
Lecture	13:	Memory	Systems	
--	Cache	Op7miza7ons	

	
CSE	564	Computer	Architecture	Summer	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1

Topics	for	Memory	Systems	

•  Memory	Technology	and	Metrics	
–  SRAM,	DRAM,	Flash/SSD,	3-D	Stack	Memory	
–  Locality	
–  Memory	access	Hme	and	banking	

•  Cache	
–  Cache	basics	
–  Cache	performance	and	op7miza7on	
–  Advanced	op7miza7on	
–  Mul7ple-level	cache,	shared	and	private	cache,	prefetching	

•  Virtual	Memory	
–  ProtecHon,	VirtualizaHon,	and	RelocaHon	
–  Page/segment,	protecHon	
–  Address	TranslaHon	and	TLB	

2

Cache	and	Memory	Access	(ld/st	instruc7ons)	

3

What	happens	on	a	Cache	miss?	
•  For	in-order	pipeline,	2	opHons:	

–  Freeze	pipeline	in	Mem	stage	(popular	early	on:	Sparc,	R4000)	
IF ID EX Mem stall stall stall … stall Mem Wr
 IF ID EX stall stall stall … stall stall Ex
Wr
	
–  Release	load	from	pipeline	

•  MSHR	=	�Miss	Status/Handler	Registers�	(KroW)	
Each	entry	in	this	queue	keeps	track	of	status	of	outstanding	memory	
requests	to	one	complete	memory	line.	
–  Per	cache-line:	keep	info	about	memory	address.	
–  For	each	word:	register	(if	any)	that	is	waiHng	for	result.	
–  Used	to	�merge�	mulHple	requests	to	one	memory	line	

•  New	load	creates	MSHR	entry	and	sets	desHnaHon	register	to	
�Empty�.		Load	is	�released�	from	pipeline.	

•  A[empt	to	use	register	before	result	returns	causes	instrucHon	to	
block	in	decode	stage.	

A	Summary	on	Sources	of	Cache	Misses	

•  Compulsory	(cold	start	or	process	migraHon,	first	reference):	
first	access	to	a	block	
–  �Cold�	fact	of	life:	not	a	whole	lot	you	can	do	about	it	
–  Note:	If	you	are	going	to	run	�billions�	of	instruc7on,	Compulsory	

Misses	are	insignificant	
•  Conflict	(collision):	

–  MulHple		memory	locaHons		mapped	
to	the	same	cache	locaHon	

–  Solu7on	1:	increase		cache	size	
–  Solu7on	2:	increase	associa7vity	

•  Capacity:	
–  Cache	cannot	contain	all	blocks	access	by	the	program	
–  Solu7on:	increase	cache	size	

•  Coherence	(InvalidaHon):	other	process	(e.g.,	I/O)	updates	
memory		

Memory	Hierarchy	Performance�

•  Two	indirect	performance	measures	have	waylaid	many	a	
computer	designer.	
–  Instruc(on	count	is	independent	of	the	hardware;	
–  Miss	rate	is	independent	of	the	hardware	mostly	

•  A	be[er	measure	of	memory	hierarchy	performance	is	the	
Average	Memory	Access	Time	(AMAT)	per	instrucHons	

AMAT =Hit time+Miss rate×Miss penalty

TimeCycleClockPenaltyMissRateMiss
nInstructio

AccessesMemoryCPIICTimeCPU Execution) (* ×××+=

Impact	on	Performance	
•  Suppose	a	processor	executes	at		

–  Clock	Rate	=	200	MHz	(5	ns	per	cycle)	
–  CPI	=	1.1		
–  50%	arith/logic,	30%	ld/st,	20%	control	

•  Suppose	that	10%	of	memory		
operaHons	get	50	cycle	miss	penalty	

•  Suppose	that	1%	of	instrucHons	get	same	miss	penalty	

•  CPI	=	ideal	CPI	+	average	stalls	per	instrucHon	
													=	1.1(cycles/ins)	
																	+	[0.30	(DataMops/ins)	x	0.10	(miss/DataMop)	x	50	(cycle/miss)]		
																	+	[1	(InstMop/ins)	x	0.01	(miss/InstMop)	x	50	(cycle/miss)]		
													=	(1.1	+		1.5	+	.5)	cycle/ins	=	3.1		

•  2/3.1	(64.5%)	of	the	7me	the	proc	is	stalled	wai7ng	for	memory!	

Ideal	CPI	 1.1	

Data	Miss	 1.5	

Inst	Miss	 0.5	

Improving	Cache	Performance�

	

Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

Goals	 Basic	Approaches	
Reducing	Miss	Rate	 Larger	block	size,	larger	cache	size	and	higher	

associaHvity	

Reducing	Miss	Penalty	 MulHlevel	caches,	and	higher	read	priority	over	
writes	

Reducing	Hit	Time	 Avoid	address	translaHon	when	indexing	the	cache	

1.	Reduce	Miss	Rate	via	Larger	Block	Size	

Larger	Block	Size:	à	increase	miss	penalty	

10

Example:	Miss	Rate	vs	Reduce	AMAT	

11

Choose	a	Block	Size	

12

2.	Reduce	Miss	Rate	via	Larger	Cache�

•  Increasing	capacity	of	cache	reduces	capacity	misses	(Figure	5.14	
and	5.15)	

•  May	be	longer	hit	Hme	and	higher	cost	
•  Trends:	Larger	L2	or	L3	off-chip	caches	

��

3.	Reduce	Miss	Rate	via	Higher	Associa7vity	

• 2:1	Cache	Rule:		
– Miss	Rate	DM	cache	size	N	=	Miss	Rate	2-way	cache	size	N/2	

• 8-way	set	associaHve	is	as	effecHve	as	fully	associaHve	for	
pracHcal	purposes	

• Tradeoff:	higher	associaHve	cache	complicates	the	circuit	
– May	have	longer	clock	cycle	

• Beware:	ExecuHon	Hme	is	only	final	measure!	
– Will	Clock	Cycle	Hme	increase?	
– Hill	[1988]	suggested	hit	Hme	for		
	2-way	vs.	1-way	external	cache	+10%,		
internal	+	2%		
	

	
	

Associa7vity	ßà	AMAT	

15

Associa7vity	ßà	AMAT:	High	Associa7vity	
leads	to	higher	access	7me	

16

4.	Reduce	Miss	Penalty	via	Mul7level	Caches	

��

•  Approaches	
–  Make	the	cache	faster	to	keep	pace	with	the	speed	of	CPUs	
–  Make	the	cache	larger	to	overcome	the	widening	gap	

•  L1:	fast	hits,	L2:	fewer	misses	

•  L2	EquaHons	

•  	 Hit	TimeL1	<<	Hit	TimeL2	<<	…	<<	Hit	TimeMem	

•  	 Miss	RateL1	<	Miss	RateL2	<	…	

Miss	Rate	in	Mul7level	Caches	

�	

•  Local	miss	rate—	misses	in	this	cache	divided	by	the	total	
number	of	memory	accesses	to	this	cache	(Miss	rateL1	,	
Miss	rateL2)	
–  L1	cache	skims	the	cream	of	the	memory	accesses	

•  Global	miss	rate—misses	in	this	cache	divided	by	the	total	
number	of	memory	accesses	generated	by	the	CPU	(Miss	
rateL1,	Miss	RateL1	x	Miss	RateL2)		
–  Indicate	what	fracHon	of	the	memory	accesses	that	leave	the	

CPU	go	all	the	way	to	memory	

Miss	Rates	in	Mul7level	Caches	

19

��

Mul7level	Caches:	Design	of	L2	

•  Size	
–  Since	everything	in	L1	cache	is	likely	to	be	in	L2	cache,	L2	cache	

should	be	much	bigger	than	L1	

•  Whether	data	in	L1	is	in	L2	
–  novice	approach:	design	L1	and	L2	independently	
–  mulHlevel	inclusion:	L1	data	are	always	present	in	L2	

•  Advantage:	easy	for	consistency	between	I/O	and	cache	(checking	
L2	only)	

•  Drawback:	L2	must	invalidate	all	L1	blocks	that	map	onto	the	2nd-
level	block	to	be	replaced	=>	slightly	higher	1st-level	miss	rate	
–  i.e.	Intel	PenHum	4:	64-byte	block	in	L1	and	128-byte	in	L2	

–  mulHlevel	exclusion:	L1	data	is	never	found	in	L2	
•  A	cache	miss	in	L1	results	in	a	swap	of	blocks	between	L1	and	L2	
•  Advantage:	prevent	wasHng	space	in	L2	

–  i.e.	AMD	Athlon:	64	KB	L1	and	256	KB	L2	

Mul7level	Caches:	Example	

21

Mul7level	Caches:	Example	

22

5.	Reduce	Miss	Penalty	by	Giving	Priority	to	
Read	Misses	over	Writes	

��

• Serve	reads	before	writes	have	been	completed	
• Write	through	with	write	buffers	

	 	SW 	R3,	512(R0) 	;	M[512]	<-	R3 	(cache	index	0)	
	 	LW 	R1,	1024(R0) 	;	R1	<-	M[1024] 	(cache	index	0)	
	 	LW 	R2,	512(R0) 	;	R2	<-	M[512] 	(cache	index	0)	

Problem:	write	through	with	write	buffers	offer	RAW	conflicts	with	main	
memory	reads	on	cache	misses	

–  If	simply	wait	for	write	buffer	to	empty,	might	increase	read	miss	penalty	
(old	MIPS	1000	by	50%)	

–  Check	write	buffer	contents	before	read;	if	no	conflicts,	let	the	memory	
access	conHnue	

• Write	Back	
Suppose	a	read	miss	will	replace	a	dirty	block	
–  Normal:	Write	dirty	block	to	memory,	and	then	do	the	read	
–  Instead:	Copy	the	dirty	block	to	a	write	buffer,	do	the	read,	and	then	do	
the	write	

–  CPU	stall	less	since	restarts	as	soon	as	do	read	

6.	Reduce	Hit	Time	by	Avoiding	Address	
Transla7on	during	Indexing	of	the	Cache	

• Importance	of	cache	hit	Hme	
– Average	Memory	Access	Time			=		Hit	Time		+		Miss	Rate		*		Miss	Penalty	

– More	 importantly,	 cache	 access	 Hme	 limits	 the	 clock	 cycle	 rate	 in	 many	

processors	today!	

• Fast	hit	Hme:	
– Quickly	and	efficiently	find	out	if	data	is	in	the	cache,	and	

– if	it	is,	get	that	data	out	of	the	cache�
• Four	techniques:	

1. Small	and	simple	caches	

2. Avoiding	address	translaHon	during	indexing	of	the	cache	
3. Pipelined	cache	access	
4. Trace	caches	

��

Avoiding	address	transla7on	during	cache	indexing�

• Two	tasks:	indexing	the	cache	and	comparing	addresses	
• virtually	vs.	physically	addressed	cache	

– virtual	cache:	use	virtual	address	(VA)	for	the	cache	
– physical	cache:	use	physical	address	(PA)	aWer	translaHng	virtual	address	

• Challenges	to	virtual	cache	
1.  Protec7on:	page-level	protecHon	(RW/RO/Invalid)	must	be	checked	

– It’s	checked	as	part	of	the	virtual	to	physical	address	translaHon	
– soluHon:	an	addiHon	field	to	copy	the	protecHon	informaHon	from	TLB	and	
check	it	on	every	access	to	the	cache	

2.  context	switching:	same	VA	of	different	processes	refer	to	different	PA,	requiring	the	cache	
to	be	flushed	
– soluHon:	increase	width	of	cache	address	tag	with	process-idenHfier	tag	
(PID)	

3.  Synonyms	or	aliases:	two	different	VA	for	the	same	PA	
– inconsistency	problem:	two	copies	of	the	same	data	in	a	virtual	cache	
– hardware	an#aliasing	soluHon:	guarantee	every	cache	block	a	unique	PA	

– Alpha	21264:	check	all	possible	locaHons.	If	one	is	found,	it	is	invalidated	
– soWware	page-coloring	soluHon:	forcing	aliases	to	share	some	address	bits	

– Sun’s	Solaris:	all	aliases	must	be	idenHcal	in	last	18	bits	=>	no	duplicate	PA	
4.  I/O:	typically	use	PA,	so	need	to	interact	with	cache	(see	SecHon	5.12)	

��

Virtually	indexed,	physically	tagged	cache	

��

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA
PA

Tags
PA

Overlap cache access
with VA translation:
requires $ index to
remain invariant

across translation

VA
Tags

L2 $

Summary	of	the	6	Basic	Cache	Op7miza7on	
Techniques	(Textbook	B.3)	

27

Advanced	Cache	Op7miza7on	Techniques	
1.   Reducing	the	hit	#me—Small	and	simple	first-level	caches	and	way-	

predicHon.	Both	techniques	also	generally	decrease	power	
consumpHon.		

2.   Increasing	cache	bandwidth—Pipelined	caches,	mulHbanked	caches,	
and	nonblocking	caches.	These	techniques	have	varying	impacts	on	
power	consumpHon.		

3.   Reducing	the	miss	penalty—CriHcal	word	first	and	merging	write	
buffers.	These	opHmizaHons	have	li[le	impact	on	power.		

4.   Reducing	the	miss	rate—Compiler	opHmizaHons.	Obviously	any	
improvement	at	compile	Hme	improves	power	consumpHon.		

5.   Reducing	the	miss	penalty	or	miss	rate	via	parallelism—Hardware	
prefetching	and	compiler	prefetching.	These	opHmizaHons	generally	
increase	power	consumpHon,	primarily	due	to	prefetched	data	that	
are	unused.	

•  Increase	hardware	complexity		
•  Require	sophisHcated	compiler	transformaHon	

28

1.	Small	and	simple	first-level	caches		

�

•  Cache-hit	criHcal	path,	three	steps:	
1.  addressing	the	tag	memory	using	the	index	porHon	of	the	address,		
2.  comparing	the	read	tag	value	to	the	address,	and		
3.  seyng	the	mulHplexor	to	choose	the	correct	data	item	if	the	cache	is	set	associaHve.		

•  Guideline:	smaller	hardware	is	faster,	Small	data	cache	and	thus	fast	clock	rate	
–  size	of	the	L1	caches	has	recently	increased	either	slightly	or	not	at	all.		

•  Alpha	21164	has	8KB	InstrucHon	and	8KB	data	cache	+	96KB	second	level	cache	
•  E.g.,	L1	caches	same	size	for	3	generaHons	of	AMD	microprocessors:	K6,	Athlon,	and	

Opteron	
–  Also	L2	cache	small	enough	to	fit	on	chip	with	processor	⇒	avoids	Hme	penalty	of	going	

off	chip	
•  Guideline:	simpler	hardware	is	faster	

–  Direct-mapped	caches	can	overlap	the	tag	check	with	the	transmission	of	the	data,	
effecHvely	reducing	hit	Hme.		

–  Lower	levels	of	associaHvity	will	usually	reduce	power	because	fewer	cache	lines	must	
be	accessed.		

•  General	design:	small	and	simple	cache	for	1st-level	cache	
–  Keeping	the	tags	on	chip	and	the	data	off	chip	for	2nd-level	caches	
–  One	emphasis	is	on	fast	clock	Hme	while	hiding	L1	misses	with	dynamic	execuHon	and	

using	L2	caches	to	avoid	going	to	memory	

Cache	Size	à	AMAT	

30

http://www.hpl.hp.com/research/cacti/

Cache	Size	à	Power	Consump7on	

31

Examples	

32

33

2.	Fast	Hit	Times	Via	Way	Predic7on	

•  How	to	combine	fast	hit	Hme	of	direct-mapped	with	lower	
conflict	misses	of	2-way	SA	cache?		

•  Way	predicHon:	keep	extra	bits	in	cache	to	predict	
�way�	(block	within	set)	of	next	access		
–  MulHplexer	set	early	to	select	desired	block;	only	1	tag	

comparison	done	that	cycle	(in	parallel	with	reading	data)		
–  Miss	⇒	check	other	blocks	for	matches	in	next	cycle	

•  Accuracy	≈	85%	
•  Drawback:	CPU	pipeline	harder	if	hit	Hme	is	variable-length	

Hit Time

Way-Miss Hit Time Miss Penalty

3.	Increasing	Cache	Bandwidth	by	Pipelining	

•  Simply	to	pipeline	cache	access	
–  MulHple	clock	cycle	for	1st-level		
						cache	hit	

•  Advantage:	fast	cycle	Hme	and	slow	hit	
•  Example:	accessing	instrucHons	from	I-cache	

–  PenHum:	1	clock	cycle,	mid-1990	
–  PenHum	Pro	~	PenHum	III:	2	clocks,	mid-1990	to	2000	
–  PenHum	4:	4	clocks,	2000s	
–  Intel	Core	i7:	4	clocks		

•  Drawback:	Increasing	the	number	of	pipeline	stages	leads	to	
–  greater	penalty	on	mispredicted	branches	and	
–  more	clock	cycles	between	the	issue	of	the	load	and	the	use	of	the	data	

•  Note	that	it	increases	the	bandwidth	of	instrucHons	rather	than	decreasing	
the	actual	latency	of	a	cache	hit	

��

35

4.	Increasing	Cache	Bandwidth	with	
Non-Blocking	Caches	

•  Non-blocking	or	lockup-free	cache	allows	conHnued	cache	
hits	during	miss	
–  Requires	F/E	bits	on	registers	or	out-of-order	execuHon	
–  Requires	mulH-bank	memories	

•  Hit	under	miss	reduces	effecHve	miss	penalty	by	working	
during	miss	vs.	ignoring	CPU	requests	

•  Hit	under	mulHple	miss	or	miss	under	miss	further	lowers	
effecHve	miss	penalty	by	overlapping	mulHple	misses	
–  Significantly	increases	complexity	of	cache	controller	since	can	

be	many	outstanding	memory	accesses	
–  Requires	mulHple	memory	banks	
–  Penium	Pro	allows	4	outstanding	memory	misses	

Effec7veness	of	Non-Blocking	Cache	

36

Performance	Evalua7on	of	Non-Blocking	
Caches		

•  A	cache	miss	does	not	necessarily	stall	the	processor	
–  difficult	to	judge	the	impact	of	any	single	miss	and	hence	to	

calculate	the	average	memory	access	Hme.		

•  The	effecHve	miss	penalty	is	the	non-overlapped	Hme	that	the	
processor	is	stalled.	
–  not	the	sum	of	the	misses	

•  	The	benefit	of	nonblocking	caches	is	complex,	depends		on		
–  the	miss	penalty	when	there	are	mulHple	misses,		
–  the	memory	reference	pa[ern,	and	
–  how	many	instrucHons	the	processor	can	execute	with	a	miss	

outstanding.		

•  For	out-of-order	processors	
–  Check	textbook	

37

38

5.	Increasing	Cache	Bandwidth	Via	Mul7ple	
Banks	

•  Rather	than	treaHng	cache	as	single	monolithic	block,	
divide	into	independent	banks	to	support	simultaneous	
accesses	
–  The	Arm	Cortex-A8	supports	one	to	four	banks	in	its	L2	cache;	
–  the	Intel	Core	i7	has	four	banks	in	L1	(to	support	up	to	2	

memory	accesses	per	clock),	and	the	L2	has	eight	banks.		

Sequen7al	Interleaving	

•  Works	best	when	accesses	naturally	spread	across	banks	⇒	
–  mapping	of	addresses	to	banks	affects	behavior	of	memory	

system	

•  Simple	mapping	that	works	well	is	sequenHal	interleaving	
–  Spread	block	addresses	sequenHally	across	banks	
–  E,g,	bank	i	has	all	blocks	with	address	i	modulo	n	

39

40

6.	Reduce	Miss	Penalty:		
Early	Restart	and	Cri7cal	Word	First	

•  Don’t	wait	for	full	block	before	restarHng	CPU	
•  CriHcal	Word	First—Request	missed	word	from	memory	
first,	send	it	to	CPU	right	away;	let	CPU	conHnue	while	
filling	rest	of	block	
–  Large	blocks	more	popular	today	⇒	CriHcal	Word	1st	widely	

used		

•  Early	restart—As	soon	as	requested	word	of	block	arrives,	
send	to	CPU	and	conHnue	execuHon	
–  SpaHal	locality	⇒	tend	to	want	next	sequenHal	word,	so	may	

sHll	pay	to	get	that	one	

block

41

7.	Merging	Write	Buffer	to	Reduce	Miss	Penalty	

•  Write	buffer	lets	processor		

conHnue	while	waiHng	for		

write	to	complete	

	

•  Merging	write	buffer:	
–  If	buffer	contains	modified	blocks,	addresses	can	be	checked	

to	see	if	new	data	matches	that	of	some	write	buffer	entry		
–  If	so,	new	data	combined	with	that	entry	

•  For	sequenHal	writes	in	write-through	caches,	increases	
block	size	of	write	(more	efficient)	

•  Sun	T1	(Niagara)	and	many	others	use	write	merging	

Merge	Write	Buffer	Example	

42

43

8.	Reducing	Misses	by	Compiler	Op7miza7ons	
Soeware-only	Approach	

•  McFarling	[1989]	reduced	misses	by	75%	in	soWware	on	8KB	
direct-mapped	cache,	4	byte	blocks	

•  InstrucHons	
–  Reorder	procedures	in	memory	to	reduce	conflict	misses	
–  Profiling	to	look	at	conflicts	(using	tools	they	developed)	

•  Data	
–  Loop	interchange:	Change	nesHng	of	loops	to	access	data	in	

memory	order	
–  Blocking:	Improve	temporal	locality	by	accessing	blocks	of	data	

repeatedly	vs.	going	down	whole	columns	or	rows	
–  Merging	arrays:	Improve	spaHal	locality	by	single	array	of	compound	

elements	vs.	2	arrays	
–  Loop	fusion:	Combine	2	independent	loops	that	have	same	looping	

and	some	variable	overlap	

Loop	Interchange	Example	

/* Before */
for (k = 0; k < 100; k = k+1)
 for (j = 0; j < 100; j = j+1)
 for (i = 0; i < 5000; i = i+1)
 x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
 for (i = 0; i < 5000; i = i+1)
 for (j = 0; j < 100; j = j+1)
 x[i][j] = 2 * x[i][j];

	

44

Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

Sequence of access:
X[0][0], X[1][0], X[2][0], …

Sequence of access:
X[0][0], X[0][1], X[1][2], …

0	 1	 2	 3	 4	 5	 6	…	 99	

0			 		 		 		 		 		 		 		 		

1			 		 		 		 		 		 		 		 		

2			 		 		 		 		 		 		 		 		

3			 		 		 		 		 		 		 		 		

4			 		 		 		 		 		 		 		 		

5			 		 		 		 		 		 		 		 		

…	 		 		 		 		 		 		 		 		 		

4999			 		 		 		 		 		 		 		 		

Blocking	Example	
/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {r = 0;
 for (k = 0; k < N; k = k+1){
 r = r + y[i][k]*z[k][j];};
 x[i][j] = r;
 };

•  Two	inner	loops:	
–  Read	all	NxN	elements	of	z[]	
–  Read	N	elements	of	1	row	of	y[]	repeatedly	
–  Write	N	elements	of	1	row		of	x[]	

•  Capacity	misses	a	funcHon	of	N	&	Cache	Size:	
–  2N3	+	N2	=>	(assuming	no	conflict;	otherwise	…)	

•  Idea:	compute	on	BxB	submatrix	that	fits	

45

Array	Access	in	Matrix	Mul7plica7on		

46

Array	Access	for	Blocking/Tiling	Transforma7on	

47

Blocking	Example	
/* After */
for (jj = 0; jj < N; jj = jj+B)
 for (kk = 0; kk < N; kk = kk+B)
 for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1)
 {r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {
 r = r + y[i][k]*z[k][j];};
 x[i][j] = x[i][j] + r;
 };

•  B	called	Blocking	Factor	
•  Capacity	misses	from	2N3	+	N2	to	2N3/B	+N2	

•  Reduce	conflict	misses	too?		

	 48

Reducing	Conflict	Misses	by	Blocking	

•  Conflict	misses	in	caches	not	FA	vs.	blocking	size	
–  Lam	et	al	[1991]:	Blocking	factor	of	24	had	1/5	the	misses	vs.	

48	despite	both	fiyng	in	cache	

49 Blocking Factor

M
is

s
Ra

te

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Merging/Spli7ng	Arrays	Example	

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of structures */
struct merge {
 int val;
 int key;

};
struct merge merged_array[SIZE];

Reduce	conflicts	between	val	&	key;	improve	spaHal	locality	

	 50

Array of Struct or Struct of Array

Loop	Fusion	Example	
/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 { a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];}
	

2	misses	per	access	to	a	&	c	vs.	one	miss	per	access;	improve	
spaHal	locality	

51

Summary	of	Compiler	Op7miza7ons	to	Reduce	
Cache	Misses	(by	hand)	

52

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice
mxm (nasa7)
btrix (nasa7)

tomcatv
gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

9.	Reducing	Misses	by	Hardware	Prefetching	of	
Instruc7ons	&	Data	

53

•  Hardware	prefetch	items	before	the	processor	requests	them.		
–  Both	instrucHons	and	data	can	be	prefetched,		
–  Either	directly	into	the	caches	or	into	an	external	buffer	that	can	be	

more	quickly	accessed	than	main	memory.		

•  InstrucHon	prefetching	
–  Typically,	CPU	fetches	2	blocks	on	miss:	requested		and	next		
–  Requested	block	goes	in	instrucHon	cache,	prefetched	goes	in	instrucHon	stream	

buffer	

•  Data	prefetching	
–  PenHum	4	can	prefetch	data	into	L2	cache	from	up	to	8	streams	from	8	different	4	

KB	pages		
–  Prefetching	invoked	if	2	successive	L2	cache	misses	to	a	page,		

if	distance	between	those	cache	blocks	is	<	256	bytes	
–  The	Intel	Core	i7	supports	hardware	prefetching	into	both	L1	and	L2	with	the	most	

common	case	of	prefetching	being	accessing	the	next	line.		
•  Simpler	than	before.		

Hardware	Prefetching	

•  Relies	on	uHlizing	memory	bandwidth	that	otherwise	would	be	
unused	
–  If	it	interferes	with	demand	misses	it	can	actually	lower	

performance.		
–  When	prefetched	data	are	not	used	or	useful	data	are	displaced,	

prefetching	will	have	a	very	negaHve	impact	on	power.		

54

Hardware	Prefetching	

•  Relies	on	uHlizing	memory	bandwidth	that	otherwise	would	be	
unused	
–  If	it	interferes	with	demand	misses	it	can	actually	lower	

performance.		
–  When	prefetched	data	are	not	used	or	useful	data	are	displaced,	

prefetching	will	have	a	very	negaHve	impact	on	power.		

55

56

10.	Compiler-Controlled	Prefetching	to	Reduce	
Miss	Penalty	or	Miss	Rate	

Compiler	to	insert	prefetch	instruc7ons	to	request	data	
before	the	processor	needs	it.		

•  Data	prefetch	
–  Load	data	into	register	(HP	PA-RISC	loads)	
–  Cache	prefetch:	load	into	cache		

(MIPS	IV,	PowerPC,	SPARC	v.	9)	
–  Special	prefetching	instrucHons	cannot	cause	faults;	form	of	

speculaHve	execuHon	
	

•  Prefetch	instrucHons	take	Hme	
–  Is	cost	of	prefetch	issues	<	savings	in	reduced	misses?	
–  Higher	superscalar	reduces	problem	of	issue	bandwidth	

Compiler-Controlled	Prefetching	Example	

•  Page	#93	

57

Compiler-Controlled	Prefetching	Example	

58

Prefetching	in	GC	Compiler	

59
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Summary	of	the	10	Advanced	Cache	
Op7miza7on	Techniques		

60

