Lecture 20: Data Level Parallelism
-- Introduction and Vector Architecture

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Very Important Terms

= Dynamic Scheduling = Out-of-order Execution

= Speculation 2 In-order Commit
= Superscalar 2> Multiple Issue

Dynamic
Scheduling

Speculation

Superscalar/
VLIW

Out-of-
order
execution

In-order
commit

Multiple
issue

Reservation

Stations, Load/Store
Buffer and CDB

Branch Prediction
(BHT/BTB) and
Reorder Buffer

Software and
Hardware

Data hazards
(RAW, WAW,
WAR)

Control
hazards
(branch, func,
exception)

To Increase
CPI

Register
renaming

Prediction
and
misprediction
recovery

By compiler
or hardware

+— Time (processor cycle)

Last Lecture: Multithreading

(@]

Simultaneous
Superscalar Fine-Grained Coarse-Grained Multipro'cessing Multithreadin
_||\\ N N
NN NS 1
I W
NN N, N [
NN ENN
NN NON BN 7
ENN N[
IN N
L WIN
IN
N J:Q N NE
Thread 1 Thread 3 Thread 5
N Thread 2 Thread 4 ldle slot

CSE 564 Class Contents

Introduction to Computer Architecture (CA)

Quantitative Analysis, Trend and Performance of CA
— Chapter 1

Instruction Set Principles and Examples
— Appendix A

Pipelining and Implementation, RISC-V ISA and Implementation
— Appendix C, RISC-V (riscv.org) and UCB RISC-V impl

Memory System (Technology, Cache Organization and Optimization,
Virtual Memory)

— Appendix B and Chapter 2
— Midterm covered till Memory Tech and Cache Organization

Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction,
Hardware Speculation, Superscalar, VLIW and SMT)

— Chapter 3

Data Level Parallelism (Vector, SIMD, and GPU)
— Chapter 4

Thread Level Parallelism
— Chapter 5

Topics for Data Level Parallelism (DLP)

Parallelism (centered around ...)
— Instruction Level Parallelism

— Data Level Parallelism

— Thread Level Parallelism

DLP Introduction and Vector Architecture
—41,4.2

SIMD Instruction Set Extensions for Multimedia
—-4.3

Graphical Processing Units (GPU)
—-4.4

GPU and Loop-Level Parallelism and Others
—4.4,45,4.6,4.7

Finish in two/three sessions

Acknowledge and Copyright

= Slides adapted from

— UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UucCB

— UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

— Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT),
James Hoe (CMU), John Kubiatowicz (UCB), and David
Patterson (UCB)

» https:/Ipasslab.github.io/CSES564/copyrightack.htmi

Flynn’s Classification (1966)

Broad classification of parallel computing systems
— based upon the number of concurrent Instruction

(or control) streams and Data streams
Michael J. Flynn:

= SISD: Single Instruction, Single Data http://arith.stanford.edu/~flynn/
— conventional uniprocessor
= SIMD: Single Instruction, Multiple Data

— one instruction stream, multiple data paths
— distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
— shared memory SIMD (STARAN, vector computers)
= MIMD: Multiple Instruction, Multiple Data
— message passing machines (Transputers, nCube, CM-5)
— non-cache-coherent shared memory machines (BBN Butterfly, T3D)

— cache-coherent shared memory machines (Sequent, Sun Starfire,
SGI Origin)

= MISD: Multiple Instruction, Single Data
— Not a practical configuration 7

Flynn’s Taxonomy

Single Multiple
Instruction Instruction
Stream Stream

Single
Data
Stream
Multiple 3
Data
Stream

MISD Instruction Pool

Instruction Pool

Lpgld Lol

Data Pool
Data Pool

Instruction Pool Instruction Pool

PU PU PU

————|PU |

—[PUl |PU|

Data Pool
Data Pool

———|PU |

—[PUl— Ls[PU|—

PU PU PU

https://len.wikipedia.org/wiki/Flynn%27s_taxonomy

More Categories

= Single program, multiple data (SPMD)

— Multiple autonomous processors execute the program at

independent points

— Difference with SIMD: SIMD imposes a lockstep
— Programs at SPMD can be at independent points

— SPMD can run on general purpose processors

— Most common method for parallel computing

SIMD CPU

* Multiple program,

- [Cantrol] [ALU] [ALt] [ALU] [AL1)
multiple data (MPMD) === &2 o
= MIMD SPMD —
— Multiple autonomous - N Unie [1ALY] 7 | Unit | TALU
rocessors s at
zimultaneously ai AT (A
operating at least 2 MIMD
independent programs Program:—{ PRl A1) [Program!— < Patrel|{ALT]

I’rugr;nm] R

Lnit

Control

ALU

Program

Contro l l—]
Lnit

9

SIMD: Single Instruction, Multiple Data
— (Datalevel Paralleism)

= SIMD architectures can exploit

significant data-level parallelism for:
— matrix-oriented scientific computing
— media-oriented image and sound processors

= SIMD is more energy efficient than MIMD

— Only needs to fetch one instruction per data operation
processing multiple data elements

— Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think

sequentially

Data Data Data Datd
tructions strea

v
Control unit

V v Vv V v \ 4 y
Processor| processor| processor|processor 10

SIMD Parallelism

= Three variations
— Vector architectures
— SIMD extensions
— Graphics Processor Units (GPUs)

= For x86 processors:
— Expect two additional cores per chip per year (MIMD)
— SIMD width to double every four years
— Potential speedup from SIMD to be twice that from MIMD!

Vector Architecture

11

VLIW vs Vector

= VLIW takes advantage of instruction level parallelism
(ILP) by specifying multiple instructions to execute in
parallel

IntOp 1 Int Op 2 MemOp 1 Mem Op 2 FPOp1 FP Op 2

= Vector architectures perform the same operation on
multiple data elements — single instruction
— Data-level parallelism

/VectorArithmetic v% ! ‘ — : =

\ /\]]]
Instructions @ @ @ @ @ @

ADDV v3,vl1,v2 v3 ‘ '
_ [0] [1] [VLR-1]

/

12

Vector Programming Model

(scalar Registers Vector Registers \
15— vl
ro VRTI0T 11 121 [VLRMAX-1]
k Vector Length Register VLR)
vl | | / | : | :] \

\ [1

Vector Arithmetic v2—ij / | | |

Instructions R
ADDV v3, vl1, v2 v3 @ @ @ @ | @ .
_ [0] [1] [VLR-1]

VAN

(" Vector Load and Vector Reglster
Store Instructions .

M
\Base, ri étrlde in rﬁ emory Y,

Control Information

= VLR limits the highest vector element to be processed
by a vector instruction

— VLR is loaded prior to executing the vector instruction with a
special instruction

= Stride for load/stores:
— Vectors may not be adjacent in memory addresses
— E.g., different dimensions of a matrix
— Stride can be specified as part of the load/store

(" Vector Load and Vector Reglster N
Store Instructions .

A

_ Base, r1 étrlde in ;ﬁ

Memory

14

Basic Structure of Vector Architecuture

VMIPS

eight 64-element vector " e
registers

all the functional units are
vector functional units.

Vector
The vector and scalar load/store
registers have a significant
number of read and write

ports to allow multiple
simultaneous vector -

. ector
operations. registers

A set of crossbar switches
(thick gray lines) connects
these ports to the inputs
and outputs of the vector Scalar
functional units. s

FP add/subtract

FP multiply

FP divide

Integer

Logical

15

VMIPS Vector Instructions

= Suffix
— VV suffix
— VS suffix

= |Load/Store

— LVISV
— LVWS/SVWS

= Registers

— VLR (vector
length
register)

— VM (vector
mask)

Instruction Operands Function

DVV.D vi,v2,v3 Add elements of V2 and V3, then put each result in V1.
ADDVS.D V1,V2,F0 Add FO to each element of V2, then put each resultin V1.
SUBVV.D vi,v2,v3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,F0,V2 Subtract elements of V2 from FO, then put each result in V1.
MULVV.D V1,v2,V3 Multiply elements of V2 and V3, then put each result in V1.
MULVS.D V1,V2,F0 Multiply each element of V2 by FO0, then put each result in V1.
DIVVV.D V1,v2,V3 Divide elements of V2 by V3, then put each result in V1.
DIVVS.D V1,V2,F0 Divide elements of V2 by FO0, then put each result in V1.

V1,R1 Load vector register V1 from memory starting at address R1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2 (i.e., R1 + i x R2).

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i x R2).

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+v2),V1 Store V1 to vector whose elements are at R1 + V2 (i) (i.e., V2 is an index).

V1,v2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a
S--VS.D V1,FO 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in vector-mask register VM and store count in R1.
CVM Set the vector-mask register to all 1s.

MTC1 VLR,R1 Move contents of R1 to vector-length register VL.

MFC1 R1,VLR Move the contents of vector-length register VL to R1.

MVTM VM, FO Move contents of FO to vector-mask register VM.
MV FM FO,VM Move contents of vector-mask register VM to FO.

Figure 4.3 The VMIPS vector instructions, showing only the double-precision floating-point operations. |
addition to the vector registers, there are two special registers, VLR and VM, discussed below. These special registel

Highlight of VMIPS Vector Instructions

= Vector operations have the letters “VV/VS” appended.
— E.g. ADDVV.D is an addition of two double-precision vectors.

= Vector instructions input:
— 1) a pair of vector registers (ADDVV.D) or
— 2) a vector register and a scalar register (ADDVS.D).
» all operations use the same value in the scalar register as one input.

= LV/LVWS and SV/SVWS: vector load and vector store which load or store
an entire vector of double-precision data.
— One operand is the vector register to be loaded or stored;
— The other operand, a GPR, is the starting address of the vector in memory.
— LVWS/SVWS: For stride load/store
— LVI/SVI: indexed load/store

= Two additional special-purpose registers:
— Vector-length register: when the natural vector length is NOT 64
— Vector-mask register: when loops involve IF statements.

= |In-order scalar processor for vector architecture
— Not out- of-order superscalar processors.

= Vectors naturally accommodate varying data sizes.

— one view of a vector register size is 64 64-bit data elements, but 128 32-bit elements, 256
16-bit elements, and even 512 8-bit elements are equally valid views.

17

AXPY (64 elements) (Y=a* X +Y) in MIPS
— andVMIPS

for (i=0; i<64; i++) The starting addresses of Xand Y
Y[i] = a* X[i] + Y[i]; arein Rx and Ry, respectively
L.D FO,a ;1oad scalar a
DADDIU R4,Rx,#512 ;1ast address to load
» #instrs: Loop: L.D F2,0(Rx) s 1oad X[i]
MUL.D F2,F2,F0 ;a2 X X[i]
— 6 vs ~600 L.D F4,0(Ry) sToad Y[i]
= Pipeline stalls /S\DB-D EZ,;‘&{F? ;atx X[j]t+ IH
_ . ,9 (Ry sstore into Y[i
B ﬁ,ﬁ;g'gher by DADDIU Rx,Rx, #8 sincrement index to X
DADDIU Ry,Ry, #8 ;increment index to Y
= Vector chaini g DSUBU R20,R4,Rx scompute bound
(forwarding) BNEZ R20, Loop scheck if done

L.D FO,a ;load scalar a
LV V1,Rx ;load vector X
MULVS.D V2,V1,FO ;vector-scalar multiply

- V1,V2,V3 and V4

LV V3,Ry ;load vector Y
ADDVV.D V4,v2,V3 ;add
SV V4,Ry ;store the result

18

Vector Memory-Memory versus Vector

* Vector memory-memory instructions hold all vector
operands in main memory

* The first vector machines, CDC Star-100 (‘73) and TI
ASC (‘71), were memory-memory machines

= Cray-1 (’76) was first vector register machine

\Iector Memory-Memory Code

Example Source Code ADDV C, A, B
for (i=0; i<N; i++) SUBV D, A, B
{

C[i] = A[i] + B[i]; Vector Register Code
D[i]

A[i] - B[1]; LV V1, A

} LV V2, B

ADDV V3, V1, V2

SV V3, C

SUBV V4, V1, V2

SV V4, D 19

Vector Memory-Memory vs. Vector

_ Register Machines

= Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

— All operands must be read in and out of memory

= VMMASs make if difficult to overlap execution of
multiple vector operations, why?
— Must check dependencies on memory addresses

* VMMAs incur greater startup latency

— Scalar code was faster on CDC Star-100 (VMM) for vectors <
100 elements

= Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

20

Vector Instruction Set Advantages

Compact
— one short instruction encodes N operations

Expressive and predictable, tells hardware
that these N operations:

— are independent

— use the same functional unit

— access disjoint registers

— access registers in same pattern as previous instructions

— access a contiguous block of memory
(unit-stride load/store)

— access memory in a known pattern
(strided load/store)

Scalable
— can run same code on more parallel pipelines (lanes)

21

History: Supercomputers

= Definition of a supercomputer: The Father of Supercomputing

— Fastest machine in world at given
task

— A device to turn a compute-bound
problem into an I/O bound problem

— Any machine costing $30M+

— Any machine designed by
Seymour Cray (originally)

| w——

Seymour Cray <

Electrical engineer

u C DC6600 (C l'ay, 1 964) regarded as Seymour Roger Cray was an American electrical engineer and

supercomputer architect who designed a series of computers that were

fi rst s u pe rco m p ute r the fastest in the world for decades, and founded Cray Research which
built many of these machines. Wikipedia
- A VeCtor maChlne Born: September 28, 1925, Chippewa Falls, WI

Died: October 5, 1996, Colorado Springs, CO
Awards: Eckert—-Mauchly Award

. Parents: Seymour R. Cray, Lillian Cra
= www.cray.com: The > Seymour k. Cray. v |
Education: University of Minnesota, Chippewa Falls High School
S U pe I'COm p Ute I’ CO m pa ny Fields: Applied mathematics, Computer Science, Electrical engineering

https://en.wikipedia.org/wiki/Seymour Cray

http://lwww.cray.com/company/history/seymour-cray

22

Supercomputer Applications

= Typical application areas
— Military research (nuclear weapons, cryptography)
— Scientific research
— Weather forecasting
— Qil exploration
— Industrial design (car crash simulation)
— Bioinformatics

— Cryptography
= All involve huge computations on large data sets

* |In 70s-80s, Supercomputer = Vector Machine

23

Vector Supercomputers

= Epitomy: Cray-1, 1976

= Scalar Unit
— Load/Store Architecture

= Vector Extension
— Vector Registers
— Vector Instructions

* Implementation
— Hardwired Control <
— Highly Pipelined Functional Units ‘
— Interleaved Memory System
— No Data Caches
— No Virtual Memory

Cray-1 (1976)

o Vi V. Mask
64-Etement V2 Vj
. V3 V. Length
Single P - [—VectorRegisters i —| T
ingle Port V5
V6
Memory V7 | FP Add
. S0 S, »| FP Mul
16 banks of 64 ((Ap) +jkm) S1 S FP Recip
bit words a6 S, [sa sk
0 . > 54 i
: *) 1T Reg§|<—1—T"‘ = o Add_
8-bit SECDED - >| Int Logic
Int Shift
AQ
80MW/sec data ((A)+jkm) A1 Pop Cnt
load/store) A £2 A X
(A,) |64 — a4 A, "| Addr Add
'|B Regde——i—{—4: A
320MW/sec eg A6 Addr Mul
- - A7
instruction
buffer refill —
/=] 64-bitx16 [JI=7 NIE ClP
4 Instruction Buffers LIP

memory bank cycle 50 ns

processor cycle 12.5 ns (80MHz)

25

Today’s Supercomputers (www.top500.0rg)

= MIMD and Hybrid

TOP 10 Sites for November 2016

For more information about the sites and systems in the list, click on the links or view the complete list.

MIMD/vector or

MIMD/GPU

Accelerator/Co-Processor System Share

—7

6.8%

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
National Supercomputing Sunway TaihuLight - Sunway MPP, Sunway 10,649,600 93,014.6 125,435.9 15,371
Center in Wuxi SW26010 260C 1.45GHz, Sunway
China NRCPC
2 National Super Computer Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, 3,120,000 33,862.7 54,902.4 17,808
Center in Guangzhou Intel Xeon E5-2692 12C 2.200GHz, TH
China Express-2, Intel Xeon Phi 31S1P
NUDT
3 DOE/SC/0Oak Ridge Titan - Cray XK7 , Opteron 6274 16C 560,640 17,590.0 27,112.5 8,209
National Laboratory 2.200GHz, Cray Gemini interconnect, NVIDIA
United States K20x
Cray Inc.
DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 146C 1.60 1,572,864 17,173.2 20,132.7 7,890
@ NVIDIA Tesla K40 United States GHz, Custom
@ NVIDIA Tesla K80 IBM
Intel Xeon Phi S110P " noE/SC/LBNL/NERSC ~ Cori - Cray XC40, Intel Xeon Phi 7250 68C 622,336 14,0147 27,880.7 3,939
@ NVIDIA Tesla K20x United States 1.4GHz, Aries interconnect
@ Intel Xeon Phi 5120D Grayine:
@ Intel Xeon Phi 7120P
@ NVIDIA 2050 Joint Center for Advanced Oakforest-PACS - PRIMERGY CX1640 M1, 556,104 13,554.6 24,913.5 2,719
@ NVIDIA Tesla K20 High Performance Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-
@ NVIDIATesla k2om COMPUting Path
@ NVIDIA 2090 Japan Fujitsu
@ Others RIKEN Advanced Institute K computer, SPARCé4 VIlIfx 2.0GHz, Tofu 705,024 10,510.0 11,280.4 12,660
for Computational Science interconnect
(AICS) Fujitsu
Japan
8 Swiss National Piz Daint - Cray XC50, Xeon E5-2690v3 12C 206,720 9,779.0 15,988.0 1,312
Supercomputing Centre 2.6GHz, Aries interconnect , NVIDIA Tesla
(Cscs) P100
Switzerland Cray Inc.
9 DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C 1.60GHz, 786,432 8,586.6 10,066.3 3,945

#1 of TOP500 as of Nov 2016

TOP 10 Sites for November 2016

For more information about the sites and systems in the list, click on the links or view the complete list.

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)

1 National Supercomputing Sunway TaihuLight - Sunway MPP, Sunway 10,649,600 93,014.6 125,435.9 15,371
Center in Wuxi SW26010 260C 1.45GHz, Sunway
China NRCPC

f “ ‘/

http://sc16.supercomputing.org/

/

network system

27

Vector Arithmetic Execution

e Use deep pipeline (=> fast clock) VAIRY
to execute element operations

e Simplifies control of deep pipeline
because elements in vector are Y
independent (=> no hazards!) \

Six stage multiply pipeline

V3 <-vl *v2

28

Vector Execution: Element Group

A[9]1] |B[9]
A[8]| |B[8]
A[71| |[BL7]
A[6]| |B[6]
A[5]| |B[5]
A[4]| |[Br4]
A[31| |[BI3]
A[2]| |[Br21]
A[1]| |[Br1]

A[8] B[8]| |A[9]

B[9]

A[4]| [B[4]1| |A[S]

B[5]

A[6]

B[6]

C[0]

(a)

v

:

:

:

Element group

29

Vector Instruction Execution with

— Pipelined Functional Units

ADDV C,A,B

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25]A[26] B[26]A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21]A[22] B[22]A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17]A[18] B[18]A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13]A[14] B[14]A[15] B[15]
' ' ' ' ' ' ' ' ' '
‘\ 4 ‘\ T T T 4
\C[Z] / \C[8] / \C[9] / \C[10] / \C[11] /
c[o] c[o] C[1] c[2] C[3]

30

Vector
Registers

Lane

Elements
0,4,8,..

Elements
1,5,9, ..

Vector Unit Structure (4 Lanes)

Functional Unit

Elements
2,6,10,

A 4 A 4

\ |

Elements
3,7,11,

Memory Subsystem

31

Vector Instruction Parallelism

= Can overlap execution of multiple vector instructions

— example machine has 32 elements per vector register and 8
lanes

Load Unit Multiply Unit Add Unit

OOOOO(L—“-;EIIAAAAAF.A.

time o oloooeedlaaaala[iadd mla/m/n/n/nn =

@@@@@@@ AAAAAalaljlmmmmmnn=

SIEIEIEIEIE) NNNNNNNSIN CICICICICICICIE

ololololo[d=falala ala 42 Nennnnnnn

ololololololo]b]alalalalalladd fm[em(mm(E m=

olololololololojalalalalalajal|m|mmmm|m|/m|m

AlaAlalalalalalAlmmE/Enn|EE

Instruction LI LI

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

32

Vector version of register bypassing

Vector Chaining

— introduced with Cray-1

LV vl
N\

MULV v3,vl,v2

ADDV v5, v3, v4

=<

Load
Unit

Memory

N <

w<

hain

B <

<

\%fn

33

Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time— Add

e With chaining, can start dependent instruction as soon as first
result appears

34

Automatic Code Vectorization
or (1=0; 1 s 1
C[i] = A[i] + B[i]; ,
Scalar Sequential Code . Vectorlzeq Code

Iter. 1

Time

Iter. 2 Vector Instruction

Vectorization is a massive compile-time

reordering of operation sequencing

:=> requires extensive loop dependence analysis
) 35

Vector Length Register

= Vector length not known at compile time?
» Use Vector Length Register (VLR)

» Use strip mining for vectors over the maximum length
(serialized version before vectorization by compiler)

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { I*outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation®*/
low = low + VL; /*start of next vector®/
VL = MVL,; /*reset the length to maximum vector length*/

}
Value of | 0 1 2 3 e ce nMVL
Range of i 0 m (m+MVL) (m+2xMVL) ... - (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)

+MVL +2xMVL +3xMVL

36

Vector Stripminin
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers,
“Stripmining”

ANDI R1l, N, 63 # N mod 64

MTC1l VLR, Rl # Do remainder
for (i=0; i<N; i++) loop:
A B C DSLL R2, R1, 3 # Multiply by 8
/\,®+ emainder PDAPDU RA, RA, R2 # Bump pointer
0 a LV V2, RB
| DADDU RB, RB, R2
41| 64 elements ADPV-D V3, Vi, V2
— SV V3, RC
J DADDU RC, RC, R2

DSUBU N, N, Rl # Subtract elements

\T:}’ LI R1, 64
_H MTC1l VLR, Rl # Reset full length
BGTZ N, loop # Any more to do-?

37

Vector Mask Registers

for (i=0; i < 64; i=i+1)
if (X[i] !=0)
X[i] = X[i] = Y[i];
= Use vector mask register to “disable” elements (1 bit
per element):

LV V1,Rx :load vector X into V1

LV V2,Ry :load vector Y

L.D FO,#0 :load FP zero into FO
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=FO0
SUBVV.D vV1,v1,V2 :subtract under vector mask
SV Rx,V1 :store the result in X

= GFLOPS rate decreases!

— Vector operation becomes bubble (“NOP”) at elements where
mask bit is clear

38

Masked Vector Instructions

Simple Implementation
— execute all N operations, turn off result

writeback according to mask

M[7]1=1 X[7] YI[7]
M[6]=0 X[6] Y[6]
M[5]=1 X[5] Y[5]
M[4]=1 X[4] Y[4]
M[3]=0 X[3] Y[3]

\l l/
M[2]=0 | X[2] f
M[1]=1 | \X[1] /<F

\ <

M[0]=0—l X[0]

Write Enable Wtrite data port

Density-Time Implementation
— scan mask vector and only execute

elements with non-zero masks

M[7]=1
M[5]= L

M[4]=
M[3]= 3\ Ly
M[2]=0 X[4]/
M[1]=1 |
M[O]:O\.
X[1]
Write data port

<

39

Compress/Expand Operations

= Compress packs non-masked elements from one
vector register contiguously at start of destination
vector register

— population count of mask vector gives packed vector length
= Expand performs inverse operation

M[7]=1 — A[7] A[7] |+ M[7]=1
M[6]=0 | A[6] B[6] M[6]=0
M[5]=1 —> A[5] «~— M[5]=1
M[4]=1 — A[4] —

M[3]=0 | A[3]
M[2]=0 | | A[2]
M[1]=1 — A[1]
M[0]=0 | | A[0]

A[5] B[2] M[2]=0

A[4] A[1] |+ M[1]=1
A[1] / B[O] M[0]=0

A[5]
A[4] +— M[4]=1
Al7] / B[3] M[3]=0

\ 4

[

Compress Expand

Used for density-time conditionals and also for general
selection operations

Stride

DGEMM (Double-Precision Matrix Multiplication)
for (i=0; i <100; i=i+1)
for (j=0; j <100; j=j+1) {
A[0] = 0.0;
for (k = 0; k <100; k=k+1)
Alil0] = ALiG] + Bli][k] * DIK]GI;

= Must vectorize multiplication of rows of B with columns of D
— Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes)

= Use non-unit stride
— LDWS

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

— #banks / LCM(stride,#banks) < bank busy time

41

Scatter-Gather

= Sparse matrix:
— Non-zero values are compacted to a smaller value array (A[])

— indirect array indexing, i.e. use an array to store the index to
value array (K[])

(1.0 0 50 O 0 0 0 0
0O 3.0 O 0 0 0 11.0 0
0 0 0 0 9.0 0 0 0
for (i=0; i < n; i=i+1) 0o 0 60 0 0 0O 0 0
. : : 0o 0 0 70 0 0 0 0
A[KIi]] = A[K[i]] + C[M[i]]; 20 0 0 0 0 100 0 0
0 0 0O 80 O 0 0 0
\0 40 0 0 0 0 0 12
= Use index vector:
LV VK, Rk ‘load K
LVI Va, (Ra+VKk) ;load A[KI]]
LV Vm, Rm ‘load M
LVI Vc, (Rc+Vm) ;load C[M[]]
ADDVV.D Va, Va, Vc -add them
SVi (Ra+Vk), Va ;store A[K]]]

42

Memory operations

» Load/store operations move groups of data between
registers and memory

— Increased mem/instr ratio (intensity)

* Three types of addressing

— Unit stride
» Contiguous block of information in memory
» Fastest: always possible to optimize this
— Non-unit (constant) stride
» Harder to optimize memory system for all possible strides

» Prime number of data banks makes it easier to support different
strides at full bandwidth

— Indexed (gather-scatter)
» Vector equivalent of register indirect
» Good for sparse arrays of data
» Increases number of programs that vectorize

43

Interleaved Memory Layout

» Great for unit stride:

— Contiguous elements in different DRAMs

— Startup time for vector operation is latency of single read
= What about non-unit stride?

— Above good for strides that are relatively prime to 8

— Bad for: 2,4
Vector Processor
- - - - - - - -
S S S S S S S S
v -3 T, 07T || O T, T, 07T || O
o o o o o o o o
>0 >0 >0 > 0 >0 >0 >0 > 0
=S3||I=S5||=S5 |5 |=5||=5||=5||=5
® ® ® ® ® ® ® ®
a a a Q a a a Q
Addr Addr Addr Addr Addr Addr Addr Addr
Mod 8 Mod8 Mod8 Mod8 Mod8 Mod8 Mod8 Mod 8
=0 =1 =2 =3 =4 =5H =6 =7

44

Avoiding Bank Conflicts

Lots of banks
int x[256][512];
for (5 = 0; j < 512; j = j+1)
for (i = 0; 1 < 256; 1 = 1i+1)
x[1]1[3]1 = 2 * x[1][3];
Even with 128 banks, since 512 is multiple of 128,
conflict on word accesses

SW: loop interchange or declaring array not power of
2 (“array padding”)
HW: Prime number of banks
— bank number = address mod number of banks
— address within bank = address / number of words in bank
— modulo & divide per memory access with prime no. banks?
— address within bank = address mod number words in bank
— bank number? easy if 2N words per bank

45

Finding Bank Number and Address within
- abank

= Problem: Determine the number of banks, N, and the number of words
in each bank, N, such that:

— given address X, it is easy to find the bank where x will be
found, B(x), and the address of x within the bank, A(x).

— for any address x, B(x) and A(x) are unique

— the number of bank conflicts is minimized
» Solution: Use the Chinese remainder theorem to determine B(x) and
A(x):
B(x) =x MOD N,
A(x) =x MOD N,, where N, and N, are co-prime (no factors)
— Chinese Remainder Theorem shows that B(x) and A(x)
unique.
= Condition allows N, to be power of two (typical) if N, is prime of form
2m-1,
= Simple (fast) circuit to compute (x mod N,) when N, = 2™-1:
— Since 2k= 2km (2m_1) + 2km = 2k MOD N, = 2™ MOD N, =...= 2] withj<m
— And, remember that: (A+B) MOD C = [(A MOD C)+(B MOD C)] MOD C
— for every power of 2, compute single bit MOD (in advance)

— B(x) = sum of these values MOD N,
(low complexity circuit, adder with ~ m bits)

46

Conclusion

= Vector is alternative model for exploiting ILP

— If code is vectorizable, then simpler hardware, more energy
efficient, and better real-time model than Out-of-order
machines

— Design issues include number of lanes, number of functional
units, number of vector registers, length of vector registers,
exception handling, conditional operations

47

