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Introduc8on	

•  CPU	performance	factors	
–  InstrucNon	count	

•  Determined	by	ISA	and	compiler	
–  CPI	and	Cycle	Nme	

•  Determined	by	CPU	hardware	

•  Three	groups	of	instrucNons	
–  Memory	reference:	lw,	sw	
–  ArithmeNc/logical:	add,	sub,	and,	or,	slt	
–  Control	transfer:	jal,	jalr,	b*	

•  CPI	
–  Single-cycle,	CPI	=	1	
–  5	stage	unpipelined,	CPI	=	5	
–  5	stage	pipelined,	CPI	=	1	

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle



An	Ideal	Pipeline		

•  	All	objects	go	through	the	same	stages	
•  	No	sharing	of	resources	between	any	two	stages	
•  	PropagaNon	delay	through	all	pipeline	stages	is	equal	
•  	The	scheduling	of	an	object	entering	the	pipeline	is	not	

affected	by	the	objects	in	other	stages	
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These	condi+ons	generally	hold	for	industrial	assembly	
lines,	but	instruc+ons	depend	on	each	other!	



Review:	Unpipelined	Datapath	for	RISC-V	
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Review:	Hardwired	Control	Table	
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Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel 

ALU 
ALUi 
LW 
SW 
BEQtrue 

BEQfalse 

JAL 

JALR 

Op2Sel=	Reg	/	Imm	 	WBSel	=	ALU	/	Mem	/	PC					
	 	 	PCSel	=	pc+4	/	br	/	rind	/	jabs 		

*	 *	 *	
no	 yes	 rind	PC	 rd	

jabs	
*	 *	 *	 no	

yes	 PC	 rd		
pc+4	BrType12	 *	 *	 no	 no	 *	 *	

br	BrType12	 *	 *	 no	 no	 *	 *	
pc+4	BsType12	 Imm	 +	 yes	 no	 *	 *	

pc+4	*	 Reg	 Func	 no	 yes	 ALU	 rd	
IType12	 Imm	 Op	 pc+4	no	 yes	 ALU	 rd	

pc+4	IType12	 Imm	 +	 no	 yes	 Mem	 rd	



Pipelined	Datapath	
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Clock	period	can	be	reduced	by	dividing	the	execuNon	of	an	
instrucNon	into	mulNple	cycles	
	

	tC	>	max	{tIM,	tRF,	tALU,	tDM,	tRW}	(	=	tDM		probably)		
	

However,	CPI	will	increase	unless	instruc+ons	are	pipelined	
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Technology	Assump8ons	
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Thus,	the	following	Nming	assumpNon	is	reasonable	

• 	A	small	amount	of	very	fast	memory	(caches)	
			backed	up	by	a	large,	slower	memory		
• 	Fast	ALU	(at	least	for	integers)		
• 	MulNported	Register	files	(slower!)	

tIM	~=	tRF	~=	tALU	~=	tDM	~=	tRW	

A	5-stage	pipeline	will	be	focus	of	our	detailed	design	
	-	some	commercial	designs	have	over	30	pipeline	

stages	to	do	an	integer	add!	



5-Stage	Pipelined	Execu8on	
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+me		 	 	t0 	t1 	t2 	t3 	t4 	t5 	t6 	t7 	.	.	.	.	
instrucNon1 	IF1 	ID1 	EX1 	MA1 	WB1	
instrucNon2	 	 	IF2 	ID2 	EX2 	MA2 	WB2	
instrucNon3 	 	 	IF3 	ID3 	EX3 	MA3 	WB3	
instrucNon4	 	 	 	 	IF4 	ID4 	EX4 	MA4 	WB4	
instrucNon5	 	 	 	 	 	IF5 	ID5 	EX5 	MA5 	WB5	
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5-Stage	Pipelined	Execu8on	
Resource	Usage	Diagram	
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+me	 	t0 	t1 	t2 	t3 	t4 	t5 	t6 	t7 	.	.	.	.	
IF 	 	I1 	I2 	I3 	I4 	I5 		
ID 	 	 	I1 	I2 	I3 	I4 	I5	
EX 	 										 	I1 	I2 	I3 	I4 	I5	
MA						 	 	 	 	I1 	I2 	I3 	I4 	I5	
WB					 	 	 	 	 	I1 	I2 	I3 	I4 	I5	
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Pipelined	Execu8on:	
ALU	Instruc8ons	
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Pipelined	RISC-V	Datapath	
without	jumps	
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Instruc8ons	interact	with	each	other	in	pipeline	

•  An	instrucNon	in	the	pipeline	may	need	a	resource	
being	used	by	another	instrucNon	in	the	pipeline	à	
structural	hazard	

	

•  An	instrucNon	may	depend	on	something	produced	by	
an	earlier	instrucNon	
–  Dependence	may	be	for	a	data	value		

	à	data	hazard	
–  Dependence	may	be	for	the	next	instrucNon’s	address	

	à	control	hazard	(branches,	excep+ons)	
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Resolving	Structural	Hazards	

•  Structural	hazard	occurs	when	two	instrucNons	need	same	
hardware	resource	at	same	Nme	
–  Can	resolve	in	hardware	by	stalling	newer	instrucNon	Nll	older	

instrucNon	finished	with	resource	
•  A	structural	hazard	can	always	be	avoided	by	adding	more	
hardware	to	design	
–  E.g.,	if	two	instrucNons	both	need	a	port	to	memory	at	same	

Nme,	could	avoid	hazard	by	adding	second	port	to	memory	
•  Our	5-stage	pipeline	has	no	structural	hazards	by	design	

–  Thanks	to	RISC-V	ISA,	which	was	designed	for	pipelining	
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Data	Hazards	
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... 
x1 ← x0 + 10 
x4 ← x1 + 17 
... 

x1 is stale. Oops! 
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How	Would	You	Resolve	This?	

•  Three	opNons	
–  Wait	(stall)	
–  Bypass:	ask	them	for	what	you	need	before	his/her	final	

deliverable	
–  Speculate	on	values	to	read	
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Resolving	Data	Hazards	(1)	
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Strategy 1: 
 
Wait for the result to be available by freezing 
earlier pipeline stages è interlocks 
 



Interlocks	to	resolve	Data	Hazards	
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Stalled	Stages	and	Pipeline	Bubbles	
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stalled stages 

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I3  I3  I3  I4  I5   
ID   I1  I2  I2  I2  I2  I3  I4  I5 
EX          I1  -  -  -  I2  I3  I4  I5 
MA         I1  -  -  -  I2  I3  I4  I5 
WB         I1  -  -  -  I2  I3  I4  I5 

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) x1 ← (x0) + 10 IF1  ID1  EX1  MA1  WB1 
(I2) x4 ← (x1) + 17  IF2  ID2  ID2  ID2  ID2  EX2  MA2  WB2 
(I3)       IF3  IF3  IF3  IF3  ID3  EX3  MA3  WB3 
(I4)                            IF4  ID4  EX4  MA4  WB4 
(I5)                               IF5  ID5  EX5  MA5  WB5 

Resource  
Usage 

-  ⇒     pipeline bubble 



Interlock	Control	Logic	
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Compare the source registers of the instruction in the decode 
stage with the destination register of the uncommitted 
instructions. 

stall 
Cstall 

ws 

rs2 
rs1 ? 



Interlock	Control	Logic	
ignoring	jumps	&	branches	

21	

Should	we	always	stall	if	an	rs	field	matches	some	rd?	
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	not	every	instrucNon	writes	a	register	=>	we		
	not	every	instrucNon	reads	a	register		=>	re	

Imm	
Select	

we:	write	enable,	1-bit	on/off	
ws:	write	select,	5-bit	register	number	
re:	read	enable,	1-bit	on/off	
rs:	read	select,	5-bit	register	number	



In	RISC-V	Sodor	Implementa8on	
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Source	&	Des8na8on	Registers	
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ALUI/LW/JALR	
ALU	

SW/Bcond	

 
func7    rs2  rs1   func3   rd    opcode 
 
immediate12  rs1   func3   rd    opcode   
 
imm    rs2  rs1   func3  imm 
  

Jump Offset[19:0] 

opcode	

rd opcode	
	 	 	 	 								source(s) 			des+na+on	

ALU 	rd	<=	rs1	func10	rs2 											 											rs1,	rs2 	 	rd	
ALUI 	rd	<=	rs1	op	imm 	 	 	rs1 											 	rd	
LW 	rd	<=	M	[rs1	+	imm]	 	 											 	rs1 											 	rd	
SW 	M	[rs1	+	imm]	<=	rs2	 											 	 	rs1,	rs2	 	-	
Bcond		rs1,rs2																															 	 	rs1,	rs2	 	-	

	true: 	PC	<=	PC	+	imm 	 		
	false:	 	PC	<=	PC	+	4 	 		

JAL 	x1	<=	PC,	PC	<=	PC	+	imm 											 	- 	 	rd			
JALR 	rd	<=	PC,	PC	<=	rs1	+	imm	 											 	rs1 	 	rd	



Deriving	the	Stall	Signal	
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Cdest	
ws	=	rd	

	
we	=	Case	opcode	

ALU,	ALUi,	LW,	JALR	=>on	
...	 	=>off	

Cre	
re1	=	Case	opcode	

ALU,	ALUi,	 		
	 		
	 	=>on	
	 	=>off	

	
re2	=	Case	opcode	

	 	=>on	
	 	->off	

LW,	SW,	Bcond,		
JALR	
JAL	

ALU,	SW,	Bcond	
...	

Cstall 	stall	=	((rs1D	==	wsE)	&&	weE	+		
	 		(rs1D	==	wsM)	&&	weM	+		
	 		(rs1D	==	wsW)	&&	weW)	&&	re1D		+	
	 	((rs2D	==	wsE)	&&	weE	+		
	 		(rs2D	==	wsM)	&&	weM	+		
	 		(rs2D	==	wsW)	&&	weW)	&&	re2D	



Hazards	due	to	Loads	&	Stores	
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...	
M[x1+7]	<=	x2		
x4	<=	M[x3+5]	
...	
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Load	&	Store	Hazards	
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However,	the	hazard	is	avoided	because	our	memory	
system	completes	writes	in	one	cycle	!	
	
Load/Store	hazards	are	someNmes	resolved	in	the	
pipeline	and	someNmes	in	the	memory	system	itself.	
	
More	on	this	later	in	the	course.	

...	
M[x1+7]	<=	x2		
x4	<=	M[x3+5]	
...	

x1+7	=	x3+5		=>	data	hazard	



Resolving	Data	Hazards	(2)	
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Strategy	2:	
	
Route	data	as	soon	as	possible	awer	it	is	calculated	
to	the	earlier	pipeline	stage	à	bypass	



Bypassing	
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Each	stall	or	kill	introduces	a	bubble	in	the	pipeline	
	 	=>	CPI		>		1		

time    t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
(I1) x1 ← x0 + 10   IF1  ID1  EX1  MA1  WB1 
(I2) x4 ← x1 + 17    IF2  ID2  ID2  ID2  ID2  EX2  MA2  WB2 
(I3)        IF3  IF3  IF3  IF3  ID3  EX3  MA3   
(I4)                       stalled stages   IF4  ID4  EX4   
(I5)                                IF5  ID5   

 time   t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
(I1) x1 ← x0 + 10   IF1  ID1  EX1  MA1  WB1 
(I2) x4 ← x1 + 17    IF2  ID2  EX2  MA2  WB2 
(I3)        IF3  ID3  EX3  MA3  WB3 
(I4)                        IF4  ID4  EX4  MA4  WB4 
(I5)                             IF5  ID5  EX5  MA5  WB5 

A	new	datapath,	i.e.,	a	bypass,	can	get	the	data	from		
the	output	of	the	ALU	to	its	input	



Hardware	Support	for	Forwarding	



Detec8ng	RAW	Hazards	

•  Pass register numbers along pipeline 
–  ID/EX.RegisterRs = register number for Rs in ID/EX 
–  ID/EX.RegisterRt = register number for Rt in ID/EX 
–  ID/EX.RegisterRd = register number for Rd in ID/EX 

•  Current instruction being executed in ID/EX register 
•  Previous instruction is in the EX/MEM register 
•  Second previous is in the MEM/WB register 
•  RAW Data hazards when 

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd	from	
EX/MEM	
pipeline	reg	

Fwd	from	
MEM/WB	
pipeline	reg	



Detec8ng	the	Need	to	Forward	
•  But only if forwarding instruction will write to a register! 

–  EX/MEM.RegWrite, MEM/WB.RegWrite 

•  And only if Rd for that instruction is not R0 
–  EX/MEM.RegisterRd ≠ 0 
–  MEM/WB.RegisterRd ≠ 0 



Forwarding	Condi8ons	

•  Detecting RAW hazard with Previous Instruction 
–  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 (Forward from EX/MEM pipe stage) 

–  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 (Forward from EX/MEM pipe stage) 

•  Detecting RAW hazard with Second Previous 
–  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 10 (Forward from MEM/WB pipe stage) 

–  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 10 (Forward from MEM/WB pipe stage) 



Adding	a	Bypass	
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ASrc	

	...	
(I1)	x1	<=	x0	+	10	
(I2)	x4	<=	x1	+	17	

x4	<=	x1...	 x1	<=	...	
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When	does	this	bypass	help?	
x1	<=	M[x0	+	10]	
x4	<=	x1	+	17	

JAL		500	
x4	<=	x1	+	17	

yes	 no	 no	



The	Bypass	Signal	
Deriving	it	from	the	Stall	Signal	

34	

ASrc	=	(rs1D==	wsE)	&&	weE	&&	re1D	

we	=	Case	opcode	
ALU,	ALUi,	LW,,	JAL	JALR		=>	on		
...					=>	off	

No	because	only	ALU	and	ALUi	instrucNons	can	benefit	from	this	
bypass	

Is	this	correct?	

Split	weE	into	two	components:	we-bypass,	we-stall	

stall	=	(	((rs1D	==	wsE)	&&	weE	+	(rs1D	==	wsM)	&&	weM	+	(rs1D	==	wsW)	&&	weW)	&&	re1D			
											+((rs2D	==	wsE)	&&	weE	+	(rs2D	==	wsM)	&&	weM	+	(rs2D	==	wsW)	&&	weW)	&&	re2D	)		

ws	=	rd	



Bypass	and	Stall	Signals	
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we-bypassE	=	Case	opcodeE	
ALU,	ALUi 	=>	on		

						...	 	 	=>	off	
	

ASrc	=	(rs1D	==	wsE)	&&	we-bypassE	&&	re1D	

Split	weE	into	two	components:	we-bypass,	we-stall	

stall	=		((rs1D	==	wsE)	&&	we-stallE	+		
	 	(rs1D==	wsM)	&&	weM	+	(rs1D==	wsW)	&&	weW)	&&	re1D	

											+((rs2D	==	wsE)	&&	weE	+	(rs2D	==	wsM)	&&	weM	+	(rs2D	==	wsW)	&&	weW)	&&	re2D																			

we-stallE	=	Case	opcodeE	
LW,	JAL,	JALR=>	on	

						JAL 	 	=>	on	
...	 	 	=>	off	



Fully	Bypassed	Datapath	
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PC	for	JAL,	...	

BSrc	

Is	there	s+ll	
a	need	for	the	
stall	signal	?	stall	=			(rs1D==	wsE)	&&	(opcodeE==LWE)&&(wsE!=0	)&&re1D	

									+	(rs2D==	wsE)	&&	(opcodeE==	LWE)&&(wsE!=0	)&&re2D	



Control	Hazards	

What	do	we	need	to	calculate	next	PC?	
	
•  For	Jumps	

–  	Opcode,	PC	and	offset	

•  For	Jump	Register	
–  Opcode,	Register	value,	and	PC	

•  For	CondiNonal	Branches	
–  Opcode,	Register	(for	condiNon),	PC	and	offset	

•  For	all	other	instrucNons	
–  Opcode	and	PC	(	and	have	to	know	it’s	not	one	of	above	)	
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PC	Calcula8on	Bubbles	

38	

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) x1 ← x0 + 10  IF1  ID1  EX1  MA1  WB1 
(I2) x3 ← x2 + 17   IF2  IF2  ID2  EX2  MA2  WB2 
(I3)        IF3  IF3  ID3  EX3  MA3  WB3 
(I4)                           IF4  IF4  ID4  EX4  MA4  WB4 
 

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  - 	I2  - 	I3  - 	I4    
ID   I1  - 	I2  - 	I3  - 	I4 
EX          I1  -  I2  -  I3  -  I4 
MA         I1  -  I2  -  I3  -  I4 
WB         I1  -  I2  -  I3  -  I4 

Resource  
Usage 

-  ⇒     pipeline bubble 



Speculate	next	address	is	PC+4	
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A jump instruction kills (not stalls) 
the following instruction 

stall 

How? 

I2 

I1 

104 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

bubble 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

I1  096  ADD  
I2  100  J 304 
I3  104  ADD 
 
I4  304  ADD 

kill 



Pipelining	Jumps	

40	

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

bubble 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

IRSrcD = Case opcodeD 
JAL  ⇒ bubble 
...    ⇒ IM 

To kill a fetched 
instruction --  Insert 
a mux before IR 

Any 
interaction 
between 
stall and 
jump? 

bubble 

IRSrcD 

I2 I1 

304 
bubble 

I1  096  ADD  
I2  100  J 304 
I3  104  ADD 
 
I4  304  ADD 

kill 



Jump	Pipeline	Diagrams	
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  -  I4  I5 
EX          I1  I2  -  I4  I5 
MA         I1  I2  -  I4  I5 
WB         I1  I2  -  I4  I5 

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: J 304   IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  -  -  -  - 
(I4) 304: ADD                    IF4  ID4  EX4  MA4  WB4 

Resource  
Usage 

-  ⇒     pipeline bubble 



Pipelining	Condi8onal	Branches	
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I1 	096	ADD		
I2 	100	BEQ	x1,x2	+200	
I3 	104	ADD	
I4 	304	ADD	

BEQ?	

I2	

I1	

104	

stall	

IR	 IR	

PC	 addr	
inst	

Inst	
Memory	

0x4	
Add	

bubble	

IR	

E	 M	
Add	

PCSrc	(pc+4	/	jabs	/	rind	/	br)	

bubble	

IRSrcD	

Branch	condiNon	is	not	known	unNl	the	
execute	stage		

what	ac+on	should	be	taken	in	the	
decode	stage	?	

A	
Y	ALU	

Taken?	



Pipelining	Condi8onal	Branches	
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I1 	096	ADD		
I2 	100	BEQ	x1,x2	+200	
I3 	104	ADD	
I4 	304	ADD	

stall	

IR	 IR	

PC	 addr	
inst	

Inst	
Memory	

0x4	
Add	

bubble	

IR	

E	 M	
Add	

PCSrc	(pc+4	/	jabs	/	rind	/	br)	

bubble	

IRSrcD	

A	
Y	ALU	

Taken?	

If	the	branch	is	taken	
-	kill	the	two	following	instrucNons	
-	the	instrucNon	at	the	decode	stage	is	
not	valid	⇒	stall	signal	is	not	valid	

I2	 I1	

108	
I3	

Bcond?	

?	



Pipelining	Condi8onal	Branches	
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I1: 	096	ADD		
I2: 	100	BEQ	x1,x2	+200	
I3: 	104	ADD	
I4: 	304	ADD	

stall	

IR	 IR	

PC	 addr	
inst	

Inst	
Memory	

0x4	
Add	

bubble	

IR	

E	 M	

PCSrc	(pc+4/jabs/rind/br)	

bubble	 A	
Y	ALU	

Taken?	
I2	 I1	

108	
I3	

Bcond?	

Jump?	

IRSrcD	

IRSrcE	

If	the	branch	is	taken	
-	kill	the	two	following	instrucNons	
-	the	instrucNon	at	the	decode	stage	is	
not	valid	⇒	stall	signal	is	not	valid	

Ad
d	

PC	



Branch	Pipeline	Diagrams	
(resolved	in	execute	stage)	
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  I3  -  I5 
EX          I1  I2  -  -  I5 
MA         I1  I2  -  -  I5 
WB         I1  I2  -  -  I5 

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: BEQ  +200  IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  ID3  -  -  - 
(I4) 108:                      IF4  -  -  -  - 
(I5) 304: ADD                     IF5  ID5  EX5  MA5  WB5 
 

Resource  
Usage 

-  ⇒     pipeline bubble 



What	If…	

•  We	used	a	simple	branch	that	compares	only	one	register	
(rs1)	against	zero	

•  Can	we	do	any	beyer?	

46	

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 
Add 

IR 

Imm 
Select 

ALU 
rd1 

GPRs 

rs1 
rs2 

wa 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 



Use	simpler	branches	(e.g.,	only	compare	one	reg	
against	zero)	with	compare	in	decode	stage	

47	

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  -  I4  I5 
EX          I1  I2  -  I4  I5 
MA         I1  I2  -  I4  I5 
WB         I1  I2  -  I4  I5 

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: BEQZ +200  IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  -  -  -  - 
(I4) 300: ADD                    IF4  ID4  EX4  MA4  WB4 

Resource  
Usage 

-  ⇒     pipeline bubble 



Branch	Delay	Slots	
(expose	control	hazard	to	soeware)	

•  Change	the	ISA	seman8cs	so	that	the	instrucNon	that	
follows	a	jump	or	branch	is	always	executed	
–  gives	compiler	the	flexibility	to	put	in	a	useful	instrucNon	where	normally	

a	pipeline	bubble	would	have	resulted.	

48	

Delay	slot	instruc+on	executed	
regardless	of	branch	outcome	

I1  096  ADD  
I2  100  BEQZ r1, +200 
I3  104  ADD 
I4  300  ADD 



Branch	Pipeline	Diagrams	
(branch	delay	slot)	
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4    
ID   I1  I2  I3  I4 
EX          I1  I2  I3  I4 
MA         I1  I2     I3     I4 
WB         I1  I2  I3     I4 
 

 
 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: BEQZ +200  IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  ID3  EX3  MA3  WB3 
(I4) 300: ADD                    IF4  ID4  EX4  MA4  WB4 
 

Resource  
Usage 



Post-1990	RISC	ISAs	don’t	have	delay	slots	

•  Encodes	microarchitectural	detail	into	ISA	
–  C.f.	IBM	650	drum	layout	

•  What	are	the	problems	with	delay	slots?	

•  Performance	issues	
–  E.g.,	I-cache	miss	or	page	fault	on	delay	slot	instrucNon	causes	

machine	to	wait,	even	if	delay	slot	is	a	NOP	
•  Complicates	more	advanced	microarchitectures	

–  30-stage	pipeline	with	four-instrucNon-per-cycle	issue	
•  Complicates	the	compiler’s	job	
•  Beyer	branch	predicNon	reduced	need	for	delay	slots	
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Why	an	Instruc8on	may	not	be	dispatched	
every	cycle	(CPI>1)	

•  Full	bypassing	may	be	too	expensive	to	implement	
–  typically	all	frequently	used	paths	are	provided	
–  some	infrequently	used	bypass	paths	may	increase	cycle	
Nme	and	counteract	the	benefit	of	reducing	CPI	

•  	Loads	have	two-cycle	latency	
–  InstrucNon	awer	load	cannot	use	load	result	
– MIPS-I	ISA	defined	load	delay	slots,	a	sowware-visible	
pipeline	hazard	(compiler	schedules	independent	instrucNon	
or	inserts	NOP	to	avoid	hazard).	Removed	in	MIPS-II	(pipeline	
interlocks	added	in	hardware)	

•  MIPS:“Microprocessor	without	Interlocked	Pipeline	Stages”	
•  	CondiNonal	branches	may	cause	bubbles	

–  kill	following	instrucNon(s)	if	no	delay	slots	

51	

Machines	with	so^ware-visible	delay	slots	may	execute	significant	
number	of	NOP	instruc+ons	inserted	by	the	compiler.		NOPs	
increase	instruc+ons/program!	



RISC-V	Branches	and	Jumps	

•  JAL:	uncondi8onal	jump	to	PC+immediate	

	
•  JALR:	indirect	jump	to	rs1+immediate	

•  Branch:	if	(rs1	conds	rs2),	branch	to	PC+immediate	
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RISC-V	Branches	and	Jumps	
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Instruc<on 	 						Taken	known? 								Target	known?	

JAL	

JALR	
B<cond.>	

Each	instrucNon	fetch	depends	on	one	or	two	pieces	of	
informaNon	from	the	preceding	instrucNon:	

	1)	Is	the	preceding	instrucNon	a	taken	branch?	
	2)	If	so,	what	is	the	target	address?	

	
•  JAL:	uncondi8onal	jump	to	PC+immediate	
•  JALR:	indirect	jump	to	rs1+immediate	
•  Branch:	if	(rs1	conds	rs2),	branch	to	PC+immediate	
	

Aeer	Inst.	Decode	

Aeer	Inst.	Decode	 Aeer	Inst.	Decode	

Aeer	Inst.	Decode	 Aeer	Reg.	Fetch	

Aeer	Execute	



Branch	Penal8es	in	Modern	Pipelines	
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A	 	PC	GeneraNon/Mux	
P	 	InstrucNon	Fetch	Stage	1	
F	 	InstrucNon	Fetch	Stage	2	
B	 	Branch	Address	Calc/Begin	Decode	
I	 	Complete	Decode	
J	 	Steer	InstrucNons	to	FuncNonal	units	
R	 	Register	File	Read	
E	 	Integer	Execute	

Remainder	of	execute	pipeline		
(+	another	6	stages)	

UltraSPARC-III	instrucNon	fetch	pipeline	stages	
(in-order	issue,	4-way	superscalar,	750MHz,	2000)	

Branch	
Target	
Address	
Known	

Branch	Direc+on	
&	
Jump	Register	
Target	Known	



Reducing	Control	Flow	Penalty		

•  Sowware	soluNons	
–  	Eliminate	branches	-	loop	unrolling	

•  Increases	the	run	length		
–  	Reduce	resoluNon	Nme	-	instrucNon	scheduling	

•  Compute	the	branch	condiNon	as	early	as	possible	(of	
limited	value	because	branches	owen	in	criNcal	path	through	
code)	

•  Hardware	soluNons	
–  	Find	something	else	to	do	-	delay	slots	

•  Replaces	pipeline	bubbles	with	useful	work	(requires	
sowware	cooperaNon)	

–  	Speculate	-	branch	predicNon	
•  SpeculaNve	execuNon	of	instrucNons	beyond	the	branch	
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Branch	Predic8on	

•  Mo+va+on:	
–  Branch	penalNes	limit	performance	of	deeply	pipelined	

processors	
–  Modern	branch	predictors	have	high	accuracy	
–  (>95%)	and	can	reduce	branch	penalNes	significantly	

•  Required	hardware	support:	
–  Predic+on	structures:		

•  	Branch	history	tables,	branch	target	buffers,	etc.	

–  Mispredict	recovery	mechanisms:	
•  	Keep	result	computa+on	separate	from	commit 		
•  	Kill	instrucNons	following	branch	in	pipeline	
•  	Restore	state	to	that	following	branch	
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Sta8c	Branch	Predic8on	

57	

Overall	probability	a	branch	is	taken	is	~60-70%	but:	

ISA	can	ayach	preferred	direcNon	semanNcs	to	branches,	e.g.,	
Motorola	MC88110	

bne0	(preferred		taken) 		beq0	(not	taken)	

backward	
90%	

forward	
50%	

What	C++	statement	
does	this	look	like	

What	C++	statement	
does	this	look	like	



Dynamic	Branch	Predic8on	
learning	based	on	past	behavior	

•  Temporal	correlaNon	(Nme)	
–  If	I	tell	you	that	a	certain	branch	was	taken	last	Nme,	does	
this	help?	

–  The	way	a	branch	resolves	may	be	a	good	predictor	of	the	way	
it	will	resolve	at	the	next	execuNon	
	

•  SpaNal	correlaNon	(space)	
–  Several	branches	may	resolve	in	a	highly	correlated	manner	
–  For	instance,	a	preferred	path	of	execuNon	
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Dynamic	Branch	Predic8on	

•  1-bit	predicNon	scheme	
–  Low-porNon	address	as	address	for	a	one-bit	flag	for	Taken	or	

NotTaken	historically	
–  Simple	

•  2-bit	predicNon	
–  Miss	twice	to	change	



Branch	Predic8on	Bits	

•  	Assume	2	BP	bits	per	instrucNon	
•  	Change	the	predicNon	awer	two	consecuNve	mistakes!	

60	

¬take	
wrong	

taken	
¬	taken	

taken	

taken	

taken	
¬take	
right	

take	
right	

take	
wrong	

¬	taken	

¬	taken	¬	taken	

BP	state: 		
	(predict	take/¬take)	x	(last	predic+on	right/wrong)	



Branch	History	Table	

61	

4K-entry	BHT,	2	bits/entry,	~80-90%	correct	predicNons	

0	0	Fetch	PC	

Branch?	 Target	PC	

+	

I-Cache	

Opcode	 offset	
Instruc+on	

k	
BHT	Index	

2k-entry	
BHT,	
2	bits/entry	

Taken/¬Taken?	



Exploi8ng	Spa8al	Correla8on	
Yeh	and	PaC,	1992	
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If	first	condiNon	false,	second	condiNon	also	
false	
	
History	register,	H,	records	the	direcNon	of	the	
last	N	branches	executed	by	the	processor	
	

	

if (x[i] < 7) then!
!y += 1;!

if (x[i] < 5) then!
!c -= 4;!



Two-Level	Branch	Predictor	

63	

Pen+um	Pro	uses	the	result	from	the	last	two	branches	
to	select	one	of	the	four	sets	of	BHT	bits	(~95%	correct)	

0	 0	

k	Fetch	PC	

Shiw	in	Taken/¬Taken	
results	of	each	branch	

2-bit	global	branch	history	
shiw	register	

Taken/¬Taken?	



Specula8ng	Both	Direc8ons		
•  An	alternaNve	to	branch	predicNon	is	to	execute	
both	direcNons	of	a	branch	speculaNvely	

–  resource	requirement	is	proporNonal	to	the	number	of	concurrent	
speculaNve	execuNons	

–  only	half	the	resources	engage	in	useful	work	when	both	direcNons	
of	a	branch	are	executed	speculaNvely	

–  	branch	predicNon	takes	less	resources	than	speculaNve	execuNon	
of	both	paths	

•  With	accurate	branch	predicNon,	it	is	more	cost	
effecNve	to	dedicate	all	resources	to	the	
predicted	direcNon!	
–  What	would	you	choose	with	80%	accuracy?	
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Are	We	Missing	Something?	

•  Knowing	whether	a	branch	is	taken	or	not	is	great,	but	
what	else	do	we	need	to	know	about	it?	

Branch	target	address	
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Limita8ons	of	BHTs	

66	

Only	predicts	branch	direcNon.	Therefore,	cannot	redirect	fetch	stream	unNl	
awer	branch	target	is	determined.	

UltraSPARC-III	fetch	pipeline	

Correctly	predicted		
taken	branch	

penalty	

Jump	Register	
penalty	

A	 	PC	GeneraNon/Mux	
P	 	InstrucNon	Fetch	Stage	1	
F	 	InstrucNon	Fetch	Stage	2	
B	 	Branch	Address	Calc/Begin	Decode	
I	 	Complete	Decode	
J	 	Steer	InstrucNons	to	FuncNonal	units	
R	 	Register	File	Read	
E	 	Integer	Execute	

Remainder	of	execute	pipeline		
(+	another	6	stages)	



Branch	Target	Buffer	

67	

BP	bits	are	stored	with	the	predicted	target	address.	
	
IF	stage:	If	(BP=taken)	then	nPC=target	else	nPC=PC+4	
Later:	check	predic+on,	if	wrong	then	kill	the	instruc+on	and	
update	BTB	&	BPb	else	update	BPb	

IMEM	

PC	

Branch		
Target		
Buffer		
(2k	entries)	

k	

BPb	predicted	

target	 BP	

	target	



Address	Collisions	(Mis-Predic8on)	

68	

What	will	be	fetched	awer	the	instrucNon	at	1028?	
	BTB	predicNon 	= 			 	 		
	Correct	target 	= 	 	 		
		
	=>	

Assume	a		
128-entry		
BTB	

BPb	target	
take	236	

1028		Add	.....	

132		Jump	+104	

InstrucNon	
Memory	

236	
1032	

kill		PC=236	and	fetch	PC=1032	
	

	Is	this	a	common	occurrence?	



BTB	is	only	for	Control	Instruc8ons	

•  Is	even	branch	predicNon	fast	enough	to	avoid	bubbles?	
•  When	do	we	index	the	BTB?	

–  i.e.,	what	state	is	the	branch	in,	in	order	to	avoid	bubbles?	

•  BTB	contains	useful	informa8on	for	branch	and	jump	
instruc8ons	only	
			=>	Do	not	update	it	for	other	instruc8ons	

•  For	all	other	instrucNons	the	next	PC	is	PC+4	!	

•  How	to	achieve	this	effect	without	decoding	the	instruc+on?	
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Branch	Target	Buffer	(BTB)	

70	

• 	Keep	both	the	branch	PC	and	target	PC	in	the	BTB		
• 	PC+4	is	fetched	if	match	fails	
• 	Only	taken	branches	and	jumps	held	in	BTB	
• 	Next	PC	determined	before	branch	fetched	and	decoded	

2k-entry direct-mapped BTB 
(can also be associative) I-Cache	 PC	

k	

Valid	

valid	

Entry	PC	

=	

match	

predicted	

target	

target	PC	



Are	We	Missing	Something?	(2)	

•  When	do	we	update	the	BTB	or	BHT?	
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IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 
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inst 

Inst 
Memory 

0x4 
Add 

IR 

Imm 
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rs2 

wa 
wd rd2 

we 

wdata 
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wdata 

rdata 
Data  
Memory 
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Combining	BTB	and	BHT	

•  BTB	entries	are	considerably	more	expensive	than	BHT,	but	can	redirect	
fetches	at	earlier	stage	in	pipeline	and	can	accelerate	indirect	branches	(JR)	

•  BHT	can	hold	many	more	entries	and	is	more	accurate	
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A	 	PC	GeneraNon/Mux	
P	 	InstrucNon	Fetch	Stage	1	
F	 	InstrucNon	Fetch	Stage	2	
B	 	Branch	Address	Calc/Begin	Decode	
I	 	Complete	Decode	
J	 	Steer	InstrucNons	to	FuncNonal	units	
R	 	Register	File	Read	
E	 	Integer	Execute	

BTB	

BHT	BHT	in	later	
pipeline	stage	
corrects	when	
BTB	misses	a	
predicted	taken	
branch	

BTB/BHT	only	updated	a^er	branch	resolves	in	E	stage	



Uses	of	Jump	Register	(JR)	

•  Switch	statements	(jump	to	address	of	matching	case)	

•  Dynamic	funcNon	call	(jump	to	run-Nme	funcNon	address)	

	
•  SubrouNne	returns	(jump	to	return	address)	
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How	well	does	BTB	work	for	each	of	these	cases?	

BTB	works	well	if	same	case	used	repeatedly	

BTB	works	well	if	same	funcNon	usually	called,	(e.g.,	in	C+
+	programming,	when	objects	have	same	type	in	virtual	
funcNon	call)	

BTB	works	well	if	usually	return	to	the	same	place	
	⇒	O^en	one	func+on	called	from	many	dis+nct	call	sites!	



Subrou8ne	Return	Stack	

Small	structure	to	accelerate	JR	for	subrouNne	returns,	
typically	much	more	accurate	than	BTBs.	
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&fb() 
&fc() 

Push	call	address	when	
func+on	call	executed	

Pop	return	address	when	
subrou+ne	return	decoded		

fa() { fb(); } 
fb() { fc(); } 
fc() { fd(); } 

&fd() k	entries	
(typically	k=8-16)	


