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Introduc9on	

•  CPU	performance	factors	
–  InstrucLon	count	

•  Determined	by	ISA	and	compiler	
–  CPI	and	Cycle	Lme	

•  Determined	by	CPU	hardware	

•  Simple	subset,	shows	most	aspects	
–  Memory	reference:	lw,	sw	
–  ArithmeLc/logical:	add,	sub,	and,	or,	slt	
–  Control	transfer:	beq,	j	

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle



Processor	
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Components	of	a	Computer	
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The	CPU	

•  Processor	(CPU):	the	acLve	part	of	the	computer	that	
does	all	the	work	(data	manipulaLon	and	decision-
making)	

•  Datapath:	porLon	of	the	processor	that	contains	
hardware	necessary	to	perform	operaLons	required	by	
the	processor	(the	brawn)	

•  Control	:	porLon	of	the	processor	(also	in	hardware)	that	
tells	the	datapath	what	needs	to	be	done	(the	brain)	
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Datapath	and	Control	

•  Datapath	designed	to	support	data	transfers	required	by	
instrucLons	

•  Controller	causes	correct	transfers	to	happen		

Controller 
opcode, funct 
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Logic Design Basics 

•  Information encoded in binary 
–  Low voltage = 0, High voltage = 1 
–  One wire per bit 
–  Multi-bit data encoded on multi-wire buses 

•  Combinational circuit   
–  Operate on data 
–  Output is a function of input 

•  State (sequential) circuit 
–  Store information 



Combinational Circuits 

•  AND-gate 
–  Y = A & B 

Chapter 4 — The Processor — 8 
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n  Adder	
n  Y	=	A	+	B	

n  ArithmeLc/Logic	Unit	
n  Y	=	F(A,	B)	



Sequential Circuits 

•  Register: stores data in a circuit 
–  Uses a clock signal to determine when to update the 

stored value 
–  Edge-triggered: update when Clk changes from 0 to 1 

D 

Clk 

Q 
Clk 

D 

Q 



Edge-Triggered	D	Flip	Flops	

•  Value	of	D	is	sampled	on	posi9ve	clock	edge.	

•  Q	outputs	sampled	value	for	rest	of	cycle.	

D
 Q


CLK


D


Q




Sequential Circuits 

•  Register with write control 
–  Only updates on clock edge when write control input is 1 
–  Used when stored value is required later 

D 

Clk 

Q 
Write 

Write 

D 

Q 

Clk 



Clocking Methodology 
•  Combinational logic transforms data during clock 

cycles 
–  Between clock edges 
–  Input from state elements, output to state element 
–  Longest delay determines clock period 



	Single	cycle	data	paths	

Processor	uses		
synchronous	logic	
design	(a	“clock”).	 f! T!

1 MHz! 1 μs!
10 MHz! 100 ns!

100 MHz! 10 ns!
1 GHz! 1 ns!

All	state	elements	act	like	
posiLve	edge-triggered	flip	
flops.	

D
 Q


clk	

Reset ? 



Hardware	Elements	of	CPU	

•  CombinaLonal	circuits	
–  Mux,	Decoder,	ALU,	...	

•  Synchronous	state	elements	
–  Flipflop,	Register,	Register	file,	SRAM,	DRAM	

Edge-triggered:	Data	is	sampled	at	the	rising	edge	
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Register	Files	

•  Reads	are	combinaLonal	
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Register	File	Implementa9on	

•  RISC-V	integer	instrucLons	have	at	most	2	register	source	
operands		
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A	Simple	Memory	Model	
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MAGIC	
	RAM	

ReadData	

WriteData	

Address	

WriteEnable	
Clock	

Reads	and	writes	are	always	completed	in	one	cycle	
• 	a	Read	can	be	done	any	Lme	(i.e.	combinaLonal)	
• 	a	Write	is	performed	at	the	rising	clock	edge	
			if	it	is	enabled						

	 	=>	the	write	address	and	data	
	 							must	be	stable	at	the	clock	edge	

	
Later	in	the	course	we	will	present	a	more	realis:c	model	of	memory	



Five	Stages	of	Instruc9on	Execu9on	

•  Stage	1:	InstrucLon	Fetch	
•  Stage	2:	InstrucLon	Decode	
•  Stage	3:	ALU	(ArithmeLc-Logic	Unit)	

•  Stage	4:	Memory	Access	

•  Stage	5:	Register	Write	
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Stages	of	Execu9on	on	Datapath	
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Stages	of	Execu9on	(1/5)	

•  There	is	a	wide	variety	of	instrucLons:	so	what	general	
steps	do	they	have	in	common?	

•  Stage	1:	InstrucLon	Fetch	
–  The	32-bit	instrucLon	word	must	first	be	fetched	from	

memory	
•  the	cache-memory	hierarchy	

–  also,	this	is	where	we	Increment	PC		
•  PC	=	PC	+	4,	to	point	to	the	next	instrucLon:	byte	addressing	
so	+	4	
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Stages	of	Execu9on	(2/5)	

•  Stage	2:	InstrucLon	Decode:	gather	data	from	the	fields	
(decode	all	necessary	instrucLon	data)	
1.  read	the	opcode	to	determine	instrucLon	type	and	field	

lengths	
2.  read	in	data	from	all	necessary	registers	

•  for	add,	read	two	registers	
•  for	addi,	read	one	register	
•  for	jal,	no	reads	necessary	
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Stages	of	Execu9on	(3/5)	

•  Stage	3:	ALU	(ArithmeLc-Logic	Unit):	the	real	work	of	
most	instrucLons	is	done	here	
–  AL	operaLons:		

•  arithmeLc	(+,	-,	*,	/),	shiRing,	logic	(&,	|),	comparisons	
(slt)	

–  loads	and	stores	
•  lw			$t0,	40($t1)	
•  the	address	we	are	accessing	in	memory	=	the	value	in	$t1	
PLUS	the	value	40	

•  AddiLon	is	done	in	this	stage	
–  CondiLonal	branch	

•  Comparison	is	done	in	this	stage	(one	soluLon)	
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Stages	of	Execu9on	(4/5)	

•  Stage	4:	Memory	Access:	only	load	and	store	instrucLons	
–  the	others	remain	idle	during	this	stage	or	skip	it	all	together	
–  since	these	instrucLons	have	a	unique	step,	we	need	this	extra	

stage	to	account	for	them	
–  as	a	result	of	the	cache	system,	this	stage	is	expected	to	be	

fast	
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Stages	of	Execu9on	(5/5)	

•  Stage	5:	Register	Write	
–  most	instrucLons	write	the	result	of	some	computaLon	into	a	

register	
–  examples:	arithmeLc,	logical,	shiRs,	loads,	slt	
–  what	about	stores,	branches,	jumps?	

•  don’t	write	anything	into	a	register	at	the	end	
•  these	remain	idle	during	this	fiRh	stage	or	skip	it	all	together	
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Stages	of	Execu9on	on	Datapath	
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Instruction Execution 

•  PC → instruction memory, fetch instruction 
•  Register numbers → register file, read registers 
•  Depending on instruction class 

–  Use ALU to calculate 
•  Arithmetic result 
•  Memory address for load/store 
•  Branch condition and target address 

–  Access data memory for load/store 
–  PC ← target address or PC + 4 



CPU Components 



Multiplexers 

n  Can’t	just	join	wires	
together	
n  Use	mulLplexers	



Control Signals 



Building a Datapath 

•  Datapath	
–  Elements	that	process	data	and	addresses	

in	the	CPU	
•  Registers,	ALUs,	mux’s,	memories,	…	

•  We	will	build	a	RISCV	datapath	incrementally	
–  Refining	the	overview	design	



Instruction Fetch 

32-bit	
register	

Increment	by	
4	for	next	
instrucLon	



R-Format Instructions 

•  Read two register operands 
•  Perform arithmetic/logical operation 
•  Write register result 



Load/Store Instructions 

•  Read register operands 
•  Calculate address using 12-bit offset 

–  Use ALU, but sign-extend offset 
•  Load: Read memory and update register 
•  Store: Write register value to memory 



Branch Instructions 

•  Read register operands 
•  Compare operands 

–  Use ALU, subtract and check Zero output 
•  Calculate target address 

–  Sign-extend displacement 
–  Shift left 2 places (word displacement) 
–  Add to PC + 4 

•  Already calculated by instruction fetch 



Branch Instructions 

Just	
re-routes	
wires	

Sign-bit	wire	
replicated	



Composing the Elements 

•  First-cut data path does an instruction in one clock 
cycle 
–  Each datapath element can only do one function at a time 
–  Hence, we need separate instruction and data memories 

•  Use multiplexers where alternate data sources are 
used for different instructions 



R-Type/Load/Store Datapath 



Full Datapath 



ALU Control 

•  ALU used for 
–  Load/Store: F = add 
–  Branch: F = subtract 
–  R-type: F depends on funct field 

ALU control Function 
0000 AND 
0001 OR 
0010 add 
0110 subtract 
0111 set-on-less-than 
1100 NOR 



ALU Control 

•  Assume 2-bit ALUOp derived from opcode 
–  Combinational logic derives ALU control 

opcode ALUOp Operation funct ALU function ALU control 
lw 00 load word XXXXXX add 0010 

sw 00 store word XXXXXX add 0010 
beq 01 branch equal XXXXXX subtract 0110 
R-type 10 add 100000 add 0010 

subtract 100010 subtract 0110 
AND 100100 AND 0000 
OR 100101 OR 0001 

set-on-less-than 101010 set-on-less-than 0111 



Datapath:	Reg-Reg	ALU	Instruc9ons	
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Datapath:	Reg-Imm	ALU	Instruc9ons	
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Conflicts	in	Merging	Datapath	
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Datapath	for	ALU	Instruc9ons	
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Load/Store	Instruc9ons	
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RISC-V	Condi9onal	Branches	

•  Compare	two	integer	registers	for	equality	(BEQ/BNE)	or	
signed	magnitude	(BLT/BGE)	or	unsigned	magnitude	(BLTU/
BGEU)	

•  12-bit	immediate	encodes	branch	target	address	as	a	
signed	offset	from	PC,	in	units	of	16-bits	(i.e.,	shiR	leR	by	1	
then	add	to	PC).	
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Condi9onal	Branches	(BEQ/BNE/BLT/BGE/BLTU/BGEU)	
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Full	RISCV1Stage	Datapath		
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Hardwired	Control	is	pure	Combina9onal	Logic		
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ALU	Control	&	Immediate	Extension	
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Inst<6:0>	(Opcode)		
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Hardwired	Control	Table	
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Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel 

ALU 
ALUi 
LW 
SW 
BEQtrue 

BEQfalse 

J 
JAL 

JALR 

Op2Sel=	Reg	/	Imm		 	WBSel	=	ALU	/	Mem	/	PC					
WASel	=	rd	/	X1 			 	PCSel	=	pc+4	/	br	/	rind	/	jabs 		

*	 *	 *	 no	 yes	 rind	PC	 rd	
jabs	*	 *	 *	 no	 yes	 PC	 X1		

jabs	*	 *	 *	 no	 no	 *	 *	
pc+4	SBType12	 *	 *	 no	 no	 *	 *	

br	SBType12	 *	 *	 no	 no	 *	 *	

pc+4	SType12	 Imm	 +	 yes	 no	 *	 *	

pc+4	*	 Reg	 Func	 no	 yes	 ALU	 rd	
IType12	 Imm	 Op	 pc+4	no	 yes	 ALU	 rd	

pc+4	IType12	 Imm	 +	 no	 yes	 Mem	 rd	



Single-Cycle	Hardwired	Control	

clock	period	is	sufficiently	long	for	all	of	the	following	steps	to	
be	“completed”:	
1.  InstrucLon	fetch	
2.  Decode	and	register	fetch	
3.  ALU	operaLon	
4.  Data	fetch	if	required	
5.  Register	write-back	setup	Lme	

=>		tC	>		tIFetch	+	tRFetch	+	tALU+	tDMem+	tRWB	

	At	the	rising	edge	of	the	following	clock,	the	PC,	register	file	
and	memory	are	updated	
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Implementa9on	in	Real	

•  Load-Store	RISC	ISAs	designed	for	efficient	pipelined	
implementaLons	
–  Inspired	by	earlier	Cray	machines	(CDC	6600/7600)	

•  RISC-V	ISA	implemented	using	Chisel	hardware	
construcLon	language	
–  Chisel:	h}ps://chisel.eecs.berkeley.edu/	
–  Ge~ng	started:		

•  h}ps://chisel.eecs.berkeley.edu/2.2.0/ge~ng-started.html	
–  Check	resource	page	for	slides	and	other	info	
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Chisel	in	one	slides	

•  Module	
•  IO	
•  Wire	
•  Reg	
•  Mem	
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UCB	RISC-V	Sodor		

•  h}ps://github.com/ucb-bar/riscv-sodor	
–  Single-cycle:		

•  h}ps://github.com/ucb-bar/riscv-sodor/tree/master/src/
rv32_1stage	
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