
Lecture 20: Data Level Parallelism
-- Introduction and Vector Architecture

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu

www.secs.oakland.edu/~yan

2

Very Important Terms
§  Dynamic Scheduling à Out-of-order Execution
§  Speculation à In-order Commit
§  Superscalar à Multiple Issue

Techniques Goals Implementation Addressing Approaches
Dynamic
Scheduling

Out-of-
order
execution

Reservation
Stations, Load/Store
Buffer and CDB

Data hazards
(RAW, WAW,
WAR)

Register
renaming

Speculation In-order
commit

Branch Prediction
(BHT/BTB) and
Reorder Buffer

Control
hazards
(branch, func,
exception)

Prediction
and
misprediction
recovery

Superscalar/
VLIW

Multiple
issue

Software and
Hardware

To Increase
CPI

By compiler
or hardware

3

Last Lecture: Multithreading
Ti

m
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

4

CSE 564 Class Contents
§  Introduction to Computer Architecture (CA)
§  Quantitative Analysis, Trend and Performance of CA

–  Chapter 1
§  Instruction Set Principles and Examples

–  Appendix A
§  Pipelining and Implementation, RISC-V ISA and Implementation

–  Appendix C, RISC-V (riscv.org) and UCB RISC-V impl
§  Memory System (Technology, Cache Organization and Optimization,

Virtual Memory)
–  Appendix B and Chapter 2
–  Midterm covered till Memory Tech and Cache Organization

§  Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction,
Hardware Speculation, Superscalar, VLIW and SMT)
–  Chapter 3

§  Data Level Parallelism (Vector, SIMD, and GPU)
–  Chapter 4

§  Thread Level Parallelism
–  Chapter 5

5

Topics for Data Level Parallelism (DLP)
§  Parallelism (centered around …)

–  Instruction Level Parallelism
–  Data Level Parallelism
–  Thread Level Parallelism

§  DLP Introduction and Vector Architecture
– 4.1, 4.2

§  SIMD Instruction Set Extensions for Multimedia
– 4.3

§  Graphical Processing Units (GPU)
– 4.4

§  GPU and Loop-Level Parallelism and Others
– 4.4, 4.5, 4.6, 4.7

Finish in two/three sessions

6

Acknowledge and Copyright
§  Slides adapted from

– UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

– UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

– Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

– Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

§  https://passlab.github.io/CSE564/copyrightack.html

7

Flynn’s Classification (1966)
Broad classification of parallel computing systems

–  based upon the number of concurrent Instruction

(or control) streams and Data streams

§  SISD: Single Instruction, Single Data

–  conventional uniprocessor
§  SIMD: Single Instruction, Multiple Data

–  one instruction stream, multiple data paths
–  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
–  shared memory SIMD (STARAN, vector computers)

§  MIMD: Multiple Instruction, Multiple Data
–  message passing machines (Transputers, nCube, CM-5)
–  non-cache-coherent shared memory machines (BBN Butterfly, T3D)
–  cache-coherent shared memory machines (Sequent, Sun Starfire,

SGI Origin)
§  MISD: Multiple Instruction, Single Data

–  Not a practical configuration

Michael J. Flynn:

http://arith.stanford.edu/~flynn/

8

Flynn’s Taxonomy

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

9

More Categories
§  Single program, multiple data (SPMD)

– Multiple autonomous processors execute the program at
independent points

– Difference with SIMD: SIMD imposes a lockstep
–  Programs at SPMD can be at independent points
–  SPMD can run on general purpose processors
– Most common method for parallel computing

§  Multiple program,
multiple data (MPMD)
≈ MIMD
– Multiple autonomous

processors
simultaneously
operating at least 2
independent programs

10

SIMD: Single Instruction, Multiple Data
(Data Level Paralleism)

§  SIMD architectures can exploit
 significant data-level parallelism for:

– matrix-oriented scientific computing
– media-oriented image and sound processors

§  SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation

processing multiple data elements
– Makes SIMD attractive for personal mobile devices

§  SIMD allows programmer to continue to think
sequentially

Instructions stream

processor processor processor processor

Data Data Data Data

Control unit

11

SIMD Parallelism
§  Three variations

–  Vector architectures
–  SIMD extensions
– Graphics Processor Units (GPUs)

§  For x86 processors:
–  Expect two additional cores per chip per year (MIMD)
–  SIMD width to double every four years
–  Potential speedup from SIMD to be twice that from MIMD!

Vector Architecture

12

VLIW vs Vector

§ VLIW	takes	advantage	of	instruc5on	level	parallelism	
(ILP)	by	specifying	mul5ple	instruc5ons	to	execute	in	
parallel	

	
§ Vector	architectures	perform	the	same	opera5on	on	
mul5ple	data	elements	–	single	instruc5on		
–  Data-level	parallelism	

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	

13

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]
VLR Vector Length Register

v1
Vector Load and

Store Instructions
LV v1, (r1, r2)

Base, r1 Stride in r2
Memory

Vector Register

14

Control Information
§  VLR limits the highest vector element to be processed

by a vector instruction
–  VLR is loaded prior to executing the vector instruction with a

special instruction

§  Stride for load/stores:
–  Vectors may not be adjacent in memory addresses
–  E.g., different dimensions of a matrix
–  Stride can be specified as part of the load/store

v1
Vector Load and

Store Instructions
LV v1, (r1, r2)

Base, r1 Stride in r2
Memory

Vector Register

15

Basic Structure of Vector Architecuture
§  VMIPS
§  eight 64-element vector

registers
§  all the functional units are

vector functional units.
§  The vector and scalar

registers have a significant
number of read and write
ports to allow multiple
simultaneous vector
operations.

§  A set of crossbar switches
(thick gray lines) connects
these ports to the inputs
and outputs of the vector
functional units.

16

VMIPS Vector Instructions
§  Suffix

–  VV suffix
–  VS suffix

§  Load/Store
–  LV/SV
–  LVWS/SVWS

§  Registers
–  VLR (vector

length
register)

–  VM (vector
mask)

17

Highlight of VMIPS Vector Instructions
§  Vector operations have the letters “VV/VS” appended.

–  E.g. ADDVV.D is an addition of two double-precision vectors.
§  Vector instructions input:

–  1) a pair of vector registers (ADDVV.D) or
–  2) a vector register and a scalar register (ADDVS.D).

»  all operations use the same value in the scalar register as one input.

§  LV/LVWS and SV/SVWS: vector load and vector store which load or store
an entire vector of double-precision data.
–  One operand is the vector register to be loaded or stored;
–  The other operand, a GPR, is the starting address of the vector in memory.
–  LVWS/SVWS: For stride load/store
–  LVI/SVI: indexed load/store

§  Two additional special-purpose registers:
–  Vector-length register: when the natural vector length is NOT 64
–  Vector-mask register: when loops involve IF statements.

§  In-order scalar processor for vector architecture
–  Not out- of-order superscalar processors.

§  Vectors naturally accommodate varying data sizes.
–  one view of a vector register size is 64 64-bit data elements, but 128 32-bit elements, 256

16-bit elements, and even 512 8-bit elements are equally valid views.

18

AXPY (64 elements) (Y = a * X + Y) in MIPS
and VMIPS

§  # instrs:
–  6 vs ~600

§  Pipeline stalls
–  64x higher by

MIPS
§  Vector chaining

(forwarding)
–  V1, V2, V3 and V4

for (i=0; i<64; i++)
 Y[i] = a* X[i] + Y[i];

The starting addresses of X and Y
are in Rx and Ry, respectively

19

Vector Memory-Memory versus Vector
Register Machines

§  Vector memory-memory instructions hold all vector
operands in main memory

§  The first vector machines, CDC Star-100 (‘73) and TI
ASC (‘71), were memory-memory machines

§  Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

20

Vector Memory-Memory vs. Vector
Register Machines

§  Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?
– All operands must be read in and out of memory

§  VMMAs make if difficult to overlap execution of
multiple vector operations, why?
– Must check dependencies on memory addresses

§  VMMAs incur greater startup latency
–  Scalar code was faster on CDC Star-100 (VMM) for vectors <

100 elements
§  Apart from CDC follow-ons (Cyber-205, ETA-10) all

major vector machines since Cray-1 have had vector
register architectures

§  (we ignore vector memory-memory from now on)

21

Vector Instruction Set Advantages
§  Compact

–  one short instruction encodes N operations

§  Expressive and predictable, tells hardware
that these N operations:
–  are independent
–  use the same functional unit
–  access disjoint registers
–  access registers in same pattern as previous instructions
–  access a contiguous block of memory

 (unit-stride load/store)
–  access memory in a known pattern

(strided load/store)

§  Scalable
–  can run same code on more parallel pipelines (lanes)

22

History: Supercomputers
§  Definition of a supercomputer:

–  Fastest machine in world at given
task

–  A device to turn a compute-bound
problem into an I/O bound problem

–  Any machine costing $30M+
–  Any machine designed by

Seymour Cray (originally)

§  CDC6600 (Cray, 1964) regarded as
first supercomputer
–  A vector machine

§  www.cray.com: The
Supercomputer Company

https://en.wikipedia.org/wiki/Seymour_Cray

http://www.cray.com/company/history/seymour-cray

The Father of Supercomputing

23

Supercomputer Applications
§  �Typical application areas

–  Military research (nuclear weapons, cryptography)
–  Scientific research
–  Weather forecasting
–  Oil exploration
–  Industrial design (car crash simulation)
–  Bioinformatics
–  Cryptography

§  All involve huge computations on large data sets

§  In 70s-80s, Supercomputer ≡ Vector Machine

24

Vector Supercomputers

§  Epitomy: Cray-1, 1976
§  Scalar Unit

–  Load/Store Architecture

§  Vector Extension
–  Vector Registers
–  Vector Instructions

§  Implementation
–  Hardwired Control
–  Highly Pipelined Functional Units
–  Interleaved Memory System
–  No Data Caches
–  No Virtual Memory

25

Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element
Vector Registers

26

Today’s Supercomputers (www.top500.org)

§  MIMD and Hybrid
MIMD/vector or
MIMD/GPU

27

#1 of TOP500 as of Nov 2016

http://sc16.supercomputing.org/

28

Vector Arithmetic Execution

• Use	deep	pipeline	(=>	fast	clock)	
to	execute	element	opera5ons	

•  Simplifies	control	of	deep	pipeline	
because	elements	in	vector	are	
independent	(=>	no	hazards!)		

V
1	

V
2	

V
3	

V3	<-	v1	*	v2	

Six	stage	mul-ply	pipeline	

29

Vector Execution: Element Group

30

Vector Instruction Execution with
Pipelined Functional Units

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined
functional units

31

Vector Unit Structure (4 Lanes)

Lane	

Func-onal	Unit	

Vector	
Registers	

Memory	Subsystem	

Elements	
0,	4,	8,	…	

Elements	
1,	5,	9,	…	

Elements	
2,	6,	10,	

…	

Elements	
3,	7,	11,	

…	

32

Vector Instruction Parallelism
§  Can overlap execution of multiple vector instructions

–  example machine has 32 elements per vector register and 8
lanes

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete	24	opera5ons/cycle	while	issuing	1	short	instruc5on/cycle	

33

Vector Chaining

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector version of register bypassing
–  introduced with Cray-1

34

Vector Chaining Advantage

•  With	chaining,	can	start	dependent	instruc5on	as	soon	as	first	
result	appears	

Load	
Mul	

Add	

Load	
Mul	

Add	Time	

•  Without	chaining,	must	wait	for	last	element	of	result	to	be	
wriaen	before	star5ng	dependent	instruc5on	

35

Automatic Code Vectorization
for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load	
load	

add	

store	

load	
load	

add	

store	

Iter.	1	

Iter.	2	

Scalar	Sequen-al	Code	

Vectoriza5on	is	a	massive	compile-5me	
reordering	of	opera5on	sequencing	

⇒	requires	extensive	loop	dependence	analysis	

Vector	Instruc-on	

load	

load	

add	

store	

load	

load	

add	

store	

Iter.	1	 Iter.	2	

Vectorized	Code	

Ti
m
e	

36

Vector Length Register
§  Vector length not known at compile time?
§  Use Vector Length Register (VLR)
§  Use strip mining for vectors over the maximum length

(serialized version before vectorization by compiler)
low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
 Y[i] = a * X[i] + Y[i] ; /*main operation*/
 low = low + VL; /*start of next vector*/
 VL = MVL; /*reset the length to maximum vector length*/

}

37

Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers,

“Stripmining”
 ANDI R1, N, 63 # N mod 64
 MTC1 VLR, R1 # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1 # Reset full length
 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

38

Vector Mask Registers
 for (i = 0; i < 64; i=i+1)
 if (X[i] != 0)
 X[i] = X[i] – Y[i];

§  Use vector mask register to “disable” elements (1 bit
per element):
 LV V1,Rx ;load vector X into V1
 LV V2,Ry ;load vector Y
 L.D F0,#0 ;load FP zero into F0
 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
 SUBVV.D V1,V1,V2 ;subtract under vector mask
 SV Rx,V1 ;store the result in X

§  GFLOPS rate decreases!
–  Vector operation becomes bubble (“NOP”) at elements where

mask bit is clear

39

Masked Vector Instructions

X[4]

X[5]

X[1]

Write data port

X[7] Y[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time	Implementa5on	
–  scan	mask	vector	and	only	execute	
elements	with	non-zero	masks	

X[1]

X[2]

X[0]

X[3] Y[3]
X[4] Y[4]
X[5] Y[5]
X[6] Y[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

X[7] Y[7] M[7]=1

Simple	Implementa5on	
–  execute	all	N	opera5ons,	turn	off	result	
writeback	according	to	mask	

40

Compress/Expand Operations

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time conditionals and also for general
selection operations

§  Compress packs non-masked elements from one
vector register contiguously at start of destination
vector register
–  population count of mask vector gives packed vector length

§  Expand performs inverse operation

41

Stride
DGEMM (Double-Precision Matrix Multiplication)
for (i = 0; i < 100; i=i+1)

 for (j = 0; j < 100; j=j+1) {
 A[i][j] = 0.0;
 for (k = 0; k < 100; k=k+1)
 A[i][j] = A[i][j] + B[i][k] * D[k][j];
 }

§  Must vectorize multiplication of rows of B with columns of D
–  Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes)

§  Use non-unit stride
–  LDWS

§  Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
–  #banks / LCM(stride,#banks) < bank busy time

42

Scatter-Gather
§  Sparse matrix:

– Non-zero values are compacted to a smaller value array (A[])
–  indirect array indexing, i.e. use an array to store the index to

value array (K[])

for (i = 0; i < n; i=i+1)
 A[K[i]] = A[K[i]] + C[M[i]];

§  Use index vector:

 LV Vk, Rk ;load K
 LVI Va, (Ra+Vk) ;load A[K[]]
 LV Vm, Rm ;load M
 LVI Vc, (Rc+Vm) ;load C[M[]]
 ADDVV.D Va, Va, Vc ;add them
 SVI (Ra+Vk), Va ;store A[K[]]

43

Memory operations
§  Load/store operations move groups of data between

registers and memory
–  Increased mem/instr ratio (intensity)

§  Three types of addressing
– Unit stride

»  Contiguous block of information in memory
»  Fastest: always possible to optimize this

– Non-unit (constant) stride
»  Harder to optimize memory system for all possible strides
»  Prime number of data banks makes it easier to support different

strides at full bandwidth
–  Indexed (gather-scatter)

»  Vector equivalent of register indirect
»  Good for sparse arrays of data
»  Increases number of programs that vectorize

44

Interleaved Memory Layout
§  Great for unit stride:

– Contiguous elements in different DRAMs
–  Startup time for vector operation is latency of single read

§  What about non-unit stride?
– Above good for strides that are relatively prime to 8
– Bad for: 2, 4

Vector Processor

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

U
npipelined
D
RA

M

Addr
Mod 8
= 0

Addr
Mod 8
= 1

Addr
Mod 8
= 2

Addr
Mod 8
= 4

Addr
Mod 8
= 5

Addr
Mod 8
= 3

Addr
Mod 8
= 6

Addr
Mod 8
= 7

45

Avoiding Bank Conflicts
§  Lots of banks
 int x[256][512];
 for (j = 0; j < 512; j = j+1)
 for (i = 0; i < 256; i = i+1)
 x[i][j] = 2 * x[i][j];

§  Even with 128 banks, since 512 is multiple of 128,
conflict on word accesses

§  SW: loop interchange or declaring array not power of
2 (“array padding”)

§  HW: Prime number of banks
–  bank number = address mod number of banks
–  address within bank = address / number of words in bank
– modulo & divide per memory access with prime no. banks?
–  address within bank = address mod number words in bank
–  bank number? easy if 2N words per bank

46

Finding Bank Number and Address within
a bank

§  Problem: Determine the number of banks, Nb and the number of words
in each bank, Nw, such that:
–  given address x, it is easy to find the bank where x will be

found, B(x), and the address of x within the bank, A(x).
–  for any address x, B(x) and A(x) are unique
–  the number of bank conflicts is minimized

§  Solution: Use the Chinese remainder theorem to determine B(x) and
A(x):

 B(x) = x MOD Nb
 A(x) = x MOD Nw where Nb and Nw are co-prime (no factors)

– Chinese Remainder Theorem shows that B(x) and A(x)
unique.

§  Condition allows Nw to be power of two (typical) if Nb is prime of form
2m-1.

§  Simple (fast) circuit to compute (x mod Nb) when Nb = 2m-1:
–  Since 2k

 = 2k-m
 (2m-1) + 2k-m

 ⇒ 2k MOD Nb = 2k-m MOD Nb =…= 2j with j < m
–  And, remember that: (A+B) MOD C = [(A MOD C)+(B MOD C)] MOD C
–  for every power of 2, compute single bit MOD (in advance)
–  B(x) = sum of these values MOD Nb

(low complexity circuit, adder with ~ m bits)

47

Conclusion
§  Vector is alternative model for exploiting ILP

–  If code is vectorizable, then simpler hardware, more energy
efficient, and better real-time model than Out-of-order
machines

– Design issues include number of lanes, number of functional
units, number of vector registers, length of vector registers,
exception handling, conditional operations

