
Lecture	08:	RISC-V	Single-Cycle	
Implementa9on	

	
CSE	564	Computer	Architecture	Summer	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1	

Acknowledgements	

•  The	notes	cover	Appendix	C	of	the	textbook,	but	we	use	
RISC-V	instead	of	MIPS	ISA	
–  Slides	for	general	RISC	ISA	implementaLon	are	adapted	from	

Lecture	slides	for	“Computer	OrganizaLon	and	Design,	FiRh	
EdiLon:	The	Hardware/SoRware	Interface”	textbook	for	
general	RISC	ISA	implementaLon	

–  Slides	for	RISC-V	single-cycle	implementaLon	are	adapted	
from	Computer	Science	152:	Computer	Architecture	and	
Engineering,	Spring	2016	by	Dr.	George	Michelogiannakis	from	
UC	Berkeley	

2	

Introduc9on	

•  CPU	performance	factors	
–  InstrucLon	count	

•  Determined	by	ISA	and	compiler	
–  CPI	and	Cycle	Lme	

•  Determined	by	CPU	hardware	

•  Simple	subset,	shows	most	aspects	
–  Memory	reference:	lw,	sw	
–  ArithmeLc/logical:	add,	sub,	and,	or,	slt	
–  Control	transfer:	beq,	j	

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

Processor	

Control	

Datapath	

Components	of	a	Computer	

4	

PC	

	
	Registers	

ArithmeLc	&	Logic	Unit	
(ALU)	

Memory	
Input	

Output	

Bytes	

Enable?	
Read/Write	

Address	

Write	
Data	

Read
Data	

Processor-Memory	Interface	 I/O-Memory	Interfaces	

Program	

Data	

The	CPU	

•  Processor	(CPU):	the	acLve	part	of	the	computer	that	
does	all	the	work	(data	manipulaLon	and	decision-
making)	

•  Datapath:	porLon	of	the	processor	that	contains	
hardware	necessary	to	perform	operaLons	required	by	
the	processor	(the	brawn)	

•  Control	:	porLon	of	the	processor	(also	in	hardware)	that	
tells	the	datapath	what	needs	to	be	done	(the	brain)	

5	

Datapath	and	Control	

•  Datapath	designed	to	support	data	transfers	required	by	
instrucLons	

•  Controller	causes	correct	transfers	to	happen		

Controller
opcode, funct

in
st

ru
ct

io
n

m
em

or
y

+4	

rt
rs
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

P
C

6	

Logic Design Basics

•  Information encoded in binary
–  Low voltage = 0, High voltage = 1
–  One wire per bit
–  Multi-bit data encoded on multi-wire buses

•  Combinational circuit
–  Operate on data
–  Output is a function of input

•  State (sequential) circuit
–  Store information

Combinational Circuits

•  AND-gate
–  Y = A & B

Chapter 4 — The Processor — 8

A
B Y

I0
I1 Y

M
u
x

S

n  MulLplexer	
n  Y	=	S	?	I1	:	I0	

A

B
Y +

A

B

Y ALU

F

n  Adder	
n  Y	=	A	+	B	

n  ArithmeLc/Logic	Unit	
n  Y	=	F(A,	B)	

Sequential Circuits

•  Register: stores data in a circuit
–  Uses a clock signal to determine when to update the

stored value
–  Edge-triggered: update when Clk changes from 0 to 1

D

Clk

Q
Clk

D

Q

Edge-Triggered	D	Flip	Flops	

•  Value	of	D	is	sampled	on	posi9ve	clock	edge.	

•  Q	outputs	sampled	value	for	rest	of	cycle.	

D
 Q

CLK

D

Q

Sequential Circuits

•  Register with write control
–  Only updates on clock edge when write control input is 1
–  Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

Clocking Methodology
•  Combinational logic transforms data during clock

cycles
–  Between clock edges
–  Input from state elements, output to state element
–  Longest delay determines clock period

	Single	cycle	data	paths	

Processor	uses		
synchronous	logic	
design	(a	“clock”).	 f! T!

1 MHz! 1 μs!
10 MHz! 100 ns!

100 MHz! 10 ns!
1 GHz! 1 ns!

All	state	elements	act	like	
posiLve	edge-triggered	flip	
flops.	

D
 Q

clk	

Reset ?

Hardware	Elements	of	CPU	

•  CombinaLonal	circuits	
–  Mux,	Decoder,	ALU,	...	

•  Synchronous	state	elements	
–  Flipflop,	Register,	Register	file,	SRAM,	DRAM	

Edge-triggered:	Data	is	sampled	at	the	rising	edge	

Clk		

D	

Q	

En	
ff	

Q	

D	

Clk	
En	

OpSelect	
					-	Add,	Sub,	...	
					-	And,	Or,	Xor,	Not,	...	
					-	GT,	LT,	EQ,	Zero,	...	
					

Result	

Comp?	

A	

B	

ALU	

Sel	

O	
A0	
A1	
	
	
An-1	

Mux	.	.	.

lg(n)	

A	

De
co
de

r	 .	.	.

O0	
O1	
	
	
	
On-1	

lg(n)	

Register	Files	

•  Reads	are	combinaLonal	

15	

ReadData1	ReadSel1	
ReadSel2	

				WriteSel	

Register		
file	

2R+1W	

ReadData2	

				WriteData	

WE	Clock	

rd1	rs1	

rs2	

ws	

wd	

rd2	

we	

ff	

Q0	

D0	

Clk	
En	

ff	

Q1	

D1	

ff	

Q2	

D2	

ff	

Qn-1	

Dn-1	

...	

...	

...	

register	

Register	File	Implementa9on	

•  RISC-V	integer	instrucLons	have	at	most	2	register	source	
operands		

16	

reg	31	

rd	 clk	

reg	1	

wdata	

we	

rs1	
rdata1	 rdata2	

reg	0	

…
	

32	

…
	

5	 32	 32	

…
	

rs2	5	
5	

A	Simple	Memory	Model	

17	

MAGIC	
	RAM	

ReadData	

WriteData	

Address	

WriteEnable	
Clock	

Reads	and	writes	are	always	completed	in	one	cycle	
• 	a	Read	can	be	done	any	Lme	(i.e.	combinaLonal)	
• 	a	Write	is	performed	at	the	rising	clock	edge	
			if	it	is	enabled						

	 	=>	the	write	address	and	data	
	 							must	be	stable	at	the	clock	edge	

	
Later	in	the	course	we	will	present	a	more	realis:c	model	of	memory	

Five	Stages	of	Instruc9on	Execu9on	

•  Stage	1:	InstrucLon	Fetch	
•  Stage	2:	InstrucLon	Decode	
•  Stage	3:	ALU	(ArithmeLc-Logic	Unit)	

•  Stage	4:	Memory	Access	

•  Stage	5:	Register	Write	

18	

Stages	of	Execu9on	on	Datapath	

in
st

ru
ct

io
n

m
em

or
y

+4	

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	InstrucLon	
Fetch	

	
2.	Decode/	
				Register	

Read	

3.	Execute	 4.	Memory	 5.	Register	
					Write	

P
C

19	

Stages	of	Execu9on	(1/5)	

•  There	is	a	wide	variety	of	instrucLons:	so	what	general	
steps	do	they	have	in	common?	

•  Stage	1:	InstrucLon	Fetch	
–  The	32-bit	instrucLon	word	must	first	be	fetched	from	

memory	
•  the	cache-memory	hierarchy	

–  also,	this	is	where	we	Increment	PC		
•  PC	=	PC	+	4,	to	point	to	the	next	instrucLon:	byte	addressing	
so	+	4	

20	

Stages	of	Execu9on	(2/5)	

•  Stage	2:	InstrucLon	Decode:	gather	data	from	the	fields	
(decode	all	necessary	instrucLon	data)	
1.  read	the	opcode	to	determine	instrucLon	type	and	field	

lengths	
2.  read	in	data	from	all	necessary	registers	

•  for	add,	read	two	registers	
•  for	addi,	read	one	register	
•  for	jal,	no	reads	necessary	

21	

Stages	of	Execu9on	(3/5)	

•  Stage	3:	ALU	(ArithmeLc-Logic	Unit):	the	real	work	of	
most	instrucLons	is	done	here	
–  AL	operaLons:		

•  arithmeLc	(+,	-,	*,	/),	shiRing,	logic	(&,	|),	comparisons	
(slt)	

–  loads	and	stores	
•  lw			$t0,	40($t1)	
•  the	address	we	are	accessing	in	memory	=	the	value	in	$t1	
PLUS	the	value	40	

•  AddiLon	is	done	in	this	stage	
–  CondiLonal	branch	

•  Comparison	is	done	in	this	stage	(one	soluLon)	

22	

Stages	of	Execu9on	(4/5)	

•  Stage	4:	Memory	Access:	only	load	and	store	instrucLons	
–  the	others	remain	idle	during	this	stage	or	skip	it	all	together	
–  since	these	instrucLons	have	a	unique	step,	we	need	this	extra	

stage	to	account	for	them	
–  as	a	result	of	the	cache	system,	this	stage	is	expected	to	be	

fast	

23	

Stages	of	Execu9on	(5/5)	

•  Stage	5:	Register	Write	
–  most	instrucLons	write	the	result	of	some	computaLon	into	a	

register	
–  examples:	arithmeLc,	logical,	shiRs,	loads,	slt	
–  what	about	stores,	branches,	jumps?	

•  don’t	write	anything	into	a	register	at	the	end	
•  these	remain	idle	during	this	fiRh	stage	or	skip	it	all	together	

24	

Stages	of	Execu9on	on	Datapath	

in
st

ru
ct

io
n

m
em

or
y

+4	

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	InstrucLon	
Fetch	

	
2.	Decode/	
				Register	

Read	

3.	Execute	 4.	Memory	 5.	Register	
					Write	

P
C

25	

Instruction Execution

•  PC → instruction memory, fetch instruction
•  Register numbers → register file, read registers
•  Depending on instruction class

–  Use ALU to calculate
•  Arithmetic result
•  Memory address for load/store
•  Branch condition and target address

–  Access data memory for load/store
–  PC ← target address or PC + 4

CPU Components

Multiplexers

n  Can’t	just	join	wires	
together	
n  Use	mulLplexers	

Control Signals

Building a Datapath

•  Datapath	
–  Elements	that	process	data	and	addresses	

in	the	CPU	
•  Registers,	ALUs,	mux’s,	memories,	…	

•  We	will	build	a	RISCV	datapath	incrementally	
–  Refining	the	overview	design	

Instruction Fetch

32-bit	
register	

Increment	by	
4	for	next	
instrucLon	

R-Format Instructions

•  Read two register operands
•  Perform arithmetic/logical operation
•  Write register result

Load/Store Instructions

•  Read register operands
•  Calculate address using 12-bit offset

–  Use ALU, but sign-extend offset
•  Load: Read memory and update register
•  Store: Write register value to memory

Branch Instructions

•  Read register operands
•  Compare operands

–  Use ALU, subtract and check Zero output
•  Calculate target address

–  Sign-extend displacement
–  Shift left 2 places (word displacement)
–  Add to PC + 4

•  Already calculated by instruction fetch

Branch Instructions

Just	
re-routes	
wires	

Sign-bit	wire	
replicated	

Composing the Elements

•  First-cut data path does an instruction in one clock
cycle
–  Each datapath element can only do one function at a time
–  Hence, we need separate instruction and data memories

•  Use multiplexers where alternate data sources are
used for different instructions

R-Type/Load/Store Datapath

Full Datapath

ALU Control

•  ALU used for
–  Load/Store: F = add
–  Branch: F = subtract
–  R-type: F depends on funct field

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

ALU Control

•  Assume 2-bit ALUOp derived from opcode
–  Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Datapath:	Reg-Reg	ALU	Instruc9ons	

41	

RegWrite	Timing?	

0x4	
Add	

clk	

addr	
inst	

Inst.	
Memory	

PC	

Inst<19:15>	
Inst<24:20>	

Inst<11:7>	

Inst<14:12>	

OpCode	

ALU	

ALU	
Control	

RegWriteEn	

clk	

rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	

 7 5 5 3 5 7
 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2)
31 25 24 20 19 15 14 12 11 7 6 0

Datapath:	Reg-Imm	ALU	Instruc9ons	

42	

Imm	
Select	

ImmSel	

Inst<31:20>	

OpCode	

0x4	
Add	

clk	

addr	
inst	

Inst.	
Memory	

PC	
ALU	

RegWriteEn	

clk	

rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	Inst<19:15>	

Inst<11:7>	

Inst<14:12>	 ALU	
Control	

 12 5 3 5 7
immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate
31 20 19 15 14 12 11 7 6 0

Conflicts	in	Merging	Datapath	

43	

Imm	
Select	

ImmSel	OpCode	

0x4	
Add	

clk	

addr	
inst	

Inst.	
Memory	

PC	
ALU	

RegWrite	

clk	

rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	Inst<19:15>	

Inst<11:7>	

Inst<31:20>	

Inst<14:12>	 ALU	
Control	

Introduce
muxes

Inst<24:20>	

 7 5 5 3 5 7
 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2)

immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate
31 20 19 15 14 12 11 7 6 0

Datapath	for	ALU	Instruc9ons	

44	

<14:12>	

Op2Sel	
Reg	/	Imm	

Imm	
Select	

ImmSel	OpCode	

0x4	
Add	

clk	

addr	
inst	

Inst.	
Memory	

PC	
ALU	

RegWriteEn	
clk	

rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	<19:15>	
<24:20>	

ALU	
Control	

<11:7>	

<6:0>	

 7 5 5 3 5 7
 func7 rs2 rs1 func3 rd opcode rd ← (rs1) func (rs2)

immediate12 rs1 func3 rd opcode rd ← (rs1) op immediate
31 20 19 15 14 12 11 7 6 0

Inst<31:20>	

Load/Store	Instruc9ons	

45	

WBSel	
ALU	/	Mem	

rs1 is the base register
rd is the destination of a Load, rs2 is the data source for a Store

Op2Sel	

“base”	

disp	

ImmSel	OpCode	

ALU	
Control	

ALU	

0x4	
Add	

clk	

addr	
inst	

Inst.	
Memory	

PC	

RegWriteEn	

clk	

rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	

Imm	
Select	

clk	

MemWrite	

addr	

wdata	

rdata	
Data		
Memory	

we	

 7 5 5 3 5 7
 imm rs2 rs1 func3 imm opcode Store (rs1) + displacement

immediate12 rs1 func3 rd opcode Load
31 20 19 15 14 12 11 7 6 0

RISC-V	Condi9onal	Branches	

•  Compare	two	integer	registers	for	equality	(BEQ/BNE)	or	
signed	magnitude	(BLT/BGE)	or	unsigned	magnitude	(BLTU/
BGEU)	

•  12-bit	immediate	encodes	branch	target	address	as	a	
signed	offset	from	PC,	in	units	of	16-bits	(i.e.,	shiR	leR	by	1	
then	add	to	PC).	

46	

7	

6	 0	
opcode	

5	

11	 7	
imm	

3	

14	 12	
func3	

5	

19	 15	
rs1	

5	

24	 20	
rs2	

7	

31	 25	
imm	

BEQ/BNE	
BLT/BGE	
BLTU/BGEU	

Condi9onal	Branches	(BEQ/BNE/BLT/BGE/BLTU/BGEU)	

47	

0x4	

Add	

PCSel	

clk	

WBSel	MemWrite	

addr	

wdata	

rdata	
Data		
Memory	

we	

Op2Sel	ImmSel	OpCode	

Bcomp?	

clk	

clk	

addr	
inst	

Inst.	
Memory	

PC	 rd1	

GPRs	

rs1	
rs2	

wa	
wd	 rd2	

we	

Imm	
Select	

ALU	

ALU	
Control	

Add	

br	

pc+4	

RegWrEn	

Br	Logic	

Full	RISCV1Stage	Datapath		

48	

+4

Instruction
Mem

Reg
File

IType Sign
Extend

Decoder
Data Mem

ir[24:20]

branch

pc+4

pc
_s

el

ir[31:20]

rs1

ALU

Control
Signals

wb
_s

el

Reg
File

rf_
we

n

va
l

m
em

_r
w

PC

m
em

_v
al

addr
wdata

rdata

Inst

Jump
TargGen

Branch
TargGen

ir[19:15]

ir[31:25],
ir[11:7]

PC+4
jalr

rs2

Branch
CondGen

br_eq?
br_lt?

co
-p

ro
ce

ss
or

 (C
SR

) r
eg

ist
er

s

ir[
11

:7
]

jump

ir[31:12]

Execute Stage

br_ltu?
PC

addr

ir[31:12]

JumpReg
TargGen

Op2Sel

Op1Sel
AluFun

da
ta

wa

w
d

en

addr da
ta

UType

Note: for simplicity, the CSR File
(control and status registers) and
associated datapath is not shown

RISC-V
Sodor 1-Stage

exception

SType Sign
Extend

ir[31:20]

PC

rs2
rs1

rs2

Hardwired	Control	is	pure	Combina9onal	Logic		

49	

combinaLonal		
logic	

op	code	

Equal?	

ImmSel	

Op2Sel	

FuncSel	

MemWrite	

WBSel	

WASel	

RegWriteEn	

PCSel	

ALU	Control	&	Immediate	Extension	

50	

Inst<6:0>	(Opcode)		

Decode	Map	

Inst<14:12>	(Func3)	

ALUop	

0?	

+	

FuncSel	
(Func,	Op,	+,	0?)	

ImmSel	
(IType12,	SType12,	
		UType20)	

Hardwired	Control	Table	

51	

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU
ALUi
LW
SW
BEQtrue

BEQfalse

J
JAL

JALR

Op2Sel=	Reg	/	Imm		 	WBSel	=	ALU	/	Mem	/	PC					
WASel	=	rd	/	X1 			 	PCSel	=	pc+4	/	br	/	rind	/	jabs 		

*	 *	 *	 no	 yes	 rind	PC	 rd	
jabs	*	 *	 *	 no	 yes	 PC	 X1		

jabs	*	 *	 *	 no	 no	 *	 *	
pc+4	SBType12	 *	 *	 no	 no	 *	 *	

br	SBType12	 *	 *	 no	 no	 *	 *	

pc+4	SType12	 Imm	 +	 yes	 no	 *	 *	

pc+4	*	 Reg	 Func	 no	 yes	 ALU	 rd	
IType12	 Imm	 Op	 pc+4	no	 yes	 ALU	 rd	

pc+4	IType12	 Imm	 +	 no	 yes	 Mem	 rd	

Single-Cycle	Hardwired	Control	

clock	period	is	sufficiently	long	for	all	of	the	following	steps	to	
be	“completed”:	
1.  InstrucLon	fetch	
2.  Decode	and	register	fetch	
3.  ALU	operaLon	
4.  Data	fetch	if	required	
5.  Register	write-back	setup	Lme	

=>		tC	>		tIFetch	+	tRFetch	+	tALU+	tDMem+	tRWB	

	At	the	rising	edge	of	the	following	clock,	the	PC,	register	file	
and	memory	are	updated	

52	

Implementa9on	in	Real	

•  Load-Store	RISC	ISAs	designed	for	efficient	pipelined	
implementaLons	
–  Inspired	by	earlier	Cray	machines	(CDC	6600/7600)	

•  RISC-V	ISA	implemented	using	Chisel	hardware	
construcLon	language	
–  Chisel:	h}ps://chisel.eecs.berkeley.edu/	
–  Ge~ng	started:		

•  h}ps://chisel.eecs.berkeley.edu/2.2.0/ge~ng-started.html	
–  Check	resource	page	for	slides	and	other	info	

53	

Chisel	in	one	slides	

•  Module	
•  IO	
•  Wire	
•  Reg	
•  Mem	

54	

UCB	RISC-V	Sodor		

•  h}ps://github.com/ucb-bar/riscv-sodor	
–  Single-cycle:		

•  h}ps://github.com/ucb-bar/riscv-sodor/tree/master/src/
rv32_1stage	

55	

