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Topics for Instruction Level Parallelism 
§  ILP Introduction, Compiler Techniques and Branch 

Prediction 
–  3.1, 3.2, 3.3 

§  Dynamic Scheduling (OOO) 
–  3.4, 3.5 and C.5, C.6 and C.7 (FP pipeline and scoreboard) 

§  Hardware Speculation and Static Superscalar/VLIW 
–  3.6, 3.7 

§  Dynamic Scheduling, Multiple Issue and Speculation 
– 3.8, 3.9, 3.13 

§  ILP Limitations and SMT 
–  3.10, 3.11, 3.12 
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Not Every Stage Takes only one Cycle 
§  FP EXE Stage 

– Multi-cycle Add/Mul 
– Nonpiplined for DIV 

 

 
§  MEM Stage 
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Issues of Multi-Cycle in Some Stages 
§  The divide unit is not fully pipelined 

–  structural hazards can occur 
»  need to be detected and stall incurred. 

§  The instructions have varying running times 
–  the number of register writes required in a cycle can be > 1  

§  Instructions no longer reach WB in order 
– Write after write (WAW) hazards are possible 

»  Note that write after read (WAR) hazards are not possible, since 
the register reads always occur in ID.  

§  Instructions can complete in a different order than 
they were issued (out-of-order complete) 
–  causing problems with exceptions 

§  Longer latency of operations 
–  stalls for RAW hazards will be more frequent.  
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Hardware Solution for Addressing Data 
Hazards 

§  Dynamic Scheduling 
– Out-of-order execution and completion 

§  Data Hazard via Register Renaming 
– Dynamic RAW hazard detection and scheduling in data-flow 

fashion 
– Register renaming for WRW and WRA hazard (name conflict) 

§  Implementations 
–  Scoreboard (CDC 6600 1963) 

»  Centralized register renaming 
–  Tomasulo’s Approach (IBM 360/91, 1966) 

»  Distributed control and renaming via reservation station, load/
store buffer and common data bus (data+source) 
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Register Renaming Summary 
§  Purpose of Renaming: removing “Anti-dependencies” 

–  Get rid of WAR and WAW hazards, since these are not “real” dependencies 
§  Implicit Renaming: i.e. Tomasulo 

–  Registers changed into values or response tags 
–  We call this “implicit” because space in register file may or may not be used 

by results! 

§  Explicit Renaming: more physical registers than needed by ISA.   
–  Rename table: tracks current association between architectural registers and 

physical registers 
–  Uses a translation table to perform compiler-like transformation on the fly 

§  With Explicit Renaming: 
–  All registers concentrated in single register file 
–  Can utilize bypass network that looks more like 5-stage pipeline 
–  Introduces a register-allocation problem 

»  Need to handle branch misprediction and precise exceptions differently, 
but ultimately makes things simpler 
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HARDWARE SPECULATION: 
ADDRESSING CONTROL 
HAZARDS 
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Control Hazard from Branches: Three 
Stage Stall if Taken�

10: BEQ R1,R3,36 

 
14: AND R2,R3,R5  

 
18: OR  R6,R1,R7 

 
22: ADD R8,R1,R9 

 
36: XOR R10,R1,R11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

What do you do with the 3 instructions in between? 

How do you do it? 
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Control Hazards 
§  Break the instruction flow 

§  Unconditional Jump 
§  Conditional Jump 
§  Function call and return 
§  Exceptions 

§  Multiple instructions following branch in program 
order can complete before branch resolves 
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Branch Prediction + Speculation 
(Misprediction Recovery) 

§  Branch Prediction: 
– Modern branch predictors have high accuracy: 

(>95%) and can reduce branch penalties significantly 
– Required hardware support 

»  Branch history tables (Taken or Not) 
»  Branch target buffers, etc. (Target address) 

§  In-order commit for out-of-order execution: 
–  Instructions fetched and decoded into instruction reorder 

buffer in-order 
–  Execution is out-of-order ( ⇒ out-of-order completion) 
– Commit (write-back to architectural state, i.e., regfile & 

memory) is in-order 
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Branch Prediction/Speculation 

Fetch Decode & 
Rename Reorder Buffer PC 

Branch 
Prediction 

Update predictors 

Commit 

Branch 
Resolution 

Branch 
Unit ALU 

Reg. File 

MEM Store 
Buffer D$ 

Execute 

kill 
kill 

kill 
kill 
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Hardware Speculation in Tomasulo Algorithm 

§  Reservation Station 
and Load Buffer 
– Register renaming 
–  For dynamic 

scheduling and out-of-
order execution 

§  Reorder Buffer 
– Register renaming 
–  For in-order commit 

§  Common Data Bus 
– Data forwarding 

§  Also handle memory 
data hazard 
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Four Steps of Speculative Tomasulo 
1. Issue—get instruction from FP Op Queue 

  If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”) 

2. Execution—operate on operands (EX) 
  When both operands ready then execute; if not ready, watch 

CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”) 

3. Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting FUs  

& reorder buffer; mark reservation station available. 
4. Commit—update register with reorder result 

  When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr 
from reorder buffer. Mispredicted branch flushes reorder 
buffer (sometimes called “graduation”) 
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Instruction In-order Commit 
§  Also called completion or graduation 
§  In-order commit 

–  In-order issue 
– Out-of-order execution 
– Out-of-order completion 

§  Three cases when an instr reaches the head of ROB 
– Normal commit: when an instruction reaches the head of the 

ROB and its result is present in the buffer 
»  The processor updates the register with the result and removes 

the instruction from the ROB.  
– Committing a store: 

»  is similar except that memory is updated rather than a result 
register.  

– A branch with incorrect prediction 
»  indicates that the speculation was wrong.  
»  The ROB is flushed and execution is restarted at the correct 

successor of the branch. 
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In-order 
Commit with 
Branch 

IF Misprediction 

FLUSHED 
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Dynamic Scheduling and Speculation 
§  ILP Maximized (a restricted data-flow) 

–  In-order issue 
– Out-of-order execution 
– Out-of-order completion 
–  In-order commit 

§  Data Hazards 
–  Input operands-driven dynamic scheduling for RAW hazard 
– Register renaming for handling WAR and WAW hazards 

§  Control Hazards (Branching, Precision Exception) 
– Branch prediction and in-order commit (speculation) 
– Branch prediction without speculation 

»  Cannot do out-of-order execution/complete for branch 

§  Implementation: Tomasulo 
– Reservation stations and Reorder buffer 
– Other solutions as well (scoreboard, history table) 
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MULTIPLE ISSUE VIA VLIW/
STATIC SUPERSCALAR 
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Multiple Issue 
§   “Flynn bottleneck” 

–  single issue performance limit is CPI = IPC = 1 
–  hazards + overhead ⇒ CPI >= 1 (IPC <= 1) 
–  diminishing returns from superpipelining [Hrishikesh paper!] 

§  Solution: issue multiple instructions per cycle 

§  1st superscalar: IBM America → RS/6000 → POWER1 
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Multiple Issue 
§  Issue multiple instructions in one cycle 
§  Three major types (VLIW and superscalar) 

–  Statically scheduled superscalar processors  
–  VLIW (very long instruction word) processors  
–  Dynamically scheduled superscalar processors  

§  Superscalar 
–  Variable # of instr per cycle 
–  In-order execution for static superscalar 
–  Out-of-order execution for dynamic superscalar 

§  VLIW 
–  Issue a fixed number of instructions formatted either as one large 

instruction or as a fixed instruction packet with the parallel- ism 
among instructions explicitly indicated by the instruction.  

–  Inherently statically scheduled by the compiler 
–  Intel/HP IA-64 architecture, named EPIC—explicitly parallel 

instruction computer  
»  Appendix H,  
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VLIW and Static Superscalar 
§  Very similar in terms of the requirements for compiler 

and hardware support 
§  We will discuss VLIW/Static superscalar 

§  Very Long Instruction Word (VLIW) 
–  packages the multiple operations into one very long 

instruction 



23 

VLIW: Very Large Instruction Word 
§  Each �instruction� has explicit coding for multiple 

operations 
–  In IA-64, grouping called a “packet” 
–  In Transmeta, grouping called a “molecule” (with “atoms” as 

ops) 
§  Tradeoff instruction space for simple decoding 

–  The long instruction word has room for many operations 
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel 
–  E.g., 1 integer operation/branch, 2 FP ops, 2 Memory refs 

»  16 to 24 bits per field => 5*16 or 80 bits to 5*24 or 120 bits wide 
– Need compiling technique that schedules across several 

branches 
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Recall: Unrolled Loop that Minimizes 
Stalls for Scalar 

1 Loop: L.D  F0,0(R1) 
2  L.D  F6,-8(R1) 
3  L.D  F10,-16(R1) 
4  L.D  F14,-24(R1) 
5  ADD.D  F4,F0,F2 
6  ADD.D  F8,F6,F2 
7  ADD.D  F12,F10,F2 
8  ADD.D  F16,F14,F2 
9  S.D  0(R1),F4 
10  S.D  -8(R1),F8 
11  S.D  -16(R1),F12 
12  DSUBUI R1,R1,#32 
13  BNEZ  R1,LOOP 
14  S.D  8(R1),F16  ; 8-32 = -24 
 
14 clock cycles, or 3.5 per iteration 

L.D to ADD.D: 1 Cycle 
ADD.D to S.D: 2 Cycles 
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Loop Unrolling in VLIW 
Unrolled 7 times to avoid delays 
  7 results in 9 clocks, or 1.3 clocks per iteration (1.8X) 
  Average: 2.5 ops per clock, 50% efficiency 
  Note: Need more registers in VLIW (15 vs. 6 in SS) 
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Loop Unrolling in VLIW 
§  Unroll 8 times 

–  Enough registers 
8 results in 9 clocks, or 1.125 clocks per iteration 
  Average: 2.89 (26/9) ops per clock, 58% efficiency (26/45) 

L.D 

ADD.D 

S.D 
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Loop Unrolling in VLIW 
§  Unroll 10 times 

–  Enough registers 
10 results in 10 clocks, or 1 clock per iteration 
  Average: 3.2 ops per clock (32/10), 64% efficiency (32/50) 

L.D 

ADD.D 

S.D 

L.D L.D 

ADD.D ADD.D 

S.D S.D 
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Problems with 1st Generation VLIW 
§  Increase in code size 

–  generating enough operations in a straight-line code fragment requires 
ambitiously unrolling loops 

–  whenever VLIW instructions are not full, unused functional units translate to 
wasted bits in instruction encoding 

§  Operated in lock-step; no hazard detection HW 
–  a stall in any functional unit pipeline caused entire processor to stall, since all 

functional units must be kept synchronized 
–  Compiler might prediction function units, but caches hard to predict 

§  Binary code compatibility 
–  Pure VLIW => different numbers of functional units and unit latencies require 

different versions of the code 

§  Itanium/EPIC/VLIW is not a breakthrough in ILP 
– If anything, it is as complex or more so than a 

dynamic processor 
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Very Important Terms 
§  Dynamic Scheduling à Out-of-order Execution 
§  Speculation à In-order Commit  
§  Superscalar à Multiple Issue 

Techniques Goals Implementation Addressing Approaches 
Dynamic 
Scheduling 

Out-of-
order 
execution 

Reservation 
Stations, Load/Store 
Buffer and CDB 

Data hazards 
(RAW, WAW, 
WAR) 

Register 
renaming 

Speculation In-order 
commit 

Reorder Buffer Control 
hazards 

Prediction and 
misprediction 
recovery 

Superscalar/
VLIW 

Multiple 
issue 

Software and 
Hardware 

To Increase 
CPI 

By compiler or 
hardware 
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DYNAMIC SCHEDULING, 
MULTIPLE  
ISSUE (DYNAMIC 
SUPERSCALAR), AND 
SPECULATION  
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Dynamic Scheduling, Multiple  
Issue, and Speculation  

§  Microarchitecture quite similar to 
those in modern microprocessors 
– Real 

§  Consider two issue per clock 
–  Example: CPU with floating point ALUs:  

Issue 1 FP + 1 Integer instruction per cycle. 
»  Save at least 1 cycle than the pipeline 

– Challenges 
»  Find the right instructions 
»  Dependency between instructions 
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5-Stage In-order 2-Wide Pipeline 
§    

§  what is involved in 
–  fetching two instructions per cycle? 
–  decoding two instructions per cycle? 
–  executing two ALU operations per cycle? 
–  accessing the data cache twice per cycle? 
– writing back two results per cycle? 

§  what about 4 or 8 instructions per cycle? 
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Implementation using Temasulo’s 
Approach 

§  Similar to Tomasulo with Speculation 

§  Multiple issue à one 
issue per clock cycle 
per functional unit 
–  4-wide 
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Options and Challenges of Multiple Issue 
§  How to issue two instructions and keep in-order instruction 

issue for Tomasulo? 
–  Assume 1 integer + 1 floating point 
–  1 Tomasulo control for integer, 1 for floating point 

 
1.  Issue two instrs pipelined in one cycle (half and half for each 

instr), so that issue remains in order à superpipelining 
–  Hard to extend to 4 or more 

2.  Issue 2 instrs per cycle in parallel à true superscalar 
–  Between FP and Integer operations: Only FP loads might cause 

dependency between integer and FP issue: 
»  Replace load reservation station with a load queue;  

operands must be read in the order they are fetched 
»  Load checks addresses in Store Queue to avoid RAW violation 
»  Store checks addresses in Load Queue to avoid WAR,WAW 
»  Called “decoupled architecture” 

3.  Mix of both 
–  Superpipeling and superscalar 
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Multiple Issue Challenges 
§  While Integer/FP split is simple for the HW, get CPI of 

0.5 only for programs with: 
–  Exactly 50% FP operations 
– No hazards 

§  If more instructions issue at same time, greater 
difficulty of decode and issue: 
–  Even 2-scalar => examine 2 opcodes, 6 register specifiers, & 

decide if 1 or 2 instructions can issue 
– Multiported rename logic: must be able to rename same 

register multiple times in one cycle! 
– Rename logic one of key complexities in the way of multiple 

issue! 
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Multiple Issue 
§  Bundle multiple instrs in one issue unit 

–  N-wide  

1.  Assign a reservation station and a 
reorder buffer for every instruction that 
might be issued in the next issue bundle.  
–  N entries in ROB 
–  Ensure enough RS available for the bundle 
–  If not enough RS/ROB, break the bundle 

2.  Analyze dependency in the issue bundle 
3.  Inter-dependency between instrs in a bundle 

–  Update the reservation station table entries using the assigned ROB 
entries to link the dependency 

»  Register renaming happened 

§  In-order commit to make sure instrs commit in order 
§  Other techniques 

–  Speculative multiple issue in Intel i7 
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Example 
§  E 

1 

BNE has RAW dependence on DADDIU  
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Without Speculation 

                                                                            No Speculation 

                                                                            No Speculation 

LD can be issued but CANNOT be executed 
before BNE completes 
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With Speculation 

                                                                           With Speculation 

LD can be speculatively executed before 
BNE completes 
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ADVANCED TECHNIQUES FOR 
INSTRUCTION DELIVERY AND 
SPECULATION  
 1.  Advanced Branch Prediction  
2.  Explicit Register Renaming 
3.  Others that are important but not covered: Load/store 

speculation, value predication, correlate branch 
prediction, tournament predictor, trace cache 

4.  Put all together on ARM Cortex-A8 and Intel Core i7  
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BRANCH PREDICTION 
BEFORE DECODING 
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Branch History Table for Dynamic Branch 
Prediction�

§  Solution: 2-bit scheme where change prediction only 
if get misprediction twice. 

– Red: stop, not taken; 
– Blue: go, taken; 
– Adds hysteresis to decision making process. 

T 

T NT 

NT 

Predict Taken 

Predict Not  

Taken 

Predict Taken 

Predict Not  

Taken 

11� 10�

01� 00�
T 

NT 
T 

NT 

42 
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Typical Branch History Table 

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions 

0 0 Fetch PC 

Branch? Target PC 

+ 

I-Cache 

Opcode offset 
Instruction 

k 

BHT Index 
2k-entry 
BHT, 
n bits/entry 

Taken/¬Taken? 
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Branch Target Buffer 

BP bits are stored with the predicted target address. (BHT) 
 
IF stage: If (BP=taken) then nPC=target else nPC=PC+4 
later:       check prediction, if wrong then kill the instruction 
                and update BTB  & BPb else update BPb 

IMEM 

PC 

Branch  
Target  
Buffer  
(2k entries) 

k 

BPb predicted target 

target BP 
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Branch Target Buffer (BTB) 

•  Keep both the branch PC and target PC in the BTB  
•  PC+4 is fetched if match fails 
•  Only predicted taken branches and jumps held in BTB 
•  Next PC determined before branch fetched and decoded 

2k-entry direct-mapped BTB 
(can also be associative) I-Cache PC 

k 

Valid 

valid 

Entry PC 

= 

match 

Predicted target pc 

target 
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Consulting BTB Before Decoding 

1028  Add ..... 

132  Jump 100 

BPb target 
take 236 

entry PC 
132 

•  The match for PC=1028 fails and 1028+4 is fetched 
  ⇒ eliminates false predictions after ALU instructions 

 
•  BTB contains entries only for control transfer instructions 

 ⇒ more room to store branch targets 
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Branch Misprediction in Pipeline 

 
§  Can have multiple unresolved branches in ROB 
§  Can resolve branches out-of-order by killing all the 

instructions in ROB that follow a mispredicted branch 

Fetch Decode 

Execute 

Commit Reorder Buffer 

Kill 

Kill Kill 

Branch 
Resolution 

Inject correct PC 

Branch 
Prediction 

PC 

Complete 
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Branch With a Target Buffer 
§  Steps 
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Subroutine Return Stack 
Small structure to accelerate JR for subroutine returns, 

typically much more accurate than BTBs. 

&nexta 
&nextb 

Push return address when 
function call executed 

Pop return address 
when subroutine return 
decoded  

fa() { fb(); nexta: } 

fb() { fc(); nextb: } 

fc() { fd(); nextc: } 

&nextc k entries 
(typically k=8-16) 
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Special Case Return Addresses 
§  Register Indirect branch hard to predict address 

–  SPEC89 85% such branches for procedure return 
–  Since stack discipline for procedures, save return address in 

small buffer that acts like a stack: 8 to 16 entries has small 
miss rate 

BTB 
PC Predicted 

Next PC 

Fetch Unit 

Destination From 
Call Instruction 

[ On Fetch?] 

Select for 
Indirect Jumps 

[ On Fetch ] 

Return Address Stack 

Mux 
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Performance: Return Address Predictor 

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
cy

go
m88ksim
cc1
compress
xlisp
ijpeg
perl
vortex

§  Cache most recent return addresses: 
– Call ⇒ Push a return address on stack 
– Return ⇒ Pop an address off stack & predict as new PC 
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Independent �Fetch� unit 
§  Instruction fetch decoupled from execution 

–  Instruction Buffer in-between 

§  Often issue logic (+ rename) included with Fetch 

Instruction Fetch 
with  

Branch Prediction 

Out-Of-Order 
Execution 

Unit 

Correctness Feedback 
On Branch Results 

Stream of Instructions 
To Execute 
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EXPLICIT REGISTER 
RENAMING 
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Explicit Register Renaming 
§  Tomasulo provides Implicit Register Renaming 

–  User registers renamed to reservation station tags 

§  Explicit Register Renaming: 
–  Use physical register file that is larger than number of registers specified by ISA 

§  Keep a translation table: 
–  ISA register => physical register mapping 
–  When register is written, replace table entry with new register from freelist. 
–  Physical register becomes free when not being used by any instructions in 

progress. 
§  Pipeline can be exactly like “standard” DLX pipeline 

–  IF, ID, EX, etc…. 

§  Advantages: 
–  Removes all WAR and WAW hazards 
–  Like Tomasulo, good for allowing full out-of-order completion 
–  Allows data to be fetched from a single register file 
–  Makes speculative execution/precise interrupts easier: 

»  All that needs to be “undone” for precise break point 
is to undo the table mappings 
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Explicit Renaming Support Includes: 
§  Rapid access to a table of translations 
§  A physical register file that has more registers than 

specified by the ISA 
§  Ability to figure out which physical registers are free. 

– No free registers ⇒ stall on issue 
§  Thus, register renaming doesn’t require reservation 

stations.  However: 
– Many modern architectures use explicit register renaming + 

Tomasulo-like reservation stations to control execution.  
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Explicit Register Renaming 
§  Make use of a physical register file that is larger than 

number of registers specified by ISA 
§  Keep a translation table: 

–  ISA register => physical register mapping 
– When register is written, replace table entry with new register 

from freelist. 
–  Physical register becomes free when not being used by any 

instructions in progress. 

Fetch Decode/ 
Rename Execute 

Rename 
Table 
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Explicit register renaming: 
R10000 Freelist Management 

§  Physical register file larger than ISA register file 
§  On issue, each instruction that modifies a register is 

allocated new physical register from freelist 
§  Used on: R10000, Alpha 21264, HP PA8000 

Done? 

Oldest 

Newest 

P0 P2 P4 F6 F8 P10 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P32 P34 P36 P38 … P60 P62 

Current Map Table 

Freelist 
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Explicit register renaming: 
R10000 Freelist Management 

§  Note that physical register P0 is �dead� (or not �live�) 
past the point of this load.   
– When we go to commit the load, we free up   

F0 P0 LD P32,10(R2) N 

Done? 

Oldest 

Newest 

P32 P2 P4 F6 F8 P10 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P34 P36 P38 P40 … P60 P62 

Current Map Table 

Freelist 
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Explicit register renaming: 
R10000 Freelist Management 

F10 
F0 

P10 
P0 

ADDD P34,P4,P32 
LD P32,10(R2) 

N 
N 

Done? 

Oldest 

Newest 

P32 P2 P4 P6 P8 P34 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30 

P36 P38 P40 P42 … P60 P62 

Current Map Table 

Freelist 
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Explicit register renaming: 
R10000 Freelist Management 

-- 

-- 
F2 
F10 
F0 

P2 
P10 
P0 

BNE P36,<…> N 
DIVD P36,P34,P6 
ADDD P34,P4,P32 
LD P32,10(R2) 

N 
N 
N 

Done? 

Oldest 

Newest 

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P38 P40 P44 P48 … P60 P62 

Current Map Table 

Freelist 

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction 
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Explicit register renaming: 
R10000 Freelist Management 

-- 
F0 
F4 
-- 
F2 
F10 
F0 

P32 
P4 

P2 
P10 
P0 

ST 0(R3),P40 
ADDD P40,P38,P6 

Y 
Y 

LD P38,0(R3) Y 
BNE P36,<…> N 
DIVD P36,P34,P6 
ADDD P34,P4,P32 
LD P32,10(R2) 

N 
y 
y 

Done? 

Oldest 

Newest 

P40 P36 P38 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P42 P44 P48 P50 … P0 P10 

Current Map Table 

Freelist 

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction 
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Explicit register renaming: 
R10000 Freelist Management 

F2 
F10 
F0 

P2 
P10 
P0 

DIVD P36,P34,P6 
ADDD P34,P4,P32 
LD P32,10(R2) 

N 
y 
y 

Done? 

Oldest 

Newest 

Current Map Table 

Freelist 

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P38 P40 P44 P48 … P60 P62 Checkpoint at BNE instruction 

P32 P36 P4 F6 F8 P34 P12 P14 P16 P18 P20 P22 P24 p26 P28 P30 

P38 P40 P44 P48 … P0 P10 

Error fixed by restoring map table and merging freelist 
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Advantages of Explicit Renaming 
§  Decouples renaming from scheduling: 

–  Pipeline can be exactly like “standard” DLX pipeline (perhaps with 
multiple operations issued per cycle) 

–  Or, pipeline could be tomasulo-like or a scoreboard, etc. 
–  Standard forwarding or bypassing could be used 

§  Allows data to be fetched from single register file 
–  No need to bypass values from reorder buffer 
–  This can be important for balancing pipeline 

§  Many processors use a variant of this technique: 
–  R10000, Alpha 21264, HP PA8000 

§  Another way to get precise interrupt points: 
–  All that needs to be “undone” for precise break point 

is to undo the table mappings 
–  Provides an interesting mix between reorder buffer and future file 

»  Results are written immediately back to register file 
»  Registers names are “freed” in program order (by ROB) 
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Superscalar Register Renaming 

•  During decode, instructions allocated new physical destination register 
•  Source operands renamed to physical register with newest value 
•  Execution unit only sees physical register numbers 

Rename Table 

Op Src1 Src2 Dest Op Src1 Src2 Dest 

Register 
Free List 

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest 

Update 
Mapping 

Does this work? 

Inst 1 Inst 2 

Read Addresses 

Read Data 

W
rit

e 
P

or
ts 
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Superscalar Register Renaming (Try #2) 

Rename Table 

Op Src1 Src2 Dest Op Src1 Src2 Dest 

Register 
Free List 

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest 

Update 
Mapping 

Inst 1 Inst 2 

Read Addresses 

Read Data W
ri
te

 
Po

rt
s =? =? 

Must check for 
RAW hazards 
between 
instructions 
issuing in same 
cycle.  Can be 
done in parallel 
with rename 
lookup. 

MIPS R10K renames 4 serially-RAW-dependent insts/cycle 
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Reality and References 
§  Modern processors uses the advanced technologies we talked about in 

this class and others not covered 
–  Principles are the same mostly 

§  Historically and more depth 
–  Lots of ideas have been evaluated and developed 
–  Appendix L.5 for history and references 
–  VLIW/EPIC and software pipelining: Appendix H 

§  More and Latest Info (Conference) 
–  MICRO: Annual IEEE/ACM International Symposium on Microarchitecture 

»  https://www.microarch.org 
–  IEEE Symposium on High Performance Computer Architecture (HPCA) 

»  http://hpca2017.org/ 
–  International Symposium on Computer Architecture (ISCA) 

–  ACM International Conference on Architectural Support for 
Programming Languages and Operating Systems 

»  http://www.ece.cmu.edu/calcm/asplos2016 
–  SIGARCH – The ACM Special Interest Group on Computer Architecture 

»  https://www.sigarch.org/ 
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Put It All Together Examples:  ARM 
Cortex-A8 and Intel Core i7  

§  ARM Cortex-A8 core, the basis for the Apple A9 
processor in the iPad, iPhones 3GS and 4   
– Dual-issue, statically scheduled superscalar with dynamic 

issue detection à 0.5 CPI ideally 
–  The basic pipeline structure of the 13-stage pipeline.  
– A dynamic branch predictor with a 512-entry two-way set 

associative branch target buffer and a 4K-entry global history 
buffer, indexed by the branch history and the current PC.  

– An eight-entry return stack is kept to track return addresses. 
»  Misprediction results in a 13- cycle penalty of the pipeline 

flushed.  



68 

Put It All Together Examples:  ARM 
Cortex-A8 and Intel Core i7  

§  ARM Cortex-A8 core, the basis for the Apple A9 
processor in the iPad, iPhones 3GS and 4   
– A dynamic branch predictor with a 512-entry two-way set 

associative branch target buffer and a 4K-entry global history 
buffer, indexed by the branch history and the current PC.  

– An eight-entry return stack is kept to track return addresses. 
»  Misprediction results in a 13- cycle penalty of the pipeline 

flushed.  



69 

Cortex-A8 Decode 
§  5-stage decoding 
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Cortex-A8 EXE Stage 
§  5-stage execution (E5 is actually WB) 
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Intel Core i7 
§  Aggressive out-of-

order speculative  
§  14 stages pipeline, 
§  Branch mispredictions 

costing 17 cycles. 
§  48 load and 32 store 

buffers.  
§  Six independent 

functional units 
–  6-wide superscalar 
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Core i7 Pipeline: IF 

§  Instruction fetch – Fetch 16 bytes from the I cache 
– A multilevel branch target buffer to achieve a balance 

between speed and prediction accuracy. 
– A return address stack to speed up function return. 
– Mispredictions cause a penalty of about 15 cycles.  
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Core i7 Pipeline: Predecode 

§  Predecode –16 bytes instr in the predecode I buffer 
– Macro-op fusion: Fuse instr combinations such as compare 

followed by a branch into a single operation.  
–  Instr break down: breaks the 16 bytes into individual x86 

instructions. 
»  nontrivial since the length of an x86 instruction can be from 1 to 

17 bytes and the predecoder must look through a number of 
bytes before it knows the instruction length. 

–  Individual x86 instructions (including some fused 
instructions) are placed into the 18-entry instruction queue.  
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Core i7 Pipeline: 
Micro-op decode  

 
§  Micro-op decode – Translate Individual x86 

instructions into micro-ops.  
– Micro-ops are simple MIPS-like instructions that can be 

executed directly by the pipeline (RISC style) 
»  introduced in the Pentium Pro in 1997 and has been used since.  

–  Three simple micro-op decoders handle x86 instructions that 
translate directly into one micro-op.  

– One complex micro-op decoder produce the micro-op 
sequence of complex x86 instr;  

»  produce up to four micro-ops every cycle 
–  The micro-ops are placed according to the order of the x86 

instructions in the 28- entry micro-op buffer.  
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Core i7 Pipeline: 
loop stream detection  
and microfusion  

§  loop stream detection and microfusion by the micro-
op buffer preforms 
–  If there is a sequence of instructions (less than 28 instrs or 

256 bytes in length) that comprises a loop, the loop stream 
detector will find the loop and directly issue the micro-ops 
from the buffer 

»  eliminating the need for the instruction fetch and instruction 
decode stages to be activated.  

– Microfusion combines instr pairs such as load/ALU operation 
and ALU operation/store and issues them to a single 
reservation station, thus increasing the usage of the buffer.  

»  Study comparing the microfusion and macrofusion by Bird et al. 
[2007] discovered that microfusion had little impact on per- 
formance, while macrofusion appears to have a modest positive 
impact on integer performance and little impact on FP.  
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Core i7 Pipeline: Issue 
§  Basic instruction issue 

–  Looking up the register location in  
   the register tables 
–  renaming the registers 
–  allocating a reorder buffer entry 
–  fetching any results from the  
registers or reorder buffer before sending the micro-ops to the 
reservation stations.  

§  36-entry centralized reservation station shared by six 
functional units 
Up to six micro-ops may be dispatched to the functional units 
every clock cycle.  
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Core i7 Pipeline: EXE 
and Retirement 

 
§  Micro-ops are executed by the individual function 

units 
–  results are sent back to any waiting reservation station as 

well as to the register retirement unit, where they will update 
the register state. The entry corresponding to the instruction 
in the reorder buffer is marked as complete.  

§  Retirement 
– When one or more instructions at the head of the reorder 

buffer have been marked as complete, the pending writes in 
the register retirement unit are executed, and the instructions 
are removed from the reorder buffer.  
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Core i7 Performance 
§  The integer CPI values range from 0.44 to 2.66 with a 

standard deviation of 0.77 
§  The FP CPU is from 0.62 to 1.38 with a standard 

deviation of 0.25.  
§  Cache behavior is major contribution to the stall CPI 


