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Very Important Terms 
§  Dynamic Scheduling à Out-of-order Execution 
§  Speculation à In-order Commit  
§  Superscalar à Multiple Issue 

Techniques Goals Implementation Addressing Approaches 
Dynamic 
Scheduling 

Out-of-
order 
execution 

Reservation 
Stations, Load/Store 
Buffer and CDB 

Data hazards 
(RAW, WAW, 
WAR) 

Register 
renaming 

Speculation In-order 
commit 

Branch Prediction 
(BHT/BTB) and 
Reorder Buffer 

Control 
hazards 
(branch, func, 
exception) 

Prediction 
and 
misprediction 
recovery 

Superscalar/
VLIW 

Multiple 
issue 

Software and 
Hardware 

To Increase 
CPI 

By compiler 
or hardware 
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Last Lecture: Multithreading 
Ti

m
e 

(p
ro

ce
ss

or
 c

yc
le

) 

Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 
Multithreading 

Thread 1 
Thread 2 

Thread 3 
Thread 4 

Thread 5 
Idle slot 
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CSE 564 Class Contents 
§  Introduction to Computer Architecture (CA) 
§  Quantitative Analysis, Trend and Performance of CA 

–  Chapter 1 
§  Instruction Set Principles and Examples 

–  Appendix A 
§  Pipelining and Implementation, RISC-V ISA and Implementation 

–  Appendix C, RISC-V (riscv.org) and UCB RISC-V impl 
§  Memory System (Technology, Cache Organization and Optimization, 

Virtual Memory) 
–  Appendix B and Chapter 2 
–  Midterm covered till Memory Tech and Cache Organization 

§  Instruction Level Parallelism (Dynamic Scheduling, Branch Prediction, 
Hardware Speculation, Superscalar, VLIW and SMT) 
–  Chapter 3 

§  Data Level Parallelism (Vector, SIMD, and GPU) 
–  Chapter 4 

§  Thread Level Parallelism 
–  Chapter 5 
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Topics for Data Level Parallelism (DLP) 
§  Parallelism (centered around … ) 

–  Instruction Level Parallelism 
–  Data Level Parallelism 
–  Thread Level Parallelism 

§  DLP Introduction and Vector Architecture 
– 4.1, 4.2 

§  SIMD Instruction Set Extensions for Multimedia  
– 4.3 

§  Graphical Processing Units (GPU) 
– 4.4 

§  GPU and Loop-Level Parallelism and Others 
– 4.4, 4.5, 4.6, 4.7 

Finish in two/three sessions 



6 

Acknowledge and Copyright 
§  Slides adapted from  

– UC Berkeley course “Computer Science 252: Graduate 
Computer Architecture” of David E. Culler Copyright(C) 2005 
UCB 

– UC Berkeley course Computer Science 252, Graduate 
Computer Architecture Spring 2012 of John Kubiatowicz 
Copyright(C) 2012 UCB 

– Computer Science 152: Computer Architecture and 
Engineering, Spring 2016 by Dr. George Michelogiannakis 
from UC Berkeley 

– Arvind (MIT), Krste Asanovic (MIT/UCB), Joel Emer (Intel/MIT), 
James Hoe (CMU), John Kubiatowicz (UCB), and David 
Patterson (UCB) 

§  https://passlab.github.io/CSE564/copyrightack.html 
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Flynn’s Classification (1966) 
Broad classification of parallel computing systems 

–  based upon the number of concurrent Instruction 

(or control) streams and Data streams 
 
§  SISD: Single Instruction, Single Data 

–  conventional uniprocessor 
§  SIMD: Single Instruction, Multiple Data 

–  one instruction stream, multiple data paths 
–  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar) 
–  shared memory SIMD (STARAN, vector computers) 

§  MIMD: Multiple Instruction, Multiple Data 
–  message passing machines (Transputers, nCube, CM-5) 
–  non-cache-coherent shared memory machines (BBN Butterfly, T3D) 
–  cache-coherent shared memory machines (Sequent, Sun Starfire, 

SGI Origin) 
§  MISD: Multiple Instruction, Single Data 

–  Not a practical configuration 

Michael J. Flynn: 

http://arith.stanford.edu/~flynn/ 
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Flynn’s Taxonomy 
 
 
 
 
 
 
 
 
 
 
 
 
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy 
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More Categories 
§  Single program, multiple data (SPMD) 

– Multiple autonomous processors execute the program at 
independent points 

– Difference with SIMD: SIMD imposes a lockstep 
–  Programs at SPMD can be at independent points 
–  SPMD can run on general purpose processors 
– Most common method for parallel computing 

§  Multiple program, 
multiple data (MPMD) 
≈ MIMD 
– Multiple autonomous 

processors 
simultaneously 
operating at least 2 
independent programs 
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SIMD: Single Instruction, Multiple Data 
(Data Level Paralleism) 

§  SIMD architectures can exploit  
    significant data-level parallelism for: 

– matrix-oriented scientific computing 
– media-oriented image and sound processors 

§  SIMD is more energy efficient than MIMD 
– Only needs to fetch one instruction per data operation 

processing multiple data elements 
– Makes SIMD attractive for personal mobile devices 

§  SIMD allows programmer to continue to think 
sequentially 

Instructions stream 

processor processor processor processor 

Data Data Data Data 

Control unit 
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SIMD Parallelism 
§  Three variations  

–  Vector architectures 
–  SIMD extensions 
– Graphics Processor Units (GPUs) 

§  For x86 processors: 
–  Expect two additional cores per chip per year (MIMD) 
–  SIMD width to double every four years 
–  Potential speedup from SIMD to be twice that from MIMD! 

Vector Architecture 
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VLIW vs Vector 

§ VLIW	takes	advantage	of	instruc5on	level	parallelism	
(ILP)	by	specifying	mul5ple	instruc5ons	to	execute	in	
parallel	

	
§ Vector	architectures	perform	the	same	opera5on	on	
mul5ple	data	elements	–	single	instruc5on		
–  Data-level	parallelism	

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	
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Vector Programming Model 

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 
VLR Vector Length Register 

v1 
Vector Load and 

Store Instructions 
LV v1, (r1, r2) 

Base, r1 Stride in r2 
Memory 

Vector Register 
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Control Information 
§  VLR limits the highest vector element to be processed 

by a vector instruction 
–  VLR is loaded prior to executing the vector instruction with a 

special instruction 

§  Stride for load/stores: 
–  Vectors may not be adjacent in memory addresses 
–  E.g., different dimensions of a matrix 
–  Stride can be specified as part of the load/store 

v1 
Vector Load and 

Store Instructions 
LV v1, (r1, r2) 

Base, r1 Stride in r2 
Memory 

Vector Register 
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Basic Structure of Vector Architecuture 
§  VMIPS 
§  eight 64-element vector 

registers 
§  all the functional units are 

vector functional units.  
§  The vector and scalar 

registers have a significant 
number of read and write 
ports to allow multiple 
simultaneous vector 
operations.  

§  A set of crossbar switches 
(thick gray lines) connects 
these ports to the inputs 
and outputs of the vector 
functional units.  
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VMIPS Vector Instructions 
§  Suffix 

–  VV suffix 
–  VS suffix 

§  Load/Store 
–  LV/SV 
–  LVWS/SVWS 

§  Registers 
–  VLR (vector 

length 
register) 

–  VM (vector 
mask) 
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Highlight of VMIPS Vector Instructions 
§  Vector operations have the letters “VV/VS” appended. 

–  E.g. ADDVV.D is an addition of two double-precision vectors.  
§  Vector instructions input:  

–  1) a pair of vector registers (ADDVV.D) or  
–  2) a vector register and a scalar register (ADDVS.D).  

»  all operations use the same value in the scalar register as one input. 

§  LV/LVWS and SV/SVWS: vector load and vector store which load or store 
an entire vector of double-precision data.  
–  One operand is the vector register to be loaded or stored; 
–  The other operand, a GPR, is the starting address of the vector in memory.  
–  LVWS/SVWS: For stride load/store 
–  LVI/SVI: indexed load/store 

§  Two additional special-purpose registers:  
–  Vector-length register: when the natural vector length is NOT 64 
–  Vector-mask register: when loops involve IF statements.  

§  In-order scalar processor for vector architecture 
–  Not out- of-order superscalar processors.  

§  Vectors naturally accommodate varying data sizes. 
–  one view of a vector register size is 64 64-bit data elements, but 128 32-bit elements, 256 

16-bit elements, and even 512 8-bit elements are equally valid views.  
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AXPY (64 elements) (Y = a * X + Y) in MIPS 
and VMIPS 

§  # instrs:  
–  6 vs ~600 

§  Pipeline stalls 
–  64x higher by 

MIPS  
§  Vector chaining 

(forwarding) 
–  V1, V2, V3 and V4 

for (i=0; i<64; i++) 
  Y[i] = a* X[i] + Y[i]; 

The starting addresses of X and Y 
are in Rx and Ry, respectively 
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Vector Memory-Memory versus Vector 
Register Machines 

§  Vector memory-memory instructions hold all vector 
operands in main memory 

§  The first vector machines, CDC Star-100 (‘73) and TI 
ASC (‘71), were memory-memory machines 

§  Cray-1 (’76) was first vector register machine 

for (i=0; i<N; i++) 
{ 
  C[i] = A[i] + B[i]; 
  D[i] = A[i] - B[i]; 
} 

Example Source Code ADDV C, A, B 
SUBV D, A, B 

Vector Memory-Memory Code 

LV V1, A 
LV V2, B 
ADDV V3, V1, V2 
SV V3, C 
SUBV V4, V1, V2 
SV V4, D 

Vector Register Code 
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Vector Memory-Memory vs. Vector 
Register Machines 

§  Vector memory-memory architectures (VMMA) require 
greater main memory bandwidth, why? 
– All operands must be read in and out of memory 

§  VMMAs make if difficult to overlap execution of 
multiple vector operations, why?  
– Must check dependencies on memory addresses 

§  VMMAs incur greater startup latency 
–  Scalar code was faster on CDC Star-100 (VMM) for vectors < 

100 elements 
§  Apart from CDC follow-ons (Cyber-205, ETA-10) all 

major vector machines since Cray-1 have had vector 
register architectures 

§  (we ignore vector memory-memory from now on) 
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Vector Instruction Set Advantages 
§  Compact 

–  one short instruction encodes N operations 

§  Expressive and predictable, tells hardware 
that these N operations: 
–  are independent 
–  use the same functional unit 
–  access disjoint registers 
–  access registers in same pattern as previous instructions 
–  access a contiguous block of memory 

 (unit-stride load/store) 
–  access memory in a known pattern  

(strided load/store)  

§  Scalable 
–  can run same code on more parallel pipelines (lanes) 
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History: Supercomputers 
§  Definition of a supercomputer: 

–  Fastest machine in world at given 
task 

–  A device to turn a compute-bound 
problem into an I/O bound problem  

–  Any machine costing $30M+ 
–  Any machine designed by 

Seymour Cray (originally) 

§  CDC6600 (Cray, 1964) regarded as 
first supercomputer 
–  A vector machine 

§  www.cray.com: The 
Supercomputer Company 

https://en.wikipedia.org/wiki/Seymour_Cray 

http://www.cray.com/company/history/seymour-cray 

The Father of Supercomputing 
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Supercomputer Applications 
§  �Typical application areas 

–   Military research (nuclear weapons, cryptography) 
–   Scientific research 
–   Weather forecasting 
–   Oil exploration 
–   Industrial design (car crash simulation) 
–   Bioinformatics 
–   Cryptography 

§  All involve huge computations on large data sets 

§  In 70s-80s, Supercomputer ≡ Vector Machine 
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Vector Supercomputers 

§  Epitomy: Cray-1, 1976 
§  Scalar Unit 

–  Load/Store Architecture 

§  Vector Extension 
–  Vector Registers 
–  Vector Instructions 

§  Implementation 
–  Hardwired Control 
–  Highly Pipelined Functional Units 
–  Interleaved Memory System 
–  No Data Caches 
–  No Virtual Memory 
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Cray-1 (1976) 

Single Port 
Memory 
 
16 banks of 64-
bit words 

+  
8-bit SECDED 

 
80MW/sec data 
load/store 
 
320MW/sec 
instruction 
buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 
T Regs 

(A0) 

( (Ah) + j k m ) 

64  
B Regs 

S0 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 
FP Mul 
FP Recip 

Int Add 
Int Logic 
Int Shift 
Pop Cnt 

Sj 

Si 

Sk 

Addr Add 
Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element 
Vector Registers 
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Today’s Supercomputers (www.top500.org) 

 
§  MIMD and Hybrid 
MIMD/vector or 
MIMD/GPU 
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#1 of TOP500 as of Nov 2016 

http://sc16.supercomputing.org/ 
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Vector Arithmetic Execution 

• Use	deep	pipeline	(=>	fast	clock)	
to	execute	element	opera5ons	

•  Simplifies	control	of	deep	pipeline	
because	elements	in	vector	are	
independent	(=>	no	hazards!)		

V
1	

V
2	

V
3	

V3	<-	v1	*	v2	

Six	stage	mul-ply	pipeline	
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Vector Execution: Element Group 
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Vector Instruction Execution with 
Pipelined Functional Units 

ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 
A[4] B[4] 
A[5] B[5] 
A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 
A[16] B[16] 
A[20] B[20] 
A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 
A[17] B[17] 
A[21] B[21] 
A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 
A[18] B[18] 
A[22] B[22] 
A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 
A[19] B[19] 
A[23] B[23] 
A[27] B[27] 

Execution using 
four pipelined 
functional units 
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Vector Unit Structure (4 Lanes) 

Lane	

Func-onal	Unit	

Vector	
Registers	

Memory	Subsystem	

Elements	
0,	4,	8,	…	

Elements	
1,	5,	9,	…	

Elements	
2,	6,	10,	

…	

Elements	
3,	7,	11,	

…	
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Vector Instruction Parallelism 
§  Can overlap execution of multiple vector instructions 

–  example machine has 32 elements per vector register and 8 
lanes 

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete	24	opera5ons/cycle	while	issuing	1	short	instruc5on/cycle	
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Vector Chaining 

Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 

Vector version of register bypassing 
–  introduced with Cray-1 
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Vector Chaining Advantage 

•  With	chaining,	can	start	dependent	instruc5on	as	soon	as	first	
result	appears	

Load	
Mul	

Add	

Load	
Mul	

Add	Time	

•  Without	chaining,	must	wait	for	last	element	of	result	to	be	
wriaen	before	star5ng	dependent	instruc5on	
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Automatic Code Vectorization 
for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load	
load	

add	

store	

load	
load	

add	

store	

Iter.	1	

Iter.	2	

Scalar	Sequen-al	Code	

Vectoriza5on	is	a	massive	compile-5me	
reordering	of	opera5on	sequencing	

⇒	requires	extensive	loop	dependence	analysis	

Vector	Instruc-on	

load	

load	

add	

store	

load	

load	

add	

store	

Iter.	1	 Iter.	2	

Vectorized	Code	

Ti
m
e	
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Vector Length Register 
§  Vector length not known at compile time? 
§  Use Vector Length Register (VLR) 
§  Use strip mining for vectors over the maximum length 

(serialized version before vectorization by compiler) 
low = 0; 
VL = (n % MVL); /*find odd-size piece using modulo op % */ 
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 
  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 
 low = low + VL; /*start of next vector*/ 
 VL = MVL; /*reset the length to maximum vector length*/ 

} 
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Vector Stripmining 
Problem: Vector registers have finite length 
Solution: Break loops into pieces that fit in registers, 

“Stripmining” 
 ANDI R1, N, 63   # N mod 64 
 MTC1 VLR, R1     # Do remainder 
loop: 
 LV V1, RA 
 DSLL R2, R1, 3  # Multiply by 8       
 DADDU RA, RA, R2 # Bump pointer 
 LV V2, RB 
 DADDU RB, RB, R2  
 ADDV.D V3, V1, V2 
 SV V3, RC 
 DADDU RC, RC, R2 
 DSUBU N, N, R1 # Subtract elements 
 LI R1, 64 
 MTC1 VLR, R1   # Reset full length 
 BGTZ N, loop   # Any more to do? 

for (i=0; i<N; i++) 
    C[i] = A[i]+B[i]; 

+ 

+ 

+ 

A B C 

64 elements 

Remainder 



38 

Vector Mask Registers 
 for (i = 0; i < 64; i=i+1) 
  if (X[i] != 0) 
   X[i] = X[i] – Y[i]; 

§  Use vector mask register to “disable” elements (1 bit 
per element): 
 LV   V1,Rx   ;load vector X into V1 
 LV   V2,Ry   ;load vector Y 
 L.D   F0,#0   ;load FP zero into F0 
 SNEVS.D  V1,F0   ;sets VM(i) to 1 if V1(i)!=F0 
 SUBVV.D  V1,V1,V2  ;subtract under vector mask 
 SV   Rx,V1   ;store the result in X 

§  GFLOPS rate decreases! 
–  Vector operation becomes bubble (“NOP”) at elements where 

mask bit is clear 
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Masked Vector Instructions 

X[4] 

X[5] 

X[1] 

Write data port 

X[7] Y[7] 

M[3]=0 
M[4]=1 
M[5]=1 
M[6]=0 

M[2]=0 
M[1]=1 
M[0]=0 

M[7]=1 

Density-Time	Implementa5on	
–  scan	mask	vector	and	only	execute	
elements	with	non-zero	masks	

X[1] 

X[2] 

X[0] 

X[3] Y[3] 
X[4] Y[4] 
X[5] Y[5] 
X[6] Y[6] 

M[3]=0 
M[4]=1 
M[5]=1 
M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

X[7] Y[7] M[7]=1 

Simple	Implementa5on	
–  execute	all	N	opera5ons,	turn	off	result	
writeback	according	to	mask	
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Compress/Expand Operations 

M[3]=0 
M[4]=1 
M[5]=1 
M[6]=0 

M[2]=0 
M[1]=1 
M[0]=0 

M[7]=1 

A[3] 
A[4] 
A[5] 
A[6] 
A[7] 

A[0] 
A[1] 
A[2] 

M[3]=0 
M[4]=1 
M[5]=1 
M[6]=0 

M[2]=0 
M[1]=1 
M[0]=0 

M[7]=1 

B[3] 
A[4] 
A[5] 
B[6] 
A[7] 

B[0] 
A[1] 
B[2] 

Expand 

A[7] 

A[1] 
A[4] 
A[5] 

Compress 

A[7] 

A[1] 
A[4] 
A[5] 

Used for density-time conditionals and also for general 
selection operations 

§  Compress packs non-masked elements from one 
vector register contiguously at start of destination 
vector register 
–  population count of mask vector gives packed vector length 

§  Expand performs inverse operation 
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Stride 
DGEMM (Double-Precision Matrix Multiplication)   
for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 
   A[i][j] = 0.0; 
   for (k = 0; k < 100; k=k+1) 
      A[i][j] = A[i][j] + B[i][k] * D[k][j]; 
  } 

§  Must vectorize multiplication of rows of B with columns of D 
–  Row-major: B: 1 double (8 bytes), and D: 100 doubles (800 bytes) 

§  Use non-unit stride 
–  LDWS 

§  Bank conflict (stall) occurs when the same bank is hit faster than 
bank busy time: 
–  #banks / LCM(stride,#banks) < bank busy time 
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Scatter-Gather 
§  Sparse matrix: 

– Non-zero values are compacted to a smaller value array (A[ ]) 
–  indirect array indexing, i.e. use an array to store the index to 

value array (K[ ]) 

for (i = 0; i < n; i=i+1) 
  A[K[i]] = A[K[i]] + C[M[i]]; 

 
§  Use index vector: 

 LV   Vk, Rk    ;load K 
 LVI   Va, (Ra+Vk)   ;load A[K[]] 
 LV   Vm, Rm   ;load M 
 LVI   Vc, (Rc+Vm)   ;load C[M[]] 
 ADDVV.D  Va, Va, Vc   ;add them 
 SVI   (Ra+Vk), Va   ;store A[K[]] 
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Memory operations 
§  Load/store operations move groups of data between 

registers and memory 
–  Increased mem/instr ratio (intensity) 

§  Three types of addressing 
– Unit stride 

»  Contiguous block of information in memory 
»  Fastest: always possible to optimize this 

– Non-unit (constant) stride 
»  Harder to optimize memory system for all possible strides 
»  Prime number of data banks makes it easier to support different 

strides at full bandwidth 
–  Indexed (gather-scatter) 

»  Vector equivalent of register indirect 
»  Good for sparse arrays of data 
»  Increases number of programs that vectorize 
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Interleaved Memory Layout 
§  Great for unit stride:  

– Contiguous elements in different DRAMs 
–  Startup time for vector operation is latency of single read 

§  What about non-unit stride? 
– Above good for strides that are relatively prime to 8 
– Bad for: 2, 4 

Vector Processor 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

U
npipelined 
D
RA

M
 

Addr 
Mod 8 
= 0 

Addr 
Mod 8 
= 1 

Addr 
Mod 8 
= 2 

Addr 
Mod 8 
= 4 

Addr 
Mod 8 
= 5 

Addr 
Mod 8 
= 3 

Addr 
Mod 8 
= 6 

Addr 
Mod 8 
= 7 
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Avoiding Bank Conflicts 
§  Lots of banks 
 int x[256][512]; 
  for (j = 0; j < 512; j = j+1) 
   for (i = 0; i < 256; i = i+1) 
    x[i][j] = 2 * x[i][j]; 

§  Even with 128 banks, since 512 is multiple of 128, 
conflict on word accesses 

§  SW: loop interchange or declaring array not power of 
2 (“array padding”) 

§  HW: Prime number of banks 
–  bank number =  address mod number of banks 
–  address within bank = address / number of words in bank 
– modulo & divide per memory access with prime no. banks? 
–  address within bank = address mod number words in bank 
–  bank number? easy if 2N words per bank 
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Finding Bank Number and Address within 
a bank 

§  Problem: Determine the number of banks, Nb and the number of words 
in each bank, Nw, such that: 
–  given address x, it is easy to find the bank where x will be 

found, B(x), and the address of x within the bank, A(x). 
–  for any address x, B(x) and A(x) are unique 
–  the number of bank conflicts is minimized 

§  Solution: Use the Chinese remainder theorem to determine B(x) and 
A(x): 

 B(x) = x MOD Nb 
 A(x) = x MOD Nw     where Nb and Nw are co-prime (no factors) 

– Chinese Remainder Theorem shows that B(x) and A(x) 
unique. 

§  Condition allows Nw to be power of two (typical) if Nb is prime of form 
2m-1. 

§  Simple (fast) circuit  to compute (x mod Nb) when Nb = 2m-1: 
–  Since 2k

 = 2k-m
 (2m-1) + 2k-m

 ⇒ 2k MOD Nb = 2k-m MOD Nb =…= 2j  with j < m 
–  And, remember that:  (A+B) MOD C = [(A MOD C)+(B MOD C)] MOD C 
–  for every power of 2, compute single bit MOD (in advance) 
–  B(x) = sum of these values MOD Nb  

(low complexity circuit, adder with ~ m bits) 
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Conclusion 
§  Vector is alternative model for exploiting ILP 

–  If code is vectorizable, then simpler hardware, more energy 
efficient, and better real-time model than Out-of-order 
machines 

– Design issues include number of lanes, number of functional 
units, number of vector registers, length of vector registers, 
exception handling, conditional operations 


