Lecture 13: Memory Systems
-- Cache Optimizations

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics for Memory Systems

* Memory Technology and Metrics
— SRAM, DRAM, Flash/SSD, 3-D Stack Memory
— Locality
— Memory access time and banking

* Cache
— Cache basics
— Cache performance and optimization
— Advanced optimization
— Multiple-level cache, shared and private cache, prefetching

* Virtual Memory
— Protection, Virtualization, and Relocation
— Page/segment, protection
— Address Translation and TLB

Cache and Memory Access (ld/st instructions)

Cache hit
data

address

data

Cache miss

What happens on a Cache miss?

* For in-order pipeline, 2 options:
— Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall .. stall Mem Wr
IF ID EX stall stall stall .. stall stall Ex
Wr

— Release load from pipeline

* MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

— Per cache-line: keep info about memory address.
— For each word: register (if any) that is waiting for result.
— Used to “merge” multiple requests to one memory line

* New load creates MSHR entfy and sets destination register to
Empty . Load is released” from pipeline.

* Attempt to use register before result returns causes instruction to
block in decode stage.

A Summary on Sources of Cache Misses

* Compulsory (cold start or process migration, first reference):
first access to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: If you are going to run “billions” of instruction, Compulsory
Misses are insignificant

Direct Mapped . 2-Way Assogiative
Y ConﬂICt (COIIISIOn): v Cache Fill Vain Cache Fill
. . emo ache i Memo Cache
— Multiple memory locations mapped [Mamon | [index] emary
to the same cache location T Ffiet] | [index - iay T
o o . 2 ///; Index 2 2 Index 1, Way 0
— Solution 1: increase cache size A== indoc 1. Way 1
— Solution 2: increase associativity E / =
* Capacity: it oo b

— Cache cannot contain all blocks access by the program
— Solution: increase cache size

* Coherence (Invalidation): other process (e.g., |/O) updates
memory

Memory Hierarchy Performance

* Two indirect performance measures have waylaid many a
computer designer.
— Instruction count is independent of the hardware;
— Miiss rate is independent of the hardware mostly

Memory Accesses
Instruction

CPU Time=IC*(CPI, . +

Execution

><|Miss Ratex Miss Penallyl) x Clock Cycle Time

* A better measure of memory hierarchy performance is the
Average Memory Access Time (AMAT) per instructions

AMAT = Hit time + Miss rate x Miss penalty

Impact on Performance

®* Suppose a processor executes at Ideal CPI m

— Clock Rate =200 MHz (5 ns per cycle) _
— CPI=11 Data Miss 1.5
— 50% arith/logic, 30% Id/st, 20% control Inst Miss 0.5

* Suppose that 10% of memory
operations get 50 cycle miss penalty

* Suppose that 1% of instructions get same miss penalty

®* CPIl =ideal CPI + average stalls per instruction
= 1.1(cycles/ins)
+ [0.30 (DataMops/ins) x 0.10 (miss/DataMop) x 50 (cycle/miss)]

+ [1 (InstMop/ins) x 0.01 (miss/InstMop) x 50 (cycle/miss)]
=(1.1+ 1.5+ .5) cycle/ins=3.1

* 2/3.1(64.5%) of the time the proc is stalled waiting for memory!

Improving Cache Performance

Average Memory Access Time =[Hit Time}+ Miss Ratd *{Miss Penalty]

Cache hit
data

addre

address

data

Cache miss

____ Goals Basic Approaches

Reducing Miss Rate Larger block size, larger cache size and higher
associativity

Reducing Miss Penalty Multilevel caches, and higher read priority over
writes

Reducing Hit Time Avoid address translation when indexing the cache
8

1. Reduce Miss Rate via Larger Block Size

10% -

I

Miss rate
(@)
%
1

(\ J
O O 64K

r— Y O—
\] . 4 256K
0% T T I]
16 32 \6}/ 128 256
Block size

Figure B.10 Miss rate versus block size for five different-sized caches. Note that miss
rate actually goes up if the block size is too large relative to the cache size. Each line rep-
resents a cache of different size. Figure B.11 shows the data used to plot these lines.
Unfortunately, SPEC2000 traces would take too long if block size were included, so

Larger Block Size: = increase miss penalty

Cachessize
Block size 4K 16K 64K 256K
16 8.57% 3.94% 2.04% 1.09%
32 7.24% 2.87% 1.35% 0.70%
64 7.00% 2.64% 1.06% 0.51%
128 7.78% 2.77% 1.02% 0.49%
256 9.51% 3.29% 1.15% 0.49%

Figure B.11 Actual miss rate versus block size for the five different-sized caches in
Figure B.10. Note that for a 4 KB cache, 256-byte blocks have a higher miss rate than
32-byte blocks. In this example, the cache would have to be 256 KB in order for a

256-byte block to decrease misses.

10

Example: Miss Rate vs Reduce AMAT

Example Figure B.11 shows the actual miss rates plotted in Figure B.10. Assume the mem-
ory system takes 80 clock cycles of overhead and then delivers 16 bytes every 2
clock cycles. Thus, it can supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on. Which block size has the smallest average memory access time
for each cache size in Figure B.11?

Answer Average memory access time is

Average memory access time = Hit time + Miss rate X Miss penalty

If we assume the hit time is 1 clock cycle independent of block size, then the
access time for a 16-byte block in a 4 KB cache is

Average memory access time = 1 + (8.57% % 82) = 8.027 clock cycles
and for a 256-byte block in a 256 KB cache the average memory access time is

Average memory access time =1 + (0.49% x 112) = 1.549 clock cycles

1

Choose a Block Size

Cache size
Block size Miss penalty 4K 16K 64K 256K
16 82 8.027 4.231 2.673 1.894
32 84 7.082 3.411 2.134 1.588
64 88 7.160 3.323 1.933 1.449
128 96 8.469 3.659 1.979 1.470
256 112 11.651 4.685 2.288 1.549

Figure B.12 Average memory access time versus block size for five different-sized
caches in Figure B.10. Block sizes of 32 and 64 bytes dominate. The smallest average
time per cache size is boldfaced.

12

2. Reduce Miss Rate via Larger Cache

* Increasing capacity of cache reduces capacity misses (Figure 5.14
and 5.15)

* May be longer hit time and higher cost

® Trends' larser 1?2 or |3 off-chin caches
0.10

0.09
0.08

o 0.07 @ 1-way
Q W 2-way
*? 0.06 B 4-way
o O 8-way
o 0.05 B Capacity
© O Compulsory
o 0.04
R
= 0.03

0.02

0.01

0.00

4 8 16 32 64 128 256 512 1024 13
Cache size (KB)

3. Reduce Miss Rate via Higher Associativity

® 2:1 Cache Rule:
— Miss Rate DM cache size N = Miss Rate 2-way cache size N/2

* 8-way set associative is as effective as fully associative for
practical purposes

* Tradeoff: higher associative cache complicates the circuit
— May have longer clock cycle

0.09
0.08

0.07

type

0.06

p

0.05

I(

0.04

* Beware: Execution time is only final m
— Will Clock Cycle time increase? "o
— Hill [1988] suggested hit time for o

2-way vs. 1-way external cache +10%, cae e (9
internal + 2%

0.03

Associativity €2 AMAT

Example Assume that higher associativity would increase the clock cycle time as listed
below:

Clock cycle time, ,,, = 1.36 X Clock cycle time; _,,
Clock cycle timey_y,, = 1.44 X Clock cycle time;_y,,,
Clock cycle timeg ,,, = 1.52 X Clock cycle time_y,,,

Assume that the hit time is 1 clock cycle, that the miss penalty for the direct-
mapped case is 25 clock cycles to a level 2 cache (see next subsection) that never
misses, and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure B.8 for miss rates, for which cache sizes are each of
these three statements true?

Average memory access timeg_,,, < Average memory access time, v,y
Average memory access timey_,,, < Average memory access time,_y,y
Average memory access time, ,,, < Average memory access time_,,

Associativity

Cache size (KB) 1-way 2-way 4-way 8-way

- 3.44 3.25 3.22 3.28
8 2.69 2.58 2.55 2.62

Associativity €—> AMAT: High Associativity
leads to higher access time

Answer Average memory access time for each associativity is

Average memory access timeg ., = Hit timeg ., + Miss rateg . X Miss penaltyg .,
1.52 + Miss rateg yay X 25

1.44 + Miss ratey ., X 25

Average memory access timey ..

Associativity

Cache size (KB) 1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62

16 2.23 2.40 2.46 2.53

32 2.06 2.30 2.37 245

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.00

256 1.32 1.66 1.74 1.82

512 1.20 1.55 1.59 1.66

Figure B.13 Average memory access time using miss rates in Figure B.8 for parame-
ters in the example. Boldface type means that this time is higher than the number to

the left, that is, higher associativity increases average memory access time.
16

4. Reduce Miss Penalty via Multilevel Caches

* Approaches
— Make the cache faster to keep pace with the speed of CPUs
— Make the cache larger to overcome the widening gap

®* |L1:fast hits, L2: fewer misses
* L2 Equations

Average memory access time = Hit time; ; + Miss rate; ; X Miss penaltyy ;

and
Miss penalty; ; = Hit timey , + Miss rate; , X Miss penaltyy ,

SO

Average memory access time = Hit time; ; + Miss rate; ;
X (Hit timey , + Miss rate; , X Miss penaltyy »)

* Hit TimelLl << Hit TimelL2 << ... << Hit TimeMem
® Miss RatelLl < Miss RatelL2 < ...

17

Miss Rate in Multilevel Caches

* Local miss rate— misses in this cache divided by the total
number of memory accesses to this cache (Miss ratel1,
Miss ratel2)

— L1 cache skims the cream of the memory accesses

* Global miss rate—misses in this cache divided by the total
number of memory accesses generated by the CPU (Miss
rateL1, Miss RatelL1 x Miss Ratel .2)

— Indicate what fraction of the memory accesses that leave the
CPU go all the way to memory

18

Miss Rates in Multilevel Caches

T00% @
99% 99% 98% .
90% - P OB %o Ny Local miss rate
80% 8%\ —&— Global miss rate
—&— Single cache miss rate

700/° o N ..
@ 00V R
©
; 50(% Y g = 7 AT
R
= Q0% A BT g

o 39%

30 /O P 34‘%,

200 T

10% 6% - 5% - 4% 4% 4% 3% oo o9 2o 1 o/o AAAAAA 10/0 AAAAAAAAA

0% A% A% N W W —a——a——a s 4

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches
smaller than the sum of the two 64 KB first-level caches make little sense, as reflected in
the high miss rates. After 256 KB the single cache is within 10% of the global miss rates. 4
The miss rate of a single-level cache versus size is plotted against the local miss rate and

Multilevel Caches: Design of L2

* Size
— Since everything in L1 cache is likely to be in L2 cache, L2 cache
should be much bigger than L1

* WhetherdatainlLlisinL2
— novice approach: design L1 and L2 independently

— multilevel inclusion: L1 data are always present in L2

» Advantage: easy for consistency between I/O and cache (checking
L2 only)

* Drawback: L2 must invalidate all L1 blocks that map onto the 2nd-
level block to be replaced => slightly higher 1st-level miss rate
— i.e. Intel Pentium 4: 64-byte block in L1 and 128-byte in L2

— multilevel exclusion: L1 data is never found in L2
e A cache missin L1 results in a swap of blocks between L1 and L2

* Advantage: prevent wasting space in L2
— i.e. AMD Athlon: 64 KB L1 and 256 KB L2

20

Multilevel Caches: Example

Example Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second-level cache. What are the various miss rates?
Assume the miss penalty from the L2 cache to memory is 200 clock cycles, the
hit time of the L2 cache is 10 clock cycles, the hit time of L1 is 1 clock cycle, and
there are 1.5 memory references per instruction. What is the average memory
access time and average stall cycles per instruction? Ignore the impact of writes.

Answer The miss rate (either local or global) for the first-level cache is 40/1000 or 4%.
The local miss rate for the second-level cache is 20/40 or 50%. The global miss
rate of the second-level cache is 20/1000 or 2%. Then

Average memory access time = Hit timey ; + Miss rate; ; X (Hit time; , + Miss rate; , X Miss penaltyy ,)
=14+4% %X (10 + 50% x200) =1+ 4% x 110 = 5.4 clock cycles

21

Multilevel Caches: Example

To see how many misses we get per instruction, we divide 1000 memory refer-
ences by 1.5 memory references per instruction, which yields 667 instructions.
Thus, we need to multiply the misses by 1.5 to get the number of misses per 1000
instructions. We have 40 X 1.5 or 60 L1 misses, and 20 X 1.5 or 30 L2 misses, per
1000 instructions. For average memory stalls per instruction, assuming the
misses are distributed uniformly between instructions and data:

Average memory stalls per instruction = Misses per instructiony ; X Hit timey , + Misses per instruction; »
X Miss penalty; ,
= (60/1000) x 10 + (30/1000) x 200
=0.060 x 10 + 0.030 x 200 = 6.6 clock cycles

If we subtract the L1 hit time from the average memory access time (AMAT) and
then multiply by the average number of memory references per instruction, we
get the same average memory stalls per instruction:

(5.4-1.0)x1.5=4.4x%x1.5=6.6 clock cycles

As this example shows, there may be less confusion with multilevel caches when
calculating using misses per instruction versus miss rates.

22

5. Reduce Miss Penalty by Giving Priority to
Read Misses over Writes

* Serve reads before writes have been completed
* Write through with write buffers

SW R3, 512(R0) ; M[512] <-R3 (cache index 0)
LW R1,1024(RO) ;R1<-M[1024] (cache index 0)
LW R2,512(RO) : R2 <- M[512] (cache index 0)

Problem: write through with write buffers offer RAW conflicts with main
memory reads on cache misses

— If simply wait for write buffer to empty, might increase read miss penalty
(old MIPS 1000 by 50%)

— Check write buffer contents before read; if no conflicts, let the memory
access continue

* Write Back

Suppose a read miss will replace a dirty block

— Normal: Write dirty block to memory, and then do the read

— Instead: Copy the dirty block to a write buffer, do the read, and then do
the write

— CPU stall less since restarts as soon as do read

23

6. Reduce Hit Time by Avoiding Address

Translation during Indexing of the Cache

°*Importance of cache hit time
—Average Memory Access Time = Hit Time + Miss Rate * Miss Penalty

—More importantly, cache access time limits the clock cycle rate in many
processors today!
°Fast hit time:
—Quickly and efficiently find out if data is in the cache, and
—if it is, get that data out of the cache

*Four techniques:
1.Small and simple caches
2.Avoiding address translation during indexing of the cache

3.Pipelined cache access
4.Trace caches

24

Avoiding address translation during cache indexing

*Two tasks: indexing the cache and comparing addresses

*virtually vs. physically addressed cache
—virtual cache: use virtual address (VA) for the cache
—physical cache: use physical address (PA) after translating virtual address

*Challenges to virtual cache
1.Protection: page-level protection (RW/RO/Invalid) must be checked
—It’s checked as part of the virtual to physical address translation
—solution: an addition field to copy the protection information from TLB and

check it on every access to the cache
2.context switching: same VA of different processes refer to different PA, requiring the cache
to be flushed

—solution: increase width of cache address tag with process-identifier tag
(PID)
3.Synonyms or aliases: two different VA for the same PA
—inconsistency problem: two copies of the same data in a virtual cache
—hardware antialiasing solution: guarantee every cache block a unique PA
—Alpha 21264: check all possible locations. If one is found, it is invalidated

—software page-coloring solution: forcing aliases to share some address bits
—Sun’s Solaris: all aliases must be identical in last 18 bits => no duplicate PA
4.1/0: typically use PA, so need to interact with cache (see Section 5.12)

25

Virtually indexed, physically tagged cache

CPU CPU CPU
v VA ! VA VA | |
TB VA $ PA $ B
Tags Tags
| PA | VA —— T,_l PA
_\|L_ff2fgl
$ TB I
| PA | PA MEM
MEM MEM
Overlap cache access
Conventional Virtually Addressed Cache with VA translation:

requires $ index to
remain invariant
across translation

Organization Translate only on miss

Synonym Problem

26

Summary of the 6 Basic Cache Optimization

Techniques (Textbook B.3)

Hit Miss Hardware
Technique time penalty complexity Comment
Larger block size . Trivial; Pentium 4 L2 uses 128 bytes
Larger cache size . Widely used, especially for L2
caches
Higher associativity > Widely used
Multilevel caches + Costly hardware; harder if L1 block
size # L2 block size; widely used
Read priority over writes + Widely used
Avoiding address translation during + Widely used

cache indexing

Figure B.18 Summary of basic cache optimizations showing impact on cache performance and complexity for
the techniques in this appendix. Generally a technique helps only one factor. + means that the technique improves
the factor, — means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with

0 being the easiest and 3 being a challenge.

27

Advanced Cache Optimization Techniques

1. Reducing the hit time—Small and simple first-level caches and way-
prediction. Both techniques also generally decrease power
consumption.

2. Increasing cache bandwidth—Pipelined caches, multibanked caches,
and nonblocking caches. These techniques have varying impacts on
power consumption.

3. Reducing the miss penalty—Critical word first and merging write
buffers. These optimizations have little impact on power.

4. Reducing the miss rate—Compiler optimizations. Obviously any
improvement at compile time improves power consumption.

5. Reducing the miss penalty or miss rate via parallelism—Hardware
prefetching and compiler prefetching. These optimizations generally
increase power consumption, primarily due to prefetched data that
are unused.

* |ncrease hardware complexity
* Require sophisticated compiler transformation

28

1. Small and simple first-level caches

® Cache-hit critical path, three steps:
1. addressing the tag memory using the index portion of the address,
2. comparing the read tag value to the address, and
3. setting the multiplexor to choose the correct data item if the cache is set associative.

* G@Guideline: smaller hardware is faster, Small data cache and thus fast clock rate
— size of the L1 caches has recently increased either slightly or not at all.
* Alpha 21164 has 8KB Instruction and 8KB data cache + 96KB second level cache

* E.g., L1 caches same size for 3 generations of AMD microprocessors: K6, Athlon, and
Opteron

— Also L2 cache small enough to fit on chip with processor = avoids time penalty of going
off chip
* Guideline: simpler hardware is faster

— Direct-mapped caches can overlap the tag check with the transmission of the data,
effectively reducing hit time.

— Lower levels of associativity will usually reduce power because fewer cache lines must
be accessed.

* General design: small and simple cache for 1st-level cache
— Keeping the tags on chip and the data off chip for 2nd-level caches

— One emphasis is on fast clock time while hiding L1 misses with dynamic execution and
using L2 caches to avoid going to memory

29

Cache Size 2> AMAT

900 - m 1-way m 2-way

@ 4-way m 8-way

800 -

700 A

600 -

500 A

400 -

300 -

Access time in microseconds

200

100

16 KB 32KB 64 KB 128 KB 256 KB

http://www.hpl.hp.com/research/cacti/ Cache size

Figure 2.3 Access times generally increase as cache size and associativity are 0
increased. These data come from the CACTI model 6.5 by Tarian, Thozivoor, and Jouppi

Cache Size = Power Consumption

0.5 1

M 1-way B 2-way
O 4-way B 8-way

0.45 -

o
AN
]

o

[

a
1

o
w
1

0.25 -

o
N
1

0.15 A

Energy per read in nano joules

©
—
1

0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Figure 2.4 Energy consumption per read increases as cache size and associativity 31
are increased. As in the nreviouis fiaure. CACTI is used for the modelina with the same

Example

Answer

Examples

Using the data in Figure B.8 in Appendix B and Figure 2.3, determine whether a
32 KB four-way set associative L1 cache has a faster memory access time than a
32 KB two-way set associative L1 cache. Assume the miss penalty to L2 is 15
times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache:
Average memory access timez_mly = Hit time + Miss rate X Miss penalty

= 1+0.038x15 = 1.38

For the four-way cache, the access time is 1.4 times longer. The elapsed time of
the miss penalty is 15/1.4 = 10.1. Assume 10 for simplicity:

Average memory access time 4way = Hit timez_way X 1.4 + Miss rate X Miss penalty
= 14+0.037x10 = 1.77
Clearly, the higher associativity looks like a bad trade-off; however, since cache

access in modern processors is often pipelined, the exact impact on the clock
cycle time is difficult to assess.

2. Fast Hit Times Via Way Prediction

How to combine fast hit time of direct-mapped with lower
conflict misses of 2-way SA cache?

Way prediction: keep extra bits in cache to predict
“way’ (block within set) of next access

— Multiplexer set early to select desired block; only 1 tag
comparison done that cycle (in parallel with reading data)

— Miss = check other blocks for matches in next cycle
Hit Time

Way-Miss Hit Time Miss Penalty

Ac‘curacy ~ 85%
Drawback: CPU pipeline harder if hit time is variable-length

33

3. Increasing Cache Bandwidth by Pipelining

13 cycle mispredict

H
IF1 IF2 IF3 ID1
Instruction Fetch

Simply to pipeline cache access
— Multiple clock cycle for 1st-level

Saltwell

cache hit AGulDeIlDe2s [EX TFTT [FT2 W]

Instruction Source
. Reag Data Cache Access

Advantage: fast cycle time and slow hit

Example: accessing instructions from I-cache
— Pentium: 1 clock cycle, mid-1990
— Pentium Pro ~ Pentium IlI: 2 clocks, mid-1990 to 2000
— Pentium 4: 4 clocks, 2000s
— Intel Core i7: 4 clocks

Drawback: Increasing the number of pipeline stages leads to
— greater penalty on mispredicted branches and
— more clock cycles between the issue of the load and the use of the data

Note that it increases the bandwidth of instructions rather than decreasing

the actual latency of a cache hit

34

4. Increasing Cache Bandwidth with

Non-Blocking Caches

* Non-blocking or lockup-free cache allows continued cache
hits during miss
— Requires F/E bits on registers or out-of-order execution
— Requires multi-bank memories

* Hit under miss reduces effective miss penalty by working
during miss vs. ignoring CPU requests

® Hit under multiple miss or miss under miss further lowers
effective miss penalty by overlapping multiple misses

— Significantly increases complexity of cache controller since can
be many outstanding memory accesses

— Requires multiple memory banks
— Penium Pro allows 4 outstanding memory misses

35

Effectiveness of Non-Blocking Cache

-=— Hit-under-1-miss Hit-under-2-misses —¢ Hit-under-64-misses

- 100% R

(3

§ 90% -

S 80% -

7

o 70% -

@

o 60% -

S o

m 50/0—

O 40%
dgle|e|2E|e|gla|8|e|2|8(2|R|8|3|2|0|2|E 5|2
NOEE_G_)‘...aV*q';U)mem CUQ-;(BJDO_ £
Q E|?|S|O|c|C|E|S ElS|ic|lalolg|lo|* c

< SIS E S 15 P12 S| e o
o o o5 =
Q © ()

SPECINT SPECFP

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or
64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right)
benchmarks. The data memory system modeled after the Intel i7 consists of a 32KB L1
cache with a four cycle access latency. The L2 cache (shared with instructions) is 256 KB
with a 10 clock cycle access latency. The L3 is 2 MB and a 36-cycle access latency. All the

rarlhac ara ainhtaamv cat acenriativin anA hava a2 ARA_hwvita hlAarcl, ciza AllAawinAa Aana hit

Performance Evaluation of Non-Blocking
Caches

* A cache miss does not necessarily stall the processor
— difficult to judge the impact of any single miss and hence to
calculate the average memory access time.
* The effective miss penalty is the non-overlapped time that the
processor is stalled.
— not the sum of the misses

* The benefit of nonblocking caches is complex, depends on
— the miss penalty when there are multiple misses,
— the memory reference pattern, and
— how many instructions the processor can execute with a miss
outstanding.
* For out-of-order processors
— Check textbook

37

5. Increasing Cache Bandwidth Via Multiple
Banks

* Rather than treating cache as single monolithic block,
divide into independent banks to support simultaneous
accesses

— The Arm Cortex-A8 supports one to four banks in its L2 cache;

— the Intel Core i7 has four banks in L1 (to support up to 2
memory accesses per clock), and the L2 has eight banks.

38

Sequential Interleaving

* Works best when accesses naturally spread across banks =
— mapping of addresses to banks affects behavior of memory

system

* Simple mapping that works well is sequential interleaving

— Spread block addresses sequentially across banks
— E,g, bank i has all blocks with address i modulo n

Block Block Block Block
address Bank O address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

6. Reduce Miss Penalty:
Early Restart and Critical Word First

* Don’t wait for full block before restarting CPU

® Critical Word First—Request missed word from memory
first, send it to CPU right away; let CPU continue while
filling rest of block

— Large blocks more popular today = Critical Word 1st widely
used

* Early restart—As soon as requested word of block arrives,
send to CPU and continue execution

— Spatial locality = tend to want next sequential word, so may
still pay to get that one

block

40

7. Merging Write Buffer to Reduce Miss Penalty

* Write buffer lets processor

continue while waiting for

word, byte access

Fast

»| Cache

block transfer

>

write to complete

Processor

Fast

word, byte ac

2

Slow

Write
buffer

cess

——

Slow

>

<€

* Merging write buffer:

Slow

Main
memory

— |If buffer contains modified blocks, addresses can be checked

to see if new data matches that of some write buffer entry

— If so, new data combined with that entry

* For sequential writes in write-through caches, increases

block size of write (more efficient)

® Sun T1 (Niagara) and many others use write merging

41

Merge Write Buffer Example

Write address V \' \' \Y
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | O 0 0
116 1 | Mem[116] | O 0 0
124 1 | Mem[124] | 0o 0 0

Write address \' \' \'
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

0 0 0 0

0 0 0 0

0 0 0 0

Figure 2.7 To illustrate write merging, the write buffer on top does not use it while 42
the write buffer on the bottom does. The four writes are meraed into a sinale buffer

8. Reducing Misses by Compiler Optimizations
Software-only Approach

* McFarling [1989] reduced misses by 75% in software on 8KB
direct-mapped cache, 4 byte blocks

* |nstructions
— Reorder procedures in memory to reduce conflict misses
— Profiling to look at conflicts (using tools they developed)

® Data

— Loop interchange: Change nesting of loops to access data in
memory order

— Blocking: Improve temporal locality by accessing blocks of data
repeatedly vs. going down whole columns or rows

— Merging arrays: Improve spatial locality by single array of compound
elements vs. 2 arrays

— Loop fusion: Combine 2 independent loops that have same looping
and some variable overlap

43

0 1 2 3 45 6. 99

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = J+1) Sequence of access:
for (i = 0; i < 5000; i = i+1) XONOL X[1][0], X[2][0], ...

x[1]1[31 = 2 * x[1][3];

/* After */
for (k = 0; k < 100; k = k+1)
for (1 =0; 1 < 5000; 1 = i+1) Sequence of access:
for (i = 0; j < 100; 4 = 4+41) X[O][0], X[0][], X[1][2], ...
x[1]1[3]1 = 2 * x[1][3]];

Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

44

/* Before */

for (1 = 0; 1 < N;
for (7 = 0; 7 <
{r = 07
for (k = 0;
r=1r + y]|
x[1][3] =

* Two inner loops:

Blocking Example

1= 1+1)

N; J = 3+1)

— Read all NxN elements of z[]
— Read N elements of 1 row of y[] repeatedly
— Write N elements of 1 row of x{]

* (Capacity misses a function of N & Cache Size:
— 2N3+ N? => (assuming no conflict; otherwise ...)

* |dea: compute on BxB submatrix that fits

45

Array Access in Matrix Multiplication

j K j
X 012 3 45 Y 01 2 3 45 % 0 1 2
0 0
| :
2 2
i K
3 3
4 4
5 5

2.8 A snapshot of the three arrays x, y, and z when N = 6 and i = 1. The age of accesses to the arr.
is indicated by shade: white means not yet touched, light means older accesses, and dark means

»s. Compared to Figure 2.9, elements of y and z are read repeatedly to calculate new elements of x. Th
, J,and k are shown along the rows or columns used to access the arrays.

46

Array Access for Blocking/Tiling Transformation

ire 2.9 The age of accesses to the arrays x, y, and z when B = 3. Note that, in contrast to Figure 2.8, a
\ber of elements is accessed.

47

Blocking Example

/* After */
for (JjJ = 0; 373 < N; Jj = Jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (1 = 0; 1 < N; 1 = 1i+1)

for (7 = 79; J < min(77+B-1,N); J = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {

r =1r + y[1][k]l*z[k]l[7];}:

x[1][J] = x[1][J] + x;

* B called Blocking Factor
* Capacity misses from 2N3 + N2 to 2N3/B +N?

®* Reduce conflict misses too?
48

Reducing Conflict Misses by Blocking

* Conflict misses in caches not FA vs. blocking size

— Lam et al [1991]: Blocking factor of 24 had 1/5 the misses vs.
48 despite both fitting in cache

0.1 7

0.05 7

Direct Mapped Cache

Fully Associative Cache

50 100 150
Blocking Factor 49

Merging/Spliting Arrays Example

Array of Struct or Struct of Array

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of structures */
struct merge {

int val;

int key;
i

struct merge merged array|[SIZE];

Reduce conflicts between val & key; improve spatial locality

50

Loop Fusion Example

/* Before */

for (1 = 0; 1 < N; 1 = i+1)
for (j = 0; j < N; j = j+1)
alil[i]_= 1/b[i]1[j] * c[il[il;

for (i = 0; i < N; i = i+1)
for (J = 0; jJ < N; j = j+l1)
d[i][3] = alil[3]l + c[i]l[3];

/* After */

for (1 = 0; i < N; 1 = i+l)
for (3 = 0; j < N; j = j+l)
{ alil[j] = 1/b[il[]j] * c[il[]j];
dli][3] = a[i]l[3] + c[i]l[]]’}

2 misses per access to a & c vS. one miss per access; improve
spatial locality

51

Summary of Compiler Optimizations to Reduce
Cache Misses (by hand

vpenta (nasa7)

gmty (nasa?)

tomcatv

btrix (nasa7)]

mxm (nasa?)

spice

cholesky
(nasa7)
compress
1 1.5 2 2.5 3
Performance Improvement
B merged M loop Bl loop fusion blocking

arrays interchange

9. Reducing Misses by Hardware Prefetching of
Instructions & Data

* Hardware prefetch items before the processor requests them.
— Both instructions and data can be prefetched,
— Either directly into the caches or into an external buffer that can be

more quickly accessed than main memory.

* Instruction prefetching

Typically, CPU fetches 2 blocks on miss: requested and next

Requested block goes in instruction cache, prefetched goes in instruction stream
buffer

* Data prefetching

Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 4
KB pages

Prefetching invoked if 2 successive L2 cache misses to a page,

if distance between those cache blocks is < 256 bytes

The Intel Core i7 supports hardware prefetching into both L1 and L2 with the most
common case of prefetching being accessing the next line.

» Simpler than before.

53

Hardware Prefetching

* Relies on utilizing memory bandwidth that otherwise would be
unused

— If it interferes with demand misses it can actually lower
performance.

— When prefetched data are not used or useful data are displaced,
prefetching will have a very negative impact on power.

54

Hardware Prefetching

2.20

2.00 A
1.80 -

1.60 -

1.97
' 1.49
1.40
1.40 - 3
126 129

. 120 1.21
1204 1. 16 : 1.18 I I I I
1.00 1 T T T T

mcf fam3d wupW|se galgel facerec swim applu lucas mgrid equake
SPEClntZOOO SPECfp2000

Performance improvement

Figure 2.10 Speedup due to hardware prefetching on Intel Pentium 4 with hardware prefetching turned on for
2 of 12 SPECint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit the most

from prefetching are shown; prefetching speeds up the missing 15 SPEC benchmarks by less than 15% [Singhal 2004].
55

10. Compiler-Controlled Prefetching to Reduce
Miss Penalty or Miss Rate

Compiler to insert prefetch instructions to request data
before the processor needs it.

* Data prefetch
— Load data into register (HP PA-RISC loads)

— Cache prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

— Special prefetching instructions cannot cause faults; form of
speculative execution

* Prefetch instructions take time
— Is cost of prefetch issues < savings in reduced misses?
— Higher superscalar reduces problem of issue bandwidth

56

Compiler-Controlled Prefetching Example

* Page #93

For the code below, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KB direct-mapped data cache with 16-byte blocks,
and it is a write-back cache that does write allocate. The elements of a and b are 8
bytes long since they are double-precision floating-point arrays. There are 3 rows
and 100 columns for a and 101 rows and 3 columns for b. Let’s also assume they
are not in the cache at the start of the program.

for (i = 0; i <3; i = i+l)
for (j = 05 j <1005 j = j+1)
ali][3] = b[3I[o] * b[j+1][0];

57

Compiler-Controlled Prefetching Example

for (j = 05 j <1005 j = j+1) {

for (i

prefetch(b[j+7][0]);

/* b(j,0) for 7 iterations later */

prefetch(a[0] [j+7]);

/* a(0,j) for 7 iterations later */

a[0][§] = b[3I[0] * b[j+1][0];};

=1; i <33 1 = i+l)
for (j = 0; j < 100;
prefetch(ali]

j o= J+l) f

[J+7]) s

/* a(i,j) for

+7 iterations */

alil[j] = b[J]

[0] * b[j+1][0];}

58

Prefetching in GC Compiler

Built-in Function: void __builtin_prefetch (const void *addr, ...)

This function is used to minimize cache-miss latency by moving data into a cache before it is accessed. You can insert calls to
__builtin prefetch into code for which you know addresses of data in memory that is likely to be accessed soon. If the target
supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be
in the cache by the time it is accessed.

The value of addr is the address of the memory to prefetch. There are two optional arguments, rw and locality. The value of rw is
a compile-time constant one or zero; one means that the prefetch is preparing for a write to the memory address and zero, the
default, means that the prefetch is preparing for a read. The value locality must be a compile-time constant integer between zero
and three. A value of zero means that the data has no temporal locality, so it need not be left in the cache after the access. A value
of three means that the data has a high degree of temporal locality and should be left in all levels of cache possible. Values of one
and two mean, respectively, a low or moderate degree of temporal locality. The default is three.

for (i = 0; i < n; i++)
{
a[i] = a[i] + b[i];
__builtin prefetch (&a[itj], 1, 1);
__builtin prefetch (&b[i+j], 0, 1);
/* .. %/
}

Data prefetch does not generate faults if addr is invalid, but the address expression itself must be valid. For example, a prefetch of
p->next does not fault if p->next is not a valid address, but evaluation faults if p is not a valid address.

If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other code is
generated and GCC does not issue a warning.

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
59

Summary of the 10 Advanced Cache
Optimization Techniques

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple caches + - + 0 Trivial; widely used

Way-predicting caches 1 Used in Pentium 4

Pipelined cache access 1 Widely used

Nonblocking caches 3 Widely used

Banked caches 1 Used in L2 of both 17 and
Cortex-A8

Critical word first 2 Widely used

and early restart

Merging write buffer 1 Widely used with write
through

Compiler techniques to 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled 3 Needs nonblocking cache;

prefetching

possible instruction overhead;
in many CPUs

