Lecture 09: RISC-V Pipeline
Implementation

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan




Acknowledgement

* Slides adapted from Computer Science 152: Computer
Architecture and Engineering, Spring 2016 by Dr. George
Michelogiannakis from UC Berkeley



Introduction

* CPU performance factors

— Instruction count

 Determined by ISA and compiler Instructions ) Cycles *Time

— CPl and Cycle time CPU Time =

* Determined by CPU hardware Program  Instruction Cycle

* Three groups of instructions
— Memory reference: lw, sw
— Arithmetic/logical: add, sub, and, or, slt
— Control transfer: jal, jalr, b*

* CPI
— Single-cycle, CPI =1
— 5 stage unpipelined, CPI =5
— 5 stage pipelined, CPI =1



An Ideal Pipeline

. stage
1

I

stage

_>I_>

stage

_>I_>

* All objects go through the same stages

stage

* No sharing of resources between any two stages

* Propagation delay through all pipeline stages is equal

* The scheduling of an object entering the pipeline is not
affected by the objects in other stages

These conditions generally hold for industrial assembly
lines, but instructions depend on each other!




Review: Unpipelined Datapath for RISC-V

WBSel

RegWriteEn MemWrite
>
clk
1 Vv
Ve Br Logic | Bcomp?
P rs1 clk
 rs2 |
> |pc—>]addr . rd1 > vV we
Inst > wa vl addr
s »wd rd2 ' g >
clk Inst. GPRs 2 rdata
Memory | Data
Imm || Memory
qu{ﬂrf » wdata
»| ALU
Control
v
OpCode WASel ImmSel Op2Sel



Review: Hardwired Control Table

Opcode | ImmSel | Op2Sel | FuncSel | MemWr | RFWen | WBSel | WASel PCSel
ALU * Reg Func no yes ALU rd pc+4
ALUi IType,,| Imm| Op no yes ALU rd pc+4
LW IType,,| Imm + no yes Mem rd pc+4
SW BsType,;,| Imm - yes no * * pc+4
BEQy,. |BrType,,| * * no no * * br
BEQuse |BrType,,| * * no no * * pc+4
JAL * * * yes PC rd jabs
JALR * * * nQ yes PC rd rind

Op2Sel= Reg / Imm

WBSel = ALU / Mem / PC
PCSel = pc+4 / br / rind / jabs




Pipelined Datapath

Ox4 a

o Imm
Select

“write
fetch decode & Reg-fetch execute memory _back
phase phase phase phase phase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\,, tre, taw toms trwt ( = topm probably)

However, CPI will increase unless instructions are pipelined



Technology Assumptions

e A small amount of very fast memory (caches)
backed up by a large, slower memory

e Fast ALU (at least for integers)

e Multiported Register files (slower!)

Thus, the following timing assumption is reasonable

U 7= e 7= T "= Tom 7= i

A 5-stage pipeline will be focus of our detailed design
- some commercial designs have over 30 pipeline
stages to do an integer add!



5-Stage Pipelined Execution

Write

|-F — -Back

(IF) (ID) (EX) (MA) (WB)

time tO t1 t2 t3 |t4 |t5 t6 t/

instructionl IF, ID; EX; MA,  WB;

instruction2 IF, ID, EX, |MA,|WB,

instruction3 IF;  ID; | EX; |MA; WB,

instruction4 IF, |ID, |EX, MA, WB,

instruction5 IF. |ID; EX; MA; WB,

=4



5-Stage Pipelined Execution

Resource Usage Diagram

Imm

»| Select
Write
_| -Back
I-Fetch Decode, Reg. Fetch Execute Memory (WB)
(IF) (ID) (EX) (MA)
time tO t1 t2 t3  t4 t5 t6 t7/
S 00
3 EX 1 I2 I3 I4 I5 I
8 1 2 3 4 5
x MA P I P I PO P
WB P P O N

10



Pipelined Execution:
ALU Instructions

vV V
=
w0
=

»laddr _I_ rd1
inst wa
»lwd rd2

Inst GPRs

Imm

\ 4

V. owe
addr

rdata

Data

Select

MD1

MD2

A 4

wasmory

Not quite correct!

We need an Instruction Reg (IR) for each stage

11



Ox4 a

Pipelined RISC-V Datapath

without jumps

E M

P s

o o
» »

A 4

RegWriteEn
7 we ALU , |
o1 Control MemWrite WBSel
*rs2 v v
»laddr rd1 vV o we
inst *lwa addr
»lwd rd2 T
Inst GPRs - rdata
Memor
| Imm
Select I I lwdata |
MD1 MD2
ImmSel Op2Sel
Control Points Need to

Be Connected

12



Instructions interact with each other in pipeline

* An instruction in the pipeline may need a resource
being used by another instruction in the pipeline 2
structural hazard

* An instruction may depend on something produced by
an earlier instruction
— Dependence may be for a data value

- data hazard

— Dependence may be for the next instruction’s address
- control hazard (branches, exceptions)

13



Resolving Structural Hazards

® Structural hazard occurs when two instructions need same
hardware resource at same time

— Can resolve in hardware by stalling newer instruction till older
instruction finished with resource

* A structural hazard can always be avoided by adding more
hardware to design
— E.g., if two instructions both need a port to memory at same
time, could avoid hazard by adding second port to memory
® QOur 5-stage pipeline has no structural hazards by design
— Thanks to RISC-V ISA, which was designed for pipelining

14



Data Hazards

x4 <— x1 ... X1 < ...
0x4 ﬁ ‘I ‘I
vV owe
»rsl
»Irs2 v
:I > addr_ rdl vVowe
inst : a?j rd2 addr
Inst GPRs ‘ rdata N
Memory e Data
| Imm Memory, >
| Select I I Plwdata
MD1 MD?2
X1 < x0 + 10
x4 < x1 + 17 x1 is stale. Oops!

15



How Would You Resolve This?

* Three options
— Wait (stall)
— Bypass: ask them for what you need before his/her final
deliverable

— Speculateepnvalvestoread

16



Resolving Data Hazards (1)

Strategy 1:

Wait for the result to be available by freezing
earlier pipeline stages = interlocks

17



Interlocks to resolve Data Hazards

Stall Condition

0x4 bubble _r‘Ll I I
Add I/I > >
vVowe
= »rsl
»rs2 v
> »laddr rd1 vVowe
inst wa
»lwd rd2 —e—s addr
Inst GPRs ‘ rdata
Memory| e Data
»| Imm Memory,
| Select | Plwdata
MD1 MD2
X1 < x0 + 10

X4 «<—x1 + 17/

18



Stalled Stages and Pipeline Bubbles

time
tO t1 t2 t3 t4 t5 t6 t7/
(I,) x1 < (x0) + 10IF, ID, E T WB—
(I,) x4 << (x1) + 17 IF, ID, ID, ID, ID, EX, MA, WB,
(I5) IF; IF; IF; IF; ID; EX5; MA; WB;
stalled stages
(Is) IF. ID; EXs MA: WB:
time
tO t1 t2 t3 t4 t5 t6 t7
IF I, I, I I I3 14 I
Resource IE?( h %2 {2 {2 {2 i3 I %5 I
1 2 3 4 5
Usage MA L o= - - L 1 I
WB I, - - - L I I

- =  pipeline bubble

19



Interlock Control Logic

stall ws -
Cstall
rs2
/ rs1 ?
0x4 a bubble -~ I I .
V-we =
\ >rsl
v »|rs2 Jv
> »laddr rdl vVowe
inst wa
»lwd rd2 —se— addr
Inst GPRs R rdata
Memory e Data
»] Imm Memory
Select Plwdata
MD1 MD2

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted

instructions. .



we: write enable, 1-bit on/off

ws: write select, 5-bit register number
re: read enable, 1-bit on/off

rs: read select, 5-bit register number

\4

Interlock Control Logic

ignoring jumps & branches

o
>

stall W\fv% ------------------------------------- o
CstaII < v
rsl » < !\/{ v
/ 9 ? < — |W5Ewe wsM |
) /re' lTl T re2 Cyest Copeer '
|
o 1 1 |
0x4 * bubble I | I
i I
vV we :
*Irs1
v >Irs2 v
>addr _I_ R rdl Vwe
inst >lwa
»lwd rd2 f—1+— addr
Inst GPRs R rdata
Mermor) J 1 Data
> Imm { Memor
Select “|wdata
MD1 MD?2

Should we always stall if an rs field matches some rd?
not every instruction writes a register => we

not every instruction reads a register =>re

21



In RISC-V Sodor Implementation

Inc. [US] https://github.com/ucb-bar/riscv-sodor/blob/master/src/rv32_5stage/cpath.scala#L237

{

// stall for all hazards

stall := ((exe_reg wbaddr === dec_rsl_addr) && (dec_rsl_addr != UInt(@)) &% exe_reg_ctrl rf_wen & dec_rsl_oen) ||
((mem_reg_wbaddr === dec_rsl_addr) && (dec_rsl_addr != UInt(@)) && mem_reg ctrl rf wen && dec_rsl oen) ||
((wb_reg_wbaddr === dec_rsl_addr) & (dec_rsl addr != UInt(@)) & wb_reg_ctrl_rf wen && dec_rsl_oen) ||
((exe_reg_wbaddr === dec_rs2_addr) &% (dec_rs2_addr != UInt(Q)) && exe_reg_ctrl_rf wen && dec_rs2_oen) ||

((mem_reg_wbaddr === dec_rs2_addr) && (dec_rs2_addr != UInt(@)) && mem_reg ctrl rf wen && dec_rs2_oen) ||
((wb_reg_wbaddr === dec_rs2_addr) &% (dec_rs2_addr != UInt(Q)) & wb_reg ctrl rf wen && dec_rs2_oen) ||

((exe_inst_is_load) && (exe_reg_wbaddr
((exe_inst_is_load) && (exe_reg wbaddr

((exe_reg_is_csr))

dec_rsl_addr) && (exe_reg_wbaddr != UInt(@)) &% dec_rsl oen) ||
dec_rs2_addr) &% (exe_reg_wbaddr != UInt(@)) && dec_rs2_oen) ||

22



Source & Destination Registers

func? rs2 rsl |func3 rd |opcode ALU

immediatel2 | rsl |func3 rd |opcode ALUI/LW/JALR

imm rs2 | rsl Ifunc3 Imm | opcode SW/Bcond
Jump Offset[19:0] rd | opcode

source(s) destination

ALU rd <=rsl funclOrs2 rsl, rs2 rd
ALUI rd<=rslopimm rsl rd
LW rd <=M [rsl1 + imm] rsi rd
SW M [rs1 +imm] <=rs2 rsl, rs2 -
Bcond rsl,rs2 rsl, rs2 -

true: PC<=PC+imm

false: PC<=PC+4
JAL x1 <= PC, PC<=PC +imm - rd
JALR rd<=PC, PC<=rsl+imm rsi rd

23



Deriving the Stall Signal

Cdest

ws = rd

we = Case opcode
ALU, ALUi, LW, JALR =>o0n

=>0ff

C

re
rel = Case opcode

ALU, ALUi,

=>0n
=>0off

re2 = Case opcode

=2:an

->off

C

stall

stall = ((rs1,==ws;) && we +
(rsly==ws,,) && we,, +
{rsty==ws} &8 wew) && rel, +
((rs2p,==ws;) && we; +
(rs2p==ws,,) && we,, +

trs2y==wsy}- &8 wey) && re2,

24



Hazards due to Loads & Stores

Stall Condition What if
x1+7 =x3+57?
0x4 a bubble-D :I :I
vV we
= *rs1
I >rs2 v
»laddr ‘ rd1 VWe
Inst I > wg rd2 P a addr \
Inst GPRs ‘ rdata R
Maeror b Data
> Imm I I R I\ﬂemor ’
Select "Iwdata
MD1 MD2
M[x1+7] <= x2 Is there any possible data hazard

x4 <= M[x3+5] in this instruction sequence?

25



Load & Store Hazards

i\./.l[x1+7] <=x2 x1+7 = x3+5 => data hazard
x4 <= M[x3+5]

However, the hazard is avoided because our memory
system completes writes in one cycle !

Load/Store hazards are sometimes resolved in the
pipeline and sometimes in the memory system itself.

More on this later in the course.

26



Resolving Data Hazards (2)

Strategy 2:

Route data as soon as possible after it is calculated
to the earlier pipeline stage = bypass

27



Bypassing

W

(I;) x1 < x0 + 10 IF; ID; EX—MATWBI~

(I,) x4 <x1 + 17 IF, ID, ID, ID, ID, EX, MA, WB,
(I5) IF; IF; IF; IF; ID; EX; MA;
(I,) stalled stages IF, ID, EX,
(Is) IF. ID:

Each stall or kill introduces a bubble in the pipeline
=>CPl > 1

A new datapath, i.e., a bypass, can get the data from
the output of the ALU to its input

time t0 t1 t2 t3 t4 t5 t6 t7

(I,) x1 < x0 + 10 IF, ID, (EX—MA, WB,

(I,) x4 < X1 + 17 IF, ID, EX, MA, WB,

(1) IF, ID;, EX; MA, WB,
(L) IF, ID, EX, MA, WB,

(Ic) IFe ID. EX: MA: WB.

28



Hardware Support for Forwarding

Instruction
memory

IF/ID

ID/EX

WB

Control ’—r

.

EX

| Instruction

Y

Registers

EX/MEM

~|WB MEM/WB

> M » \WBI
ALU— —o—>| >

Data
memory

\/

IF/ID.RegisterRs Rs
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt |  [Rt]
IF/ID.RegisterRd |  |Rd

»
>

EX/MEM.RegisterRd

MEM/WB.RegisterRd
\ 4

xc=




Detecting RAW Hazards

* Pass register numbers along pipeline
— ID/EX.RegisterRs = register number for Rs in ID/EX
— ID/EX.RegisterRt = register number for Rt in ID/EX
— ID/EX.RegisterRd = register number for Rd in ID/EX
* Current instruction being executed in ID/EX register
* Previous instruction is in the EX/MEM register
* Second previous is in the MEM/VVB register

* RAW Data hazards when

la. EX/MEM.RegisterRd = ID/EX RegisterRs 1 | Fwd from
Ib. EX/MEM.RegisterRd = ID/EX.RegisterRt | E/MEM

pipeline reg
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs -
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt | | menrors

pipeline reg




Detecting the Need to Forward

* But only if forwarding instruction will write to a register!
— EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not RO
— EX/MEM.RegisterRd # 0
— MEM/WB.RegisterRd # 0



Forwarding Conditions

* Detecting RAWV hazard with Previous Instruction

— if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 0l (Forward from EX/MEM pipe stage)

— if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 0l (Forward from EX/MEM pipe stage)

* Detecting RAW hazard with Second Previous

— if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10 (Forward from MEM/VVB pipe stage)

— if (MEM/WB.RegWrite and (MEM/WVB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10 (Forward from MEM/WB pipe stage)



Adding a Bypass

0x4 pubbleT™ MW E I M
| I
}

»laddr I D - rdl — Vv we
inst ~|wa addr
»lwd rd2 —-—»j

Inst GPRs R rdata
Meror) b Data
sy
MD1 MD2
When does this bypass help?
(I;) x1 <=x0+10 x1 <= M[x0 + 10] JAL 500
(1,) x4 <=x1 +17 x4 <=x1+17 x4 <=x1+17
no

yes no
33



The Bypass Signal

Deriving it from the Stall Signal

stall = ( (rsts==ws )& we; + (rsly == ws,,) && we,, + {rsty==wsy} &&wey) && rel,
+((rs2, == wsg) && we; + (rs2,== ws,,) && we,, +{rs2g==ws} - &&wey) && re2,)

ws = rd

we = Case opcode
ALU, ALUi, LW,, JALJALR =>o0n
=> off

ASrc = (rsly== ws;) && we; && rel,

Is this correct?

No because only ALU and ALUi instructions can benefit from this

bypass

Split weg into two components: we-bypass, we-stall

34




Bypass and Stall Signals

Split we; into two components: we-bypass, we-stall

we-bypass; = Case opcode; we-stall; = Case opcode,
ALU, ALUi =>on LW, JAL, JALR=> on
=> off JAL =>0n
=> off
ASrc = (rsly== ws;) && we-bypass; && rel,

stall = ((rsly==ws;) && we-stall_ +
(rslp,==ws,,) && we,, +{rsis==ws )} &&wey) && rel,
+((rs2p == ws;) && weg + (rs2, == ws,,) && we,, + {rs25;==ws} &&wey) && re2,

35



Fully Bypassed Datapath

stall PC for JAL, ...

O l
0x4 _b.ub.b.Le:D I a I M :IW
ASrc 7 iw

N
v M we
rsl
rs2 y
:I oladdr ‘ID d1p—- I—» T
inst wa >
»wd rd2 p—— - addr
Inst GPRs - rdata >

Memeory b Data
Imm ___%
Select
== BSrc

emor
- - MD1 MD2

\ A 4

*|wdata ’I

Is there still

a need for the
stall signal 7 stall = (rsly==ws;) && (opcode ==LW;)&&(ws;!=0)&&rel,

+ (rs2,== ws;) && (opcode == LW;)&&(ws;!=0)&&re2,

36




Control Hazards

What do we need to calculate next PC?

* ForJumps
— Opcode, PC and offset

®* For Jump Register
— Opcode, Register value, and PC

* For Conditional Branches
— Opcode, Register (for condition), PC and offset

* For all other instructions
— Opcode and PC ( and have to know it’s not one of above )

37



PC Calculation Bubbles

time
t0 t1 t2 t3 t4 t5 t6 t7
(I;) x1 «<x0 + 10 IF, ID, EX; MA, WB;

(I,) X3 < X2 + 17 IF, IF, ID, EX, MA, WB,
(1) IF, IF, ID, EX; MA, WB,
time
t0O t1 t2 t3 t4 t5 t6 t7/
IF Il - :[2 - I3 -
Resource 1D L L - I -
MA I]_ - :[2 - I3 -
WB Il - Iz - I3 -

- =  pipeline bubble

38



Speculate next address is PC+4

PCSrc |(pc+4 / jabs / rind/ br) stall

Ox

g
Q
1

/2\
A NAK

E
\4
bubble -I‘:l I
—>  Jump? I

104

»|addr
inst
Inst
Memory
096 ADD
100 J 304
104 ADD
304 ADD

Kill

A jump instruction kills (not stalls)

the following instruction

How?

39



Pipelining Jumps

PCSrc |(pc+4 / jabs / rind/ br) gt5//

\ 4

»
>

304

IRSrcy
»[addr bubb|e-t| I
inst ——
H‘;ﬁqory bubble
IRSrc, = Case opcodep
096 ADD JAL = bubble
100 J 304 = IM
104 ADBD kill
304 ADD

¢ To kill a fetched
HVL instruction -- Insert
|\ : a mux before IR
Ox4 ﬁ bubble _r:l I I
ﬁ —>  Jump? I, I

40



Jump Pipeline Diagrams

time
t0 t1 t2 t3 t4 t5 t6 t7
(I,) 096: ADD IF, ID, EX, MA, WB,
(1,) 100: ] 304 IF, ID, EX, MA, WB,
(I,) 104: ADD IF, ~ - - -
304: ADD
time
tO t1 t2 t3 t4 t5 t6 t7
IF I, I, I I
Resource :I[EI;)( L %2 L - i‘r’ I
1 2 4 5
Usage MA I L - I
WB I, I, - I

- =  pipeline bubble



=

_u)_[\.)_ —

D

Pipelining Conditional Branches

PCS!’C

stall

1
L

[
J N NAK

E M
\4
bubbleflj_.l I
BEQ? /; A

0
Add
- IRSrc,
> »laddr -
I inst bubblé

104 Inst

NMaomnrl
TVISTTINWVT

096 ADD
100 BEQ x1,x2 +200
104 ADD
304 ADD

Taken?

A4

-

I

Branch condition is not known until the
execute stage

what action should be taken in the
decode stage ? "



w N

D

Pipelining Conditional Branches

ki stall
g ?
I\: /;él E Bcond? M
0 ﬁ bubble- :| I 1T
_ I, I,
Taken?
- IRSrc, ! ‘
> »add
I a rinst bubbl& I__> _
108 |Inst /
Mamory 3
096 ADD |f tE‘i bI:anch |sftz|a|ken. | |
100 BEQ x1,x2 +200 - Kill the two | ollowing Instructions |
104 ADD - the instruction at the decode stage is

304 ADD not valid = stall signal is not valid

43



e

Pipelining Conditional Branches

PCSfﬁ stall

({ € \
IRSrC, E Bcond? M
o Cf bybble- I 11 I

v \ 4

- o IRSrcy
> »laddr
inst bubblel | — —_— _
108 |Inst |
3

Mamory

096 ADD |f th? branch is taken. | |
104 ADD - the instruction at the decode stage is
304 ADD not valid = stall signal is not valid

44



(I,) 096
(1,) 100
(I,) 104

Branch Pipeline Diagrams
(resolved in execute stage)

time
t0

: ADD IF,

: BEQ +200

: ADD

108:

304:

Resource

Usage

ADD

time
t0
IF I,
ID
EX
MA

WB

t1
ID,
IF,

t1

I
Iy

t2
EX,
ID,
IF,

t3 t4
MA, WB,
EX, MA, WB,

N D

t5 t6

t3 t4 t5 t6
I
I3 B I5
I, - - I
I, I, - -
I, I, -
- =

t7/

t/

IS
- 15

pipeline bubble

45



What If...

* We used a simple branch that compares only one register

(rs1) against zero

* Can we do any better?

0x4 a

=

o I
L

\ A 4

> »laddr
inst

Inst

Memory

vowe L
rsi
rs2 !
wa rdl Vo owe
»|lwd rd2 p——=ae—> addr
GPRs R rdata
e 1x Data
Imm Memory
Select Plwdata
MD1

MD2

46



Use simpler branches (e.g., only compare one reg

against zero) with compare in decode stage

time
t0 tl1 t2 t3 t4 t5 t6 t7
(I,) 096: ADD IF, ID, EX, MA, WB,
(I,) 100: BEQZ +200 IF, ID, EX, MA, WB,
(I,) 104: ADD IF, ~ - - -
300: ADD
time
t0 t1 t2 t3 t4 t5 t6 t7
IF I, I, I I.
Resource IE?( h %2 L. }5 I
1 2 4 5
Usage MA I I, - I
WB I, I, - I.

- =  pipeline bubble

47



Branch Delay Slots
(expose control hazard to software)

* Change the ISA semantics so that the instruction that

follows a jump or branch is always executed

— gives compiler the flexibility to put in a useful instruction where normally
a pipeline bubble would have resulted.

Iy 096 ADD Delay slot instruction executed
L 100 BEQZ r1, +200 - regardless of branch outcome
I 104  ADD J

I, 300 ADD

48



Branch Pipeline Diagrams
(branch delay slot)

time
tO t1 t2 t3 t4 t5 t6 t7
(I;) 096: ADD IF, ID; EX; MA; WB,
(I,) 100: BEQZ +200 IF, ID, EX, MA, WB,
(I;) 104: ADD IF; ID; EX5; MA; WB;
300: ADD
time

tO tl t2 t3 t4 t5 t6 t7
IF 1, I, 1,

ID I I I
Resource b2 03
0 EX I, I, I
Sage MA I, I, 1,

WB I, I, I



Post-1990 RISC ISAs don’t have delay slots

®* Encodes microarchitectural detail into ISA
— C.f. IBM 650 drum layout

* What are the problems with delay slots?

* Performance issues

— E.g., I-cache miss or page fault on delay slot instruction causes
machine to wait, even if delay slot is a NOP

®* Complicates more advanced microarchitectures
— 30-stage pipeline with four-instruction-per-cycle issue

* Complicates the compiler’s job
* Better branch prediction reduced need for delay slots

50



Why an Instruction may not be dispatched
every cycle (cpi>1)

* Full bypassing may be too expensive to implement
— typically all frequently used paths are provided
— some infrequently used bypass paths may increase cycle
time and counteract the benefit of reducing CPI
* Loads have two-cycle latency
— Instruction after load cannot use load result

— MIPS-I ISA defined load delay slots, a software-visible
pipeline hazard (compiler schedules independent instruction
or inserts NOP to avoid hazard). Removed in MIPS-I1I (pipeline
interlocks added in hardware)

* MIPS:“Microprocessor without Interlocked Pipeline Stages”

* Conditional branches may cause bubbles
— kill following instruction(s) if no delay slots

51



RISC-V Branches and Jumps

JAL: unconditional jump to PC+immediate

31 30 21 20 19 12 11 76 0
imm|[20)] imm[10:1] imm[11] | imm[19:12] rd opcode
1 10 1 8 5 7
offset[20:1] dest JAL
JALR: indirect jump to rsl+immediate
31 20 19 1514 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 ) 3 ) 7

offset[11:0] base 0 dest JALR
Branch: if (rs1 conds rs2), branch to PC+immediate

31 30 2524 2019 15 14 12 11 8 7 6 0
imm[12] | imm[10:5] rs2 rsl funct3 imm[4:1] | imm][11] opcode
1 6 5 ) 3 4 1 7
offset[12,10:5] src2  srcl  BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2  srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2  srcl BGE[U] offset[11,4:1] BRANCH

52



RISC-V Branches and Jumps

Each instruction fetch depends on one or two pieces of
information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

* JAL: unconditional jump to PC+immediate
* JALR: indirect jump to rsl+immediate
e Branch: if (rs1 conds rs2), branch to PC+immediate

Instruction Taken known? Target known?
JAL After Inst. Decode  After Inst. Decode
JALR After Inst. Decode After Reg. Fetch

B<cond.> After Execute After Inst. Decode

53



Branch Penalties in Modern Pipelines

UltraSPARC-IIl instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

A | PC Generation/Mux

P | Instruction Fetch Stage 1
Branch F | Instruction Fetch Stage 2
Target B | Branch Address Calc/Begin Decode

Address | | Complete Decode
Known _ _ _
J | Steer Instructions to Functional units
Branch Direction R | Register File Read
& ] "t
Jump Register E | Integer Execute
Target Known i Remainder of execute pipeline

(+ another 6 stages)



Reducing Control Flow Penalty

* Software solutions

— Reduce resolution time - instruction scheduling

Eliminate branches - loop unrolling
* Increases the run length

j=0;

while (j < 100){
al3] = b[+1];
j+=1;

}

-

j=0;

while (3 < 99){
a[j] = b[j+1];
a[j+1] = b[j+2];
J+=2;

}

e Compute the branch condition as early as possible (of
limited value because branches often in critical path through

code)

* Hardware solutions
— Find something else to do - delay slots
e Replaces pipeline bubbles with useful work (requires

software cooperation)
Speculate - branch prediction

* Speculative execution of instructions beyond the branch

55



Branch Prediction

* Motivation:
— Branch penalties limit performance of deeply pipelined
processors
— Modern branch predictors have high accuracy
— (>95%) and can reduce branch penalties significantly

* Required hardware support:
— Prediction structures:
e Branch history tables, branch target buffers, etc.

— Mispredict recovery mechanismes:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to that following branch

56



Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:
What C++ statement ZVhat Eﬁl staktT__Ewen;c v
does this look like oes this look like < >
backward forward
\

90% ? 50%

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bneO (preferred taken) beqO (not taken)

57



Dynamic Branch Prediction
learning based on past behavior

* Temporal correlation (time)

— If I tell you that a certain branch was taken last time, does
this help?

— The way a branch resolves may be a good predictor of the way
it will resolve at the next execution

* Spatial correlation (space)
— Several branches may resolve in a highly correlated manner
— For instance, a preferred path of execution

58



Dynamic Branch Prediction

* 1-bit prediction scheme

— Low-portion address as address for a one-bit flag for Taken or
NotTaken historically

— Simple
* 2-bit prediction
— Miss twice to change



Branch Prediction Bits

® Assume 2 BP bits per instruction

{ Taken
/ Not taken
Predict taken 7 Predict taken
11 10
Taken
Taken : Not taken
/ Not taken
Predict not taken / Predict not taken
01 00
Taken

Not taken

BP state:
(predict take/-take) x (last prediction right/wrong)

60



Branch History Table

Fetch PC IOIO
I\ J
4 I
: ? k LI 2k_entry
I-Cache BHT Index [ BHT,
: | 2 bits/entry
Instruction :
Opcode offset
7 L
+
) }
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

61



Exploiting Spatial Correlation

Yeh and Patt, 1992

if (x[1i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also
false

History register, H, records the direction of the
last N branches executed by the processor

62



Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

|O 10

Fetch PC F k | | I I

2-bit global branch history
shift register

Shift in Taken/-Taken

H
results of each branch T l l l

/

Taken/-Taken? 63

N e—




Speculating Both Directions

* An alternative to branch prediction is to execute
both directions of a branch speculatively

— resource requirement is proportional to the number of concurrent
speculative executions

— only half the resources engage in useful work when both directions
of a branch are executed speculatively

— branch prediction takes less resources than speculative execution
of both paths

* With accurate branch prediction, it is more cost
effective to dedicate all resources to the

predicted direction!
— What would you choose with 80% accuracy?

64



Are We Missing Something?

* Knowing whether a branch is taken or not is great, but
what else do we need to know about it?

Branch target address

65



Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

Correctly predicted A | PC Generation/Mux

taken branch
penalty

Instruction Fetch Stage 1

P
F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode

| | Complete Decode

Jump Register

J | Steer Instructions to Functional units
penalty R
E

Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

66



IMEM

Branch Target Buffer

predicted BPb
I target
Branch
[ J
- S s | Target
. o s | Buffer
[ J
(2K entries)
SR Tk
— PC
/\
—] target BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
Later: check prediction, if wrong then kill the instruction and
update BTB & BPb else update BPb

67



Address Collisions (Mis-Prediction)

Assume a
128-entry
BTB
target BPb
— 236 take

What will be fetched after the instruction at 10287
BTB prediction = 236
Correct target = 1032

=> kill PC=236 and fetch PC=1032

Is this a common occurrence?

132 Jump +104

1028 Add .....

Instruction
Memory

68



BTB is only for Control Instructions

Is even branch prediction fast enough to avoid bubbles?
When do we index the BTB?
— i.e., what state is the branch in, in order to avoid bubbles?

BTB contains useful information for branch and jump
instructions only
=> Do not update it for other instructions

For all other instructions the next PC is PC+4 |

How to achieve this effect without decoding the instruction?

69



Branch Target Buffer (BTB)

I-Cache PC

2k-entry direct-mapped BTB
(can also be associative)

Entry PC

\/alid predicted

" target PC

match

valid target

e Keep both the branch PC and target PCin the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

70



Are We Missing Something? (2)

* When do we update the BTB or BHT?

0x4 a I I

vVowe
rsl
»lrs2 !
> »laddr rdl Vowe
inst wa
»lwd rd2 —e—s addr
Inst GPRs ‘ rdata R
Memory, g Data
o] Imm Memory, >
Select Plwdata
MD1 MD2

71



Combining BTB and BHT

* BTB entries are considerably more expensive than BHT, but can redirect
fetches at earlier stage in pipeline and can accelerate indirect branches (JR)

®* BHT can hold many more entries and is more accurate

A | PC Generation/Mux

BTB | | P | Instruction Fetch Stage 1
F
B

Instruction Fetch Stage 2

BHT in later K BHT
pipeline stage
corrects when

Branch Address Calc/Begin Decode

| | Complete Decode

BTB misses a J | Steer Instructions to Functional units
predicted taken R | Register File Read
branch

E

/ Integer Execute

BTB/BHT only updated after branch resolves in E stage

72



Uses of Jump Register (JR)

* Switch statements (jump to address of matching case)

BTB works well if same case used repeatedly

®* Dynamic function call (jump to run-time function address)

BTB works well if same function usually called, (e.g., in C+
+ programming, when objects have same type in virtual
function call)

* Subroutine returns (jump to return address)

BTB works well if usually return to the same place
=> Often one function called from many distinct call sites!

How well does BTB work for each of these cases?

73



Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); 1}

fb() { £c(); }

fc() { £4(); 1}

Pop return address when

Push call address when
function call executed/\ m subroutine return decoded

&£d () k entries
&fc () (typically k=8-16)

&fb ()

74



