
Lecture 18: Instruction Level Parallelism
-- Dynamic Scheduling, Multiple

Issue, and Speculation

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and
Engineering

Yonghong Yan
yan@oakland.edu

www.secs.oakland.edu/~yan

2

Topics for Instruction Level Parallelism
§  ILP Introduction, Compiler Techniques and Branch

Prediction
–  3.1, 3.2, 3.3

§  Dynamic Scheduling (OOO)
–  3.4, 3.5 and C.5, C.6 and C.7 (FP pipeline and scoreboard)

§  Hardware Speculation and Static Superscalar/VLIW
–  3.6, 3.7

§  Dynamic Scheduling, Multiple Issue and Speculation
– 3.8, 3.9, 3.13

§  ILP Limitations and SMT
–  3.10, 3.11, 3.12

3

Acknowledge and Copyright
§  Slides adapted from

– UC Berkeley course “Computer Science 252: Graduate
Computer Architecture” of David E. Culler Copyright(C) 2005
UCB

– UC Berkeley course Computer Science 252, Graduate
Computer Architecture Spring 2012 of John Kubiatowicz
Copyright(C) 2012 UCB

– Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis
from UC Berkeley

§  https://passlab.github.io/CSE564/copyrightack.html

4

REVIEW

5

Not Every Stage Takes only one Cycle
§  FP EXE Stage

– Multi-cycle Add/Mul
– Nonpiplined for DIV

§  MEM Stage

6

Issues of Multi-Cycle in Some Stages
§  The divide unit is not fully pipelined

–  structural hazards can occur
»  need to be detected and stall incurred.

§  The instructions have varying running times
–  the number of register writes required in a cycle can be > 1

§  Instructions no longer reach WB in order
– Write after write (WAW) hazards are possible

»  Note that write after read (WAR) hazards are not possible, since
the register reads always occur in ID.

§  Instructions can complete in a different order than
they were issued (out-of-order complete)
–  causing problems with exceptions

§  Longer latency of operations
–  stalls for RAW hazards will be more frequent.

7

Hardware Solution for Addressing Data
Hazards

§  Dynamic Scheduling
– Out-of-order execution and completion

§  Data Hazard via Register Renaming
– Dynamic RAW hazard detection and scheduling in data-flow

fashion
– Register renaming for WRW and WRA hazard (name conflict)

§  Implementations
–  Scoreboard (CDC 6600 1963)

»  Centralized register renaming
–  Tomasulo’s Approach (IBM 360/91, 1966)

»  Distributed control and renaming via reservation station, load/
store buffer and common data bus (data+source)

8

Register Renaming Summary
§  Purpose of Renaming: removing “Anti-dependencies”

–  Get rid of WAR and WAW hazards, since these are not “real” dependencies
§  Implicit Renaming: i.e. Tomasulo

–  Registers changed into values or response tags
–  We call this “implicit” because space in register file may or may not be used

by results!

§  Explicit Renaming: more physical registers than needed by ISA.
–  Rename table: tracks current association between architectural registers and

physical registers
–  Uses a translation table to perform compiler-like transformation on the fly

§  With Explicit Renaming:
–  All registers concentrated in single register file
–  Can utilize bypass network that looks more like 5-stage pipeline
–  Introduces a register-allocation problem

»  Need to handle branch misprediction and precise exceptions differently,
but ultimately makes things simpler

9

HARDWARE SPECULATION:
ADDRESSING CONTROL
HAZARDS

10

Control Hazard from Branches: Three
Stage Stall if Taken�

10: BEQ R1,R3,36

14: AND R2,R3,R5

18: OR R6,R1,R7

22: ADD R8,R1,R9

36: XOR R10,R1,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

What do you do with the 3 instructions in between?

How do you do it?

11

Control Hazards
§  Break the instruction flow

§  Unconditional Jump
§  Conditional Jump
§  Function call and return
§  Exceptions

§  Multiple instructions following branch in program
order can complete before branch resolves

12

Branch Prediction + Speculation
(Misprediction Recovery)

§  Branch Prediction:
– Modern branch predictors have high accuracy:

(>95%) and can reduce branch penalties significantly
– Required hardware support

»  Branch history tables (Taken or Not)
»  Branch target buffers, etc. (Target address)

§  In-order commit for out-of-order execution:
–  Instructions fetched and decoded into instruction reorder

buffer in-order
–  Execution is out-of-order (⇒ out-of-order completion)
– Commit (write-back to architectural state, i.e., regfile &

memory) is in-order

13

Branch Prediction/Speculation

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill
kill

14

Hardware Speculation in Tomasulo Algorithm

§  Reservation Station
and Load Buffer
– Register renaming
–  For dynamic

scheduling and out-of-
order execution

§  Reorder Buffer
– Register renaming
–  For in-order commit

§  Common Data Bus
– Data forwarding

§  Also handle memory
data hazard

15

Four Steps of Speculative Tomasulo
1. Issue—get instruction from FP Op Queue

 If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2. Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch

CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.
4. Commit—update register with reorder result

 When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr
from reorder buffer. Mispredicted branch flushes reorder
buffer (sometimes called “graduation”)

16

Instruction In-order Commit
§  Also called completion or graduation
§  In-order commit

–  In-order issue
– Out-of-order execution
– Out-of-order completion

§  Three cases when an instr reaches the head of ROB
– Normal commit: when an instruction reaches the head of the

ROB and its result is present in the buffer
»  The processor updates the register with the result and removes

the instruction from the ROB.
– Committing a store:

»  is similar except that memory is updated rather than a result
register.

– A branch with incorrect prediction
»  indicates that the speculation was wrong.
»  The ROB is flushed and execution is restarted at the correct

successor of the branch.

17

In-order
Commit with
Branch

IF Misprediction

FLUSHED

18

Dynamic Scheduling and Speculation
§  ILP Maximized (a restricted data-flow)

–  In-order issue
– Out-of-order execution
– Out-of-order completion
–  In-order commit

§  Data Hazards
–  Input operands-driven dynamic scheduling for RAW hazard
– Register renaming for handling WAR and WAW hazards

§  Control Hazards (Branching, Precision Exception)
– Branch prediction and in-order commit (speculation)
– Branch prediction without speculation

»  Cannot do out-of-order execution/complete for branch

§  Implementation: Tomasulo
– Reservation stations and Reorder buffer
– Other solutions as well (scoreboard, history table)

19

MULTIPLE ISSUE VIA VLIW/
STATIC SUPERSCALAR

20

Multiple Issue
§  “Flynn bottleneck”

–  single issue performance limit is CPI = IPC = 1
–  hazards + overhead ⇒ CPI >= 1 (IPC <= 1)
–  diminishing returns from superpipelining [Hrishikesh paper!]

§  Solution: issue multiple instructions per cycle

§  1st superscalar: IBM America → RS/6000 → POWER1

21

Multiple Issue
§  Issue multiple instructions in one cycle
§  Three major types (VLIW and superscalar)

–  Statically scheduled superscalar processors
–  VLIW (very long instruction word) processors
–  Dynamically scheduled superscalar processors

§  Superscalar
–  Variable # of instr per cycle
–  In-order execution for static superscalar
–  Out-of-order execution for dynamic superscalar

§  VLIW
–  Issue a fixed number of instructions formatted either as one large

instruction or as a fixed instruction packet with the parallel- ism
among instructions explicitly indicated by the instruction.

–  Inherently statically scheduled by the compiler
–  Intel/HP IA-64 architecture, named EPIC—explicitly parallel

instruction computer
»  Appendix H,

22

VLIW and Static Superscalar
§  Very similar in terms of the requirements for compiler

and hardware support
§  We will discuss VLIW/Static superscalar

§  Very Long Instruction Word (VLIW)
–  packages the multiple operations into one very long

instruction

23

VLIW: Very Large Instruction Word
§  Each �instruction� has explicit coding for multiple

operations
–  In IA-64, grouping called a “packet”
–  In Transmeta, grouping called a “molecule” (with “atoms” as

ops)
§  Tradeoff instruction space for simple decoding

–  The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
–  E.g., 1 integer operation/branch, 2 FP ops, 2 Memory refs

»  16 to 24 bits per field => 5*16 or 80 bits to 5*24 or 120 bits wide
– Need compiling technique that schedules across several

branches

24

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

25

Loop Unrolling in VLIW
Unrolled 7 times to avoid delays
 7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
 Average: 2.5 ops per clock, 50% efficiency
 Note: Need more registers in VLIW (15 vs. 6 in SS)

26

Loop Unrolling in VLIW
§  Unroll 8 times

–  Enough registers
8 results in 9 clocks, or 1.125 clocks per iteration
 Average: 2.89 (26/9) ops per clock, 58% efficiency (26/45)

L.D

ADD.D

S.D

27

Loop Unrolling in VLIW
§  Unroll 10 times

–  Enough registers
10 results in 10 clocks, or 1 clock per iteration
 Average: 3.2 ops per clock (32/10), 64% efficiency (32/50)

L.D

ADD.D

S.D

L.D L.D

ADD.D ADD.D

S.D S.D

28

Problems with 1st Generation VLIW
§  Increase in code size

–  generating enough operations in a straight-line code fragment requires
ambitiously unrolling loops

–  whenever VLIW instructions are not full, unused functional units translate to
wasted bits in instruction encoding

§  Operated in lock-step; no hazard detection HW
–  a stall in any functional unit pipeline caused entire processor to stall, since all

functional units must be kept synchronized
–  Compiler might prediction function units, but caches hard to predict

§  Binary code compatibility
–  Pure VLIW => different numbers of functional units and unit latencies require

different versions of the code

§  Itanium/EPIC/VLIW is not a breakthrough in ILP
– If anything, it is as complex or more so than a

dynamic processor

29

Very Important Terms
§  Dynamic Scheduling à Out-of-order Execution
§  Speculation à In-order Commit
§  Superscalar à Multiple Issue

Techniques Goals Implementation Addressing Approaches
Dynamic
Scheduling

Out-of-
order
execution

Reservation
Stations, Load/Store
Buffer and CDB

Data hazards
(RAW, WAW,
WAR)

Register
renaming

Speculation In-order
commit

Reorder Buffer Control
hazards

Prediction and
misprediction
recovery

Superscalar/
VLIW

Multiple
issue

Software and
Hardware

To Increase
CPI

By compiler or
hardware

30

DYNAMIC SCHEDULING,
MULTIPLE
ISSUE (DYNAMIC
SUPERSCALAR), AND
SPECULATION

31

Dynamic Scheduling, Multiple
Issue, and Speculation

§  Microarchitecture quite similar to
those in modern microprocessors
– Real

§  Consider two issue per clock
–  Example: CPU with floating point ALUs:

Issue 1 FP + 1 Integer instruction per cycle.
»  Save at least 1 cycle than the pipeline

– Challenges
»  Find the right instructions
»  Dependency between instructions

32

5-Stage In-order 2-Wide Pipeline
§ 

§  what is involved in
–  fetching two instructions per cycle?
–  decoding two instructions per cycle?
–  executing two ALU operations per cycle?
–  accessing the data cache twice per cycle?
– writing back two results per cycle?

§  what about 4 or 8 instructions per cycle?

33

Implementation using Temasulo’s
Approach

§  Similar to Tomasulo with Speculation

§  Multiple issue à one
issue per clock cycle
per functional unit
–  4-wide

34

Options and Challenges of Multiple Issue
§  How to issue two instructions and keep in-order instruction

issue for Tomasulo?
–  Assume 1 integer + 1 floating point
–  1 Tomasulo control for integer, 1 for floating point

1.  Issue two instrs pipelined in one cycle (half and half for each

instr), so that issue remains in order à superpipelining
–  Hard to extend to 4 or more

2.  Issue 2 instrs per cycle in parallel à true superscalar
–  Between FP and Integer operations: Only FP loads might cause

dependency between integer and FP issue:
»  Replace load reservation station with a load queue;

operands must be read in the order they are fetched
»  Load checks addresses in Store Queue to avoid RAW violation
»  Store checks addresses in Load Queue to avoid WAR,WAW
»  Called “decoupled architecture”

3.  Mix of both
–  Superpipeling and superscalar

35

Multiple Issue Challenges
§  While Integer/FP split is simple for the HW, get CPI of

0.5 only for programs with:
–  Exactly 50% FP operations
– No hazards

§  If more instructions issue at same time, greater
difficulty of decode and issue:
–  Even 2-scalar => examine 2 opcodes, 6 register specifiers, &

decide if 1 or 2 instructions can issue
– Multiported rename logic: must be able to rename same

register multiple times in one cycle!
– Rename logic one of key complexities in the way of multiple

issue!

36

Multiple Issue
§  Bundle multiple instrs in one issue unit

–  N-wide

1.  Assign a reservation station and a
reorder buffer for every instruction that
might be issued in the next issue bundle.
–  N entries in ROB
–  Ensure enough RS available for the bundle
–  If not enough RS/ROB, break the bundle

2.  Analyze dependency in the issue bundle
3.  Inter-dependency between instrs in a bundle

–  Update the reservation station table entries using the assigned ROB
entries to link the dependency

»  Register renaming happened

§  In-order commit to make sure instrs commit in order
§  Other techniques

–  Speculative multiple issue in Intel i7

37

Example
§  E

1

BNE has RAW dependence on DADDIU

38

Without Speculation

 No Speculation

 No Speculation

LD can be issued but CANNOT be executed
before BNE completes

39

With Speculation

 With Speculation

LD can be speculatively executed before
BNE completes

40

ADVANCED TECHNIQUES FOR
INSTRUCTION DELIVERY AND
SPECULATION
 1.  Advanced Branch Prediction
2.  Explicit Register Renaming
3.  Others that are important but not covered: Load/store

speculation, value predication, correlate branch
prediction, tournament predictor, trace cache

4.  Put all together on ARM Cortex-A8 and Intel Core i7

41

BRANCH PREDICTION
BEFORE DECODING

42

Branch History Table for Dynamic Branch
Prediction�

§  Solution: 2-bit scheme where change prediction only
if get misprediction twice.

– Red: stop, not taken;
– Blue: go, taken;
– Adds hysteresis to decision making process.

T

T NT

NT

Predict Taken

Predict Not

Taken

Predict Taken

Predict Not

Taken

11� 10�

01� 00�
T

NT
T

NT

42

43

Typical Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index
2k-entry
BHT,
n bits/entry

Taken/¬Taken?

44

Branch Target Buffer

BP bits are stored with the predicted target address. (BHT)

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted target

target BP

45

Branch Target Buffer (BTB)

•  Keep both the branch PC and target PC in the BTB
•  PC+4 is fetched if match fails
•  Only predicted taken branches and jumps held in BTB
•  Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative) I-Cache PC

k

Valid

valid

Entry PC

=

match

Predicted target pc

target

46

Consulting BTB Before Decoding

1028 Add

132 Jump 100

BPb target
take 236

entry PC
132

•  The match for PC=1028 fails and 1028+4 is fetched
 ⇒ eliminates false predictions after ALU instructions

•  BTB contains entries only for control transfer instructions

 ⇒ more room to store branch targets

47

Branch Misprediction in Pipeline

§  Can have multiple unresolved branches in ROB
§  Can resolve branches out-of-order by killing all the

instructions in ROB that follow a mispredicted branch

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

48

Branch With a Target Buffer
§  Steps

49

Subroutine Return Stack
Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.

&nexta
&nextb

Push return address when
function call executed

Pop return address
when subroutine return
decoded

fa() { fb(); nexta: }

fb() { fc(); nextb: }

fc() { fd(); nextc: }

&nextc k entries
(typically k=8-16)

50

Special Case Return Addresses
§  Register Indirect branch hard to predict address

–  SPEC89 85% such branches for procedure return
–  Since stack discipline for procedures, save return address in

small buffer that acts like a stack: 8 to 16 entries has small
miss rate

BTB
PC Predicted

Next PC

Fetch Unit

Destination From
Call Instruction

[On Fetch?]

Select for
Indirect Jumps

[On Fetch]

Return Address Stack

Mux

51

Performance: Return Address Predictor

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
cy

go
m88ksim
cc1
compress
xlisp
ijpeg
perl
vortex

§  Cache most recent return addresses:
– Call ⇒ Push a return address on stack
– Return ⇒ Pop an address off stack & predict as new PC

52

Independent �Fetch� unit
§  Instruction fetch decoupled from execution

–  Instruction Buffer in-between

§  Often issue logic (+ rename) included with Fetch

Instruction Fetch
with

Branch Prediction

Out-Of-Order
Execution

Unit

Correctness Feedback
On Branch Results

Stream of Instructions
To Execute

53

EXPLICIT REGISTER
RENAMING

54

Explicit Register Renaming
§  Tomasulo provides Implicit Register Renaming

–  User registers renamed to reservation station tags

§  Explicit Register Renaming:
–  Use physical register file that is larger than number of registers specified by ISA

§  Keep a translation table:
–  ISA register => physical register mapping
–  When register is written, replace table entry with new register from freelist.
–  Physical register becomes free when not being used by any instructions in

progress.
§  Pipeline can be exactly like “standard” DLX pipeline

–  IF, ID, EX, etc….

§  Advantages:
–  Removes all WAR and WAW hazards
–  Like Tomasulo, good for allowing full out-of-order completion
–  Allows data to be fetched from a single register file
–  Makes speculative execution/precise interrupts easier:

»  All that needs to be “undone” for precise break point
is to undo the table mappings

55

Explicit Renaming Support Includes:
§  Rapid access to a table of translations
§  A physical register file that has more registers than

specified by the ISA
§  Ability to figure out which physical registers are free.

– No free registers ⇒ stall on issue
§  Thus, register renaming doesn’t require reservation

stations. However:
– Many modern architectures use explicit register renaming +

Tomasulo-like reservation stations to control execution.

56

Explicit Register Renaming
§  Make use of a physical register file that is larger than

number of registers specified by ISA
§  Keep a translation table:

–  ISA register => physical register mapping
– When register is written, replace table entry with new register

from freelist.
–  Physical register becomes free when not being used by any

instructions in progress.

Fetch Decode/
Rename Execute

Rename
Table

57

Explicit register renaming:
R10000 Freelist Management

§  Physical register file larger than ISA register file
§  On issue, each instruction that modifies a register is

allocated new physical register from freelist
§  Used on: R10000, Alpha 21264, HP PA8000

Done?

Oldest

Newest

P0 P2 P4 F6 F8 P10 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P32 P34 P36 P38 … P60 P62

Current Map Table

Freelist

58

Explicit register renaming:
R10000 Freelist Management

§  Note that physical register P0 is �dead� (or not �live�)
past the point of this load.
– When we go to commit the load, we free up

F0 P0 LD P32,10(R2) N

Done?

Oldest

Newest

P32 P2 P4 F6 F8 P10 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P34 P36 P38 P40 … P60 P62

Current Map Table

Freelist

59

Explicit register renaming:
R10000 Freelist Management

F10
F0

P10
P0

ADDD P34,P4,P32
LD P32,10(R2)

N
N

Done?

Oldest

Newest

P32 P2 P4 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30

P36 P38 P40 P42 … P60 P62

Current Map Table

Freelist

60

Explicit register renaming:
R10000 Freelist Management

--

--
F2
F10
F0

P2
P10
P0

BNE P36,<…> N
DIVD P36,P34,P6
ADDD P34,P4,P32
LD P32,10(R2)

N
N
N

Done?

Oldest

Newest

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P38 P40 P44 P48 … P60 P62

Current Map Table

Freelist

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction

61

Explicit register renaming:
R10000 Freelist Management

--
F0
F4
--
F2
F10
F0

P32
P4

P2
P10
P0

ST 0(R3),P40
ADDD P40,P38,P6

Y
Y

LD P38,0(R3) Y
BNE P36,<…> N
DIVD P36,P34,P6
ADDD P34,P4,P32
LD P32,10(R2)

N
y
y

Done?

Oldest

Newest

P40 P36 P38 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P42 P44 P48 P50 … P0 P10

Current Map Table

Freelist

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction

62

Explicit register renaming:
R10000 Freelist Management

F2
F10
F0

P2
P10
P0

DIVD P36,P34,P6
ADDD P34,P4,P32
LD P32,10(R2)

N
y
y

Done?

Oldest

Newest

Current Map Table

Freelist

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30

P38 P40 P44 P48 … P0 P10

Error fixed by restoring map table and merging freelist

63

Advantages of Explicit Renaming
§  Decouples renaming from scheduling:

–  Pipeline can be exactly like “standard” DLX pipeline (perhaps with
multiple operations issued per cycle)

–  Or, pipeline could be tomasulo-like or a scoreboard, etc.
–  Standard forwarding or bypassing could be used

§  Allows data to be fetched from single register file
–  No need to bypass values from reorder buffer
–  This can be important for balancing pipeline

§  Many processors use a variant of this technique:
–  R10000, Alpha 21264, HP PA8000

§  Another way to get precise interrupt points:
–  All that needs to be “undone” for precise break point

is to undo the table mappings
–  Provides an interesting mix between reorder buffer and future file

»  Results are written immediately back to register file
»  Registers names are “freed” in program order (by ROB)

64

Superscalar Register Renaming

•  During decode, instructions allocated new physical destination register
•  Source operands renamed to physical register with newest value
•  Execution unit only sees physical register numbers

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
rit

e
P

or
ts

65

Superscalar Register Renaming (Try #2)

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data W
ri
te

Po

rt
s =? =?

Must check for
RAW hazards
between
instructions
issuing in same
cycle. Can be
done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

66

Reality and References
§  Modern processors uses the advanced technologies we talked about in

this class and others not covered
–  Principles are the same mostly

§  Historically and more depth
–  Lots of ideas have been evaluated and developed
–  Appendix L.5 for history and references
–  VLIW/EPIC and software pipelining: Appendix H

§  More and Latest Info (Conference)
–  MICRO: Annual IEEE/ACM International Symposium on Microarchitecture

»  https://www.microarch.org
–  IEEE Symposium on High Performance Computer Architecture (HPCA)

»  http://hpca2017.org/
–  International Symposium on Computer Architecture (ISCA)

–  ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

»  http://www.ece.cmu.edu/calcm/asplos2016
–  SIGARCH – The ACM Special Interest Group on Computer Architecture

»  https://www.sigarch.org/

67

Put It All Together Examples: ARM
Cortex-A8 and Intel Core i7

§  ARM Cortex-A8 core, the basis for the Apple A9
processor in the iPad, iPhones 3GS and 4
– Dual-issue, statically scheduled superscalar with dynamic

issue detection à 0.5 CPI ideally
–  The basic pipeline structure of the 13-stage pipeline.
– A dynamic branch predictor with a 512-entry two-way set

associative branch target buffer and a 4K-entry global history
buffer, indexed by the branch history and the current PC.

– An eight-entry return stack is kept to track return addresses.
»  Misprediction results in a 13- cycle penalty of the pipeline

flushed.

68

Put It All Together Examples: ARM
Cortex-A8 and Intel Core i7

§  ARM Cortex-A8 core, the basis for the Apple A9
processor in the iPad, iPhones 3GS and 4
– A dynamic branch predictor with a 512-entry two-way set

associative branch target buffer and a 4K-entry global history
buffer, indexed by the branch history and the current PC.

– An eight-entry return stack is kept to track return addresses.
»  Misprediction results in a 13- cycle penalty of the pipeline

flushed.

69

Cortex-A8 Decode
§  5-stage decoding

70

Cortex-A8 EXE Stage
§  5-stage execution (E5 is actually WB)

71

Intel Core i7
§  Aggressive out-of-

order speculative
§  14 stages pipeline,
§  Branch mispredictions

costing 17 cycles.
§  48 load and 32 store

buffers.
§  Six independent

functional units
–  6-wide superscalar

72

Core i7 Pipeline: IF

§  Instruction fetch – Fetch 16 bytes from the I cache
– A multilevel branch target buffer to achieve a balance

between speed and prediction accuracy.
– A return address stack to speed up function return.
– Mispredictions cause a penalty of about 15 cycles.

73

Core i7 Pipeline: Predecode

§  Predecode –16 bytes instr in the predecode I buffer
– Macro-op fusion: Fuse instr combinations such as compare

followed by a branch into a single operation.
–  Instr break down: breaks the 16 bytes into individual x86

instructions.
»  nontrivial since the length of an x86 instruction can be from 1 to

17 bytes and the predecoder must look through a number of
bytes before it knows the instruction length.

–  Individual x86 instructions (including some fused
instructions) are placed into the 18-entry instruction queue.

74

Core i7 Pipeline:
Micro-op decode

§  Micro-op decode – Translate Individual x86

instructions into micro-ops.
– Micro-ops are simple MIPS-like instructions that can be

executed directly by the pipeline (RISC style)
»  introduced in the Pentium Pro in 1997 and has been used since.

–  Three simple micro-op decoders handle x86 instructions that
translate directly into one micro-op.

– One complex micro-op decoder produce the micro-op
sequence of complex x86 instr;

»  produce up to four micro-ops every cycle
–  The micro-ops are placed according to the order of the x86

instructions in the 28- entry micro-op buffer.

75

Core i7 Pipeline:
loop stream detection
and microfusion

§  loop stream detection and microfusion by the micro-
op buffer preforms
–  If there is a sequence of instructions (less than 28 instrs or

256 bytes in length) that comprises a loop, the loop stream
detector will find the loop and directly issue the micro-ops
from the buffer

»  eliminating the need for the instruction fetch and instruction
decode stages to be activated.

– Microfusion combines instr pairs such as load/ALU operation
and ALU operation/store and issues them to a single
reservation station, thus increasing the usage of the buffer.

»  Study comparing the microfusion and macrofusion by Bird et al.
[2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive
impact on integer performance and little impact on FP.

76

Core i7 Pipeline: Issue
§  Basic instruction issue

–  Looking up the register location in
 the register tables
–  renaming the registers
–  allocating a reorder buffer entry
–  fetching any results from the
registers or reorder buffer before sending the micro-ops to the
reservation stations.

§  36-entry centralized reservation station shared by six
functional units
Up to six micro-ops may be dispatched to the functional units
every clock cycle.

77

Core i7 Pipeline: EXE
and Retirement

§  Micro-ops are executed by the individual function

units
–  results are sent back to any waiting reservation station as

well as to the register retirement unit, where they will update
the register state. The entry corresponding to the instruction
in the reorder buffer is marked as complete.

§  Retirement
– When one or more instructions at the head of the reorder

buffer have been marked as complete, the pending writes in
the register retirement unit are executed, and the instructions
are removed from the reorder buffer.

78

Core i7 Performance
§  The integer CPI values range from 0.44 to 2.66 with a

standard deviation of 0.77
§  The FP CPU is from 0.62 to 1.38 with a standard

deviation of 0.25.
§  Cache behavior is major contribution to the stall CPI

