bit registers that were 128 bits wide
» 16 8-bit operations, 8 16-bit operations, or 4 32-bit operations.
» Also perform parallel single-precision FP arithmetic.

— Separate data transfer instructions.

— double-precision SIMD floating-point data types via SSE2 in
2001, SSE3 in 2004, and SSE4 in 2007.

» increased the peak FP performance of the x86 computers.

— Each generation also added ad hoc instructions to accelerate
specific multimedia functions.

29

AVX SIMD Extensions for X86

= Advanced Vector Extensions (AVX), added in 2010
= Doubles the width of the registers to 256 bits

— double the number of operations on all narrower data types.
Figure 4.9 shows AVX instructions useful for double-
precision floating-point computations.

= AVXincludes preparations to extend to 512 or 1024
bits bits in future generations of the architecture.

AVX Instruction Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFEMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

AXPY

for (i=0; i<64; i++)
Y[i] = a* X[i] + Y[i]:] [y

256-bit SIMD
exts

— 4 double FP

MIPS: 578 insts
SIMD MIPS: 149

— 4x reduction

VMIPS: 6 instrs

— 100% reduction

Loop:

L.D
DADDIU
Loop: L.D
MUL.D
L.D FO,a
V1,Rx
MULVS.D V2,Vl
LV V3,Ry
ADDVV.D V4,62,
SV V4,Ry
L.D FO,a
MoV Fl, FO
MOV E2, FQ
MoV E3, FO
DADDIU R4,Rx,#512
L.4D E4,0(Rx)
MUL.4D F4,F4,FO
L.4D E8,0(Ry)
ADD.4D E8,F8,F4
S.4D E8,0(Rx)
DADDIU Rx,Rx,#32
DADDIU Ry,Ry,#32
DSUBU R20,R4,Rx
BNEZ R20,Loop

FO,a ;1oad scalar a

R4,Rx,#512 ;1ast address to load
F2,0(Rx) :Toad X[i]
F2,F2,FO0 sa X X[i]

;load scalar a
;load vector X

,FO ;vector-scalar multiply

;load vector Y
V3 ;add

;store the result
;1oad scalar a
; .
.cQpx_a_;nIQ_El_er_SlMD_MUL
T£Qpx_ﬂ_;nfn_gg_gnr_g%ﬁg_ﬁﬁf
;1ast address to load
sload X[i], X[i+1], X[i+2], X[i+3]
saxx[i],axX[i+1] ,axX[i+2] ,axX[i+3]
sToad Y[i], Y[i+1], Y[i+2], Y[i+3]
saxX[1]+Y[i]s ooy axXX[i+3]+Y[i+3]
;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
sincrement index to X
sincrement index to Y
;compute bound
scheck if done

31

Multimedia Extensions versus Vectors

* Limited instruction set:
— no vector length control

— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

= Limited vector register length:

— requires superscalar dispatch to keep multiply/add/load units
busy

— loop unrolling to hide latencies increases register pressure

* Trend towards fuller vector support in
microprocessors
— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector
registers (expandable up to 1024b)

32 2

Programming Multimedia SIMD Architectures

* The easiest way to use these instructions has been
through libraries or by writing in assembly language.

— The ad hoc nature of the SIMD multimedia extensions,

= Recent extensions have become more regular

— Compilers are starting to produce SIMD instructions
automatically.

» Addvanced compilers today can generate SIMD FP instructions
to deliver much higher performance for scientific codes.

» Memory alignment is still an important factor for performance

33

Why are Multimedia SIMD Extensions so
- popular

= Cost little to add to the standard arithmetic unit and
they were easy to implement.

= Require little extra state compared to vector
architectures, which is always a concern for context
switch times.

= Does not requires a lot of memory bandwidth to
support as what a vector architecture requires.

= Others regarding to the virtual memory and cache
that make SIMD extensions less challenging than
vector architecture.

The state of the art is that we are putting a full
or advanced vector capability to multi/manycore
CPUs, and Manycore GPUs

34

State of the Art: Intel Xeon Phi Manycore
Vector Capabili

* Intel Xeon Phi Knight Corner, 2012, ~60 cores, 4-way SMT

* Intel Xeon Phi Knight Landing, 2016, ~60 cores, 4-way SMT and HBM

— http://lwww.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-
Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-

Landing-Sodani-Intel.pdf

Icache Fetch &

(32KB 8-way) Decode

Allocate/
Rename

v v

nteger Rename Bufter

III‘HE%H&IIII

¥k
| *

v 3

#define N 1000000
float x[N][N], y[N]I[N];
#fpragma omp parallel
{
#pragma omp for
for (int i=0; i<N; i++) {
#pragma omp simd safelen (18)
for (int j=18; j<N-18; j++) {
x[1]10J] = x[1]1[3J-18] + sinf(y[i][J]);
yI[i][3] y[i][J+18] + cosf(x[1i]1[J]1);

http://primeurmagazine.com/repository/
PrimeurMagazine-AE-PR-12-14-32.pdf

35

State of the Art: ARM Scalable Vector
_— Extensions (SVE)

= Announced in August 2016

— https://community.arm.com/qgroups/processors/bloqg/
2016/08/22/technology-update-the-scalable-vector-extension-
sve-for-the-armv8-a-architecture

— http://www.hotchips.org/wp-content/uploads/hc archives/
hc28/HC28.22-Monday-Epub/HC28.22.10-GPU-HPC-Epub/
HC28.22.131-ARMv8-vector-Stephens-Yoshida-ARM-v8-23 51-

v11.pdf
= Beyond vector architecture we learned

— Vector loop, predict and speculation
— Vector Length Agnostic (VLA) programming

— Check the slide

36

The Roofline Visual Performance Model

= Self-study: two pages of text

— You need it for some question in assignment 4

= More materials:

— Slides:
https://crd.lbl.gov/assets/pubs presos/parlab08-roofline-

talk.pdf

— Paper:
https://people.eecs.berkeley.edu/~waterman/papers/
roofline.pdf

— Website:
https://crd.lbl.gov/departments/computer-science/PAR/
research/roofline/

37

