Lecture 07: RISC-V ISA

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

£ WNBE=

Contents

. RISC-V ISA
. 1 stage implementation

Chisel hardware construction language

. Pipeline implementation

Acknowledgement

* Slides adapted from

— Computer Science 152: Computer Architecture and
Engineering, Spring 2016 by Dr. George Michelogiannakis from
UCB

What is RISC-V

® RISC-V (pronounced "risk-five”) is a ISA standard (a document)

— An open source implementation of a reduced instruction set computing (RISC)
based instruction set architecture (ISA)

— There was RISC-I, I, 1ll, IV before

®* Most ISAs: X86, ARM, Power, MIPS, SPARC
— Commercially protected by patents
— Preventing practical efforts to reproduce the computer systems.

* RISC-Vis open
— Permitting any person or group to construct compatible computers
— Use associated software

* The project was originated in 2010 by researchers in the Computer Science
Division at UC Berkeley, but it now has a large number of contributors. As of
2017 version 2 of the userspace ISA is fixed

— User-Level ISA Specification v2.2
— Draft Compressed ISA Specification v1.79
— Draft Privileged ISA Specification v1.10

Goals in defining RISC-V

A completely open ISA that is freely available to academia and industry

A real ISA suitable for direct native hardware implementation, not just
simulation or binary translation

An ISA that avoids "over-architecting" for

— a particular microarchitecture style (e.g., microcoded, in-order, decoupled, out-of-
order) or

— implementation technology (e.g., full-custom, ASIC, FPGA), but which allows
efficient implementation in any of these
RISC-V ISA includes

— A small base integer ISA, usable by itself as a base for customized accelerators or
for educational purposes, and

— Optional standard extensions, to support general-purpose software development
— Optional customer extensions

Support for the revised 2008 IEEE-754 floating-point standard

License for the ISA specification

* Itisa BSD Open Source License.

— This is a non-viral license, only asking that if you use it, you acknowledge the
authors, in this case UC Berkeley.

— No patent that would be required to implement a RISC-V-compatible processor
— They may be many micro-architectural patents that might be infringed by a
particular RISC-V implementation.

e But cannot indemnify users against ISA or implementation patents
asserted by others

The goal of the proposed RISC-V consortium is to maintain and track possible
patent issues for RISC-V implementors

®* Open Source Software License

— GPL: Extensions must be open sourced with the same license (kind of)
— BSD: Use it as you want/like (kind of)

RISC-V ISA Principles

* Generally kept very simple and extendable

* Separated into multiple specifications
— User-Level ISA spec (compute instructions)
— Compressed ISA spec (16-bit instructions)
— Privileged ISA spec (supervisor-mode instructions)
— More ...

* |SA support is given by RV + word-width + extensions
supported

— E.g. RV32I means 32-bit RISC-V with support for the |
instruction set

User Level ISA

* Defines the normal instructions needed for computation

— A mandatory Base integer ISA
* |: Integer instructions: ALU, branches/jumps, and loads/stores
e Support for misaligned memory access is mandatory

— Standard Extensions
* M: Integer Multiplication and Division
* A: Atomic Instructions
* F: Single-Precision Floating-Point
* D: Double-Precision Floating-Point
e C: Compressed Instructions (16 bit)

* G = IMAFD: Integer base + four standard extensions
— Optional extensions

RISC-V ISA

* Both 32-bit and 64-bit address space variants
— RV32 and RV64

* Easy to subset/extend for education/research
— RV32IM, RV32IMA, RV32IMAFD, RV32G

® 00 / L% RISC-V Foundation | Instructi x \

\\

& C' @ https://riscv.org

P h b . iif Apps (gh Stream | Cleveland... %@ Basketball Live Stre... fil§ Cool Math Games -... [] CCFi##f# [1 Data Platform ¥ Bookmarks [
SPEC on the website

— WWW.rISCV.0rg

: ‘ RIS‘ ABOUT ™ MEMBERSHIP

Registration and the call for Papers for ¢
the Google Quad Campus in Mountain \
now available here.

RV32 Processor State

Program counter (pc)

32x32-bit integer registers (x0-x31)
— X0 always containsa 0

— x1 to hold the return address on a
call.

32 floating-point (FP) registers (f0-
f31)
— Each can contain a single- or double-
precision FP value (32-bit or 64-bit
IEEE FP)

— |Is an extension

FP status register (fsr), used for FP
rounding mode & exception
reporting

XLEN-1

0 FLEN-1

x0 / zero

f0

x1

f1

x2

f£2

x3

£3

x4

f4

x5

£5

x6

f6

x7

£7

x8

£8

x9

9

x10

£10

x11

f11

x12

f12

x13

£13

x14

f14

x15

£15

x16

f16

x17

£17

x18

18

x19

£19

x20

£20

x21

f21

x22

£22

x23

£23

x24

f24

x25

£25

x26

£26

x27

£27

x28

£28

x29

£29

x30

£30

x31

£31

XLEN-1

XLEN

FLEN

pC | |

fcsr

XLEN

32

RISC-V Hybrid Instruction Encoding

°* 16, 32, 48, 64 ... bits length encoding

® Base instruction set (RV32) always has fixed 32-bit
instructions lowest two bits = 11,

* All branches and jumps have targets at 16-bit granularity
(even in base ISA where all instructions are fixed 32 bits

XXXXXXXXXXXXXXaa

16-bit (aa # 11)

XXXXXXXXXXXXXXXX

XXXXXXXXXXxxbbb11

32-bit (bbb % 111)]

+ - XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxxx011111

+ - 1 XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxx0111111

¢ - XXXX

XXXXXXXXXXXXXXXX

xnnnxxxxx1111111

+ - 1 XXXX

XXXXXXXXXXXXXXXX

x111xxxxx1111111

Byte Address: base+4

base-+2

base

48-bit
64-bit
(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

Four Core RISC-V Instruction Formats

https://github.com/riscv/riscv-opcodes/blob/master/opcodes

Additional opcode
bits/immediate

Additional opcode bits 7-bit opcode field

Reg. Source 2 Reg. Source 1

25 24 1' 20 19 l 1514 W 12 11 l 76

(but low 2 bits =11,)

Destination Reg.

31 7 v 0
funct? rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm|11:5] rs2 rsl funct3 | imm/4:0] opcode
imm|31:12] rd opcode

R-type
[-type
S-type

U-type

Aligned on a four-byte boundary in memory. There are variants!
Sign bit of immediates always on bit 31 of instruction. Register
fields never move

12

With Variants

Additional opcode
bits/immediate

Reg. Source 2 Reg. Source 1

Additional opcode bits

7-bit opcode field

(but low 2 bits =11,)

31 30V 25 24 zll’ 20 19 l’ 15 4V 12 11 ‘l’s

Destination Reg.

7 6 Y 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm/[11] | imm[10:5] | imm[4:1] [imm][0] rsl funct3 rd opcode | I-type
(F . ~— - ——— -)
imm|11] | imm{10:5] rs2 rsl funct3 imm|4:1] | imm|0] [opcode | S-type
\ imm[12] | imm[10:5] rs2 rsl funct3 | imm(4:1] | imm[11] | opcode SB-typeJ
(— . . .)
imm|31] imm [30:20] imm|[19:15] [imm|14:12] rd opcode | U-type
kinun[‘ZO] imm[10:5] | imm[4:1] [imm[11] | imm[19:15] | imm|14:12] rd opcode U.]-type)

Based on the handling of the immediates

13

Immediate Encoding Variants

* Immediate produced by each base instruction format
— Instruction bit (inst[y])

31 30 20 19 12 11 10 5 4 1 0
— inst[31] — inst[30:25] | inst[24:21] | inst[20] | [-immediate
— inst[31] — inst[30:25] | inst[11:8] | inst[7] | S-immediate
— inst[31] — inst[7] |inst[30:25] | inst[11:8] 0 B-immediate
inst[31] inst[30:20] inst[19:12] — 0 — U-immediate
— inst[31] — inst[19:12] | inst[20] | inst[30:25] | inst[24:21] 0 J-immediate

14

Integer Computational Instructions (ALU)

* |-type (Immediate), all immediates in all instructions are sign
extended

— ADDI: adds sign extended 12-bit immediate to rsl
— SLTI(U): set less than immediate
— ANDI/ORI/XORI: Logical operations
— SLLI/SRLI/SRAI: Shifts by constants

I-type instructions end with |

31 20 19 15 14 12 11 76
imm|[11:0] rsl funct3 rd opcode
12 d 3 d 7
I-immediate[11:0] SIC ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] SrC ANDI/ORI/XORI dest OP-IMM
31 25 24 20 19 15 14 12 11 76
imm|[11:5] imm|[4:0] rsl funct3 rd opcode
7 5 5 3 5 7
0000000 shamt[4:0] src SLLI dest OP-IMM
0000000 shamt[4:0] src SRLI dest OP-IMM
0100000 shamt[4:0] src SRAI dest OP-IMM

15

Integer Computational Instructions (ALU)

* |-type (Immediate), all immediates in all instructions are sign

extended

— LUI/AUIPC: load upper immediate/add upper immediate to pc

I-type instructions end with |

31 12 11

76

0

imm|[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

* Used to build large immediates.

high-20b, ADDI low-12b)

Writes 20-bit immediate to top of destination register.

12-bit immediates are signed, so have to account for sign when
building 32-bit immediates in 2-instruction sequence (LUI

16

* R-type (Register)
— rsl and rs2 are the source registers. rd the destination

Integer Computational Instructions

— ADD/SUB:
— SLT, SLTU: set less than
— SRL, SLL, SRA: shift logical or arithmetic left or right

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode
7 5 5 3 5 7
0000000 src2 srcl ADD/SLT/SLTU dest OP
0000000 src2 srcl AND/OR/XOR dest OP
0000000 src2 srcl SLL/SRL dest OP
0100000 src2 srcl SUB/SRA dest OP
NOP Instruction ADDI X0, x0, 0
31 20 19 15 14 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5) 3) 7
0 0 ADDI 0 OP-IMM

17

Control Transfer Instructions

NO architecturally visible delay slots

* Unconditional Jumps: PC+offset target
— JAL: Jump and link, also writes PC+4 to x1, UJ-type

e Offset scaled by 1-bit left shift — can jump to 16-bit
instruction boundary (Same for branches)

— JALR: Jump and link register where Imm (12 bits) + rd1 = target

31 30 21 20 19 12 11 76 0
imm[20] imm|[10:1] imm[11] | imm[19:12] rd opcode
1 10 1 8 5 7
offset[20:1] dest JAL
31 20 19 1514 12 11 76 0
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7

offset[11:0] base 0 dest JALR

18

Control Transfer Instructions

NO architecturally visible delay slots
* Conditional Branches: SB-type and PC+offset target

12-bit signed immediate split across two fields

31 ‘30/ 25 24 20 19 15 14 12 11 \ 8 7 6

imm[12] | imm|[10:5] rs2 rsl funct3 imm[4:1] | imm[11] opcode
1 6 5 5 3 4 1 7
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGEI[U] offset[11,4:1] BRANCH

Branches, compare two registers, PC+(immediate<<1) target
(Signed offset in multiples of two).Branches do not have delay slot

19

* Store instructions (S-type)

Loads and Stores

— MEM(rs1+imm) =rs2

* Loads (I-type)
— Rd = MEM(rs1 + imm)

31 20 19 1514 12 11 76 0
imm|11:0] rsl funct3 rd opcode
12 S 3) 7
offset[11:0] base width dest LOAD
31 25 24 20 19 1514 12 11 76
imm|[11:5] rs2 rsl funct3 | imm/[4:0] opcode
7 5 5 3 5 7
offset[11:5] Src base width offset[4:0] STORE

20

More

21

Memory Model

* RISC-V: Relaxed memory model

31 28 27 26 25 24 23 22 21 2 19 1514 12 11 76
0 PI| PO |PR|PW | SI|SO|SR |SW rsl funct3 rd opcode
4 1 1 1 1 1 1 1 1) 3 5) 7
0 predecessor successor 0 FENCE 0 MISC-MEM
31 20 19 15 14 12 11 76
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7

0 0 FENCE.I 0 MISC-MEM

Control and Status Register (CSR) Instructions

® CSR Instructions

31 20 19 1514 12 11 76 0
CST rsl funct3 rd opcode
12 5 3 5 7
source/dest source ~CSRRW dest SYSTEM
source/dest source ~ CSRRS dest SYSTEM
source/dest source ~ CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source/dest zimm[4:0] CSRRCI dest SYSTEM
* Timer and counters
31 20 19 1514 12 11 76
CST rsl funct3 rd opcode
12 5 3 5 7
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM
RDINSTRET[H] 0 CSRRS dest SYSTEM

23

Data Formats and Memory Addresses

Data formats:
8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues
) Most Significant Least Significant
* Byte addressing Bfteﬁ Bfteﬁ
Little Endian
(RISC-V) = 2 ! 2
Big Endian 0 1, 2 / 3
e Word alignment Byte Addresses

Suppose the memory is organized in 32-bit words.
Can a word address beginonly at 0, 4, 8, ?

24

®* RISC-V has 32 integer registers and can have 32 floating-point registers

ISA Design

Register number 0 is a constant 0

Register number 1 is the return address (link register)

The only instructions that access main memory are loads and stores
All arithmetic and logic operations occur between registers

The memory is addressed by 8-bit bytes

Like many RISC designs, it is a "load-store" machine

The 64-bit instruction set includes 32-bit arithmetic

The instructions must be aligned to 32-bit addresses

RISC-V can load and store 8 and 16-bit items, but it lacks 8 and 16-bit arithmetic, including
comparison-and-branch instructions

inst|4:2 000 001 010 011 100 101 110 111

inst |[6:5 (> 32b)
00| LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-INM-32 485
01| STORE |STORE-FP | custom-1 AMO op LUI OpP-32 G4b
10| MADD MSUB NMSUB | NMADD OP-FP | reserved | custom-2/rvi28 48b
11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvi28 | = 80b

25

ISA Design for Performance

* Features to increase a computer's speed, while reducing its cost

and power usage

placing most-significant bits at a fixed location to speed sign-extension, and a bit-
arrangement designed to reduce the number of multiplexers in a CPU

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rs] funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|11:5] rs2 rsl funct3 | imm|4:0] opcode
imm|31:12] rd opcode
31 20 19 15 14 12 11 76 0
imm|11:0] [rsl] funct3 rd opcode
12 5 3 5 7
I-immediate[11:0] SIC ADDI/SLTI|U] dest OP-IMM
I-immediate[11:0] sTrC ANDI/ORI/XORI dest OP-IMM

R-type
I-type
S-tvpe

U-type

26

ISA Design

* Intentionally lacks condition codes, and even lacks a carry bit
— To simplify CPU designs by minimizing interactions between instructions

* Builds comparison operations into its conditional-jumps

31 30 2524 2019 1514 12 11 8 7 6 0
imm(12] | imm[10:5] rs2 rsl funct3 imm(4:1] | imm|[11] opcode
] 6 D 5 3 + 1 7
offset[12,10:5] src2 srel BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT|U] offset[11,4:1]| BRANCH
offset|12,10:5] src2 srel BGE|[U| offset|[11,4:1] BRANCH

27

ISA Design

* The lack of a carry bit complicates multiple-precision arithmetic
— GMP, MPFR

* does not detect or flag most arithmetic errors, including overflow, underflow
and divide by zero

— No special instruction set support for overflow checks on integer arithmetic operations.

* Most popular programming languages do not support checks for integer overflow, partly
because most architectures impose a significant runtime penalty to check for overflow on
integer arithmetic and partly because modulo arithmetic is sometimes the desired
behavior

— Floating-Point Control and Status Register

31 8T o 4 3 2 1 0
[0] Rounding Mode (frm) | Accrued Exceptions (fflags)
NV [DZ] OF] UK [NX
24 3 1 1 | 1 |

Flag Mnemonic Flag Meaning
NV Invalid Operation
DZ Divide by Zero
OF Overflow
UF Underflow
NX Inexact

28

ISA Design

Lacks the "count leading zero" and bit-field operations normally used to
speed software floating-point in a pure-integer processor

No branch delay slot, a position after a branch instruction that can be filled
with an instruction which is executed regardless of whether the branch is

taken or not
— This feature can improve performance of pipelined processors,
— Omitted in RISC-V because it complicates both multicycle CPUs and superscalar CPUs

Lacks address-modes that "write back" to the registers
— For example, it does not do auto-incrementing

29

ISA Design

* Aload or store can add a twelve-bit signed offset to a register that contains
an address. A further 20 bits (yielding a 32-bit address) can be generated at

an absolute address

— RISC-V was designed to permit position-independent code. It has a special instruction to
generate 20 upper address bits that are relative to the program counter. The lower twelve

bits are provided by normal loads, stores and jumps
31 12 11 76 0
l imm|31:12 [rd] opcode l
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

— LUI (load upper immediate) places the U-immediate value in the top 20 bits of the destination
register rd, filling in the lowest 12 bits with zeros

— AUIPC (add upper immediate to pc) is used to build pc-relative addresses, forms a 32-bit offset
from the 20-bit U-immediate, filling in the lowest 12 bits with zeros, adds this offset to the pc,
then places the result in register rd

30

ISA Design

* The RISC-V instruction set was designed for research, and therefore includes

extra space for new instructions

— Planned instruction subsets include system instructions, atomic access, integer multiplication, floating-
point arithmetic, bit-manipulation, decimal floating-point, multimedia and vector processing

)))] | Subset I Name |
- It mC_IUdeS IhStFUFl‘!OhS for 32-bit, Standard General-Purpose ISA
64-bit and 128-bit integer and Tnteger I
floating-point Integer Multiplication and Division M
. . . Atomics A
— ltwas de5|'gned for 32-bit, 64_bIF Single-Precision Floating-Point F
and 128-bit memory systems, with Double-Precision Floating-Point D
32-bit models designed for lower General G = IMAFD
power, 64-bit for higher S.ta.n(lnr(l L'fvr-I,(,w:ol Extensions
performance, and 128-bit for future (211%!..(1-111'(’(71:«11()1.1 F]ua%mg-Poml Q
. Decimal Floating-Point L
requirements 16-bit Compressed Instructions C
— |t's des|gned to Operate W|th Bit I\[;llli[)ll];i'i()ll B
. . Transactional Memory T
h.yper;/.lsors, supporting Packed-SIMD Extensions P
virtualization Non-Standard User-Level Extensions
— It was designed to conform to Non-standard extension “abc” | Xabe
recent floating-point standards Standard Supervisor-Level ISA
Supervisor extension “del” I Sdef
Non-Standard Supervisor-Level Extensions
Supervisor extension “ghi” l SXghi

31

Calling Convention

* C Datatypes and Alignment
— RV32 employs an ILP32 integer model, while RV64 is LP64
— Floating-point types are IEEE 754-2008 compatible
— All of the data types are keeped naturally aligned when stored in memory
— char is implicitly unsigned
— In RV64, 32-bit types, such as int, are stored in integer registers as proper sign extensions of

their 32-bit values; that is, bits 63..31 are all equal
* This restriction holds even for unsigned 32-bit types

C tvpe Description Bytes in RV32 | Bytes in RV64
char Character value/byte 1 1
short Short integer 2 2
int Integer 4 4
long Long integer 4 8
long long Long long integer 8 3
voidx Pointer 4 8
float Single-precision float 4 4
double Double-precision float 8 8
long double | Extended-precision float 16 16

32

Calling Convention

RVG Calling Convention

If the arguments to a function are conceptualized as fields of a C struct, each with

pointer alignment, the argument registers are a shadow of the first eight pointer-

words of that struct

* Floating-point arguments that are part of unions or array fields of structures are passed in
integer registers

* Floating-point arguments to variadic functions (except those that are explicitly named in
the parameter list) are passed in integer registers

The portion of the conceptual struct that is not passed in argument registers is

passed on the stack

* The stack pointer sp points to the first argument not passed in a register

Arguments smaller than a pointer-word are passed in the least-significant bits of
argument registers

When primitive arguments twice the size of a pointer-word are passed on the
stack, they are naturally aligned

* When they are passed in the integer registers, they reside in an aligned even-odd register
pair, with the even register holding the least-significant bits

Arguments more than twice the size of a pointer-word are passed by reference

33

Calling Convention

— The stack grows downward and the stack pointer is always kept 16-byte aligned

— Values are returned from functions in integer registers vO and v1 and floating-point
registers fvO and fvl

Floating-point values are returned in floating-point registers only if they are primitives or
members of a struct consisting of only one or two floating-point values

Other return values that fit into two pointer-words are returned in vO and v1

Larger return values are passed entirely in memory; the caller allocates this memory region
and passes a pointer to it as an implicit first parameter to the callee

Register | ABI Name | Description Saver
x0 zZero Hard-wired zero
x1 ra Return address Caller
x2 s0/fp Saved register/frame pointer | Callee
x3-13 si-11 Saved registers Callee
x14 sp Stack pointer Callee
x15 tp Thread pointer Callee
x16-17 | vO-1 Return values Caller
X a “unction arguments Jaller
x26-30 | t0 4 Temporaries Caller
x31 gp Global pointer
| | £0-15 fs0-15 P saved registers Callee | |
F'P return values Caller
arguments aller
£26-31 | ft0-5 FP temporaries Caller

34

Software

The RISC-V website has a specification for user-mode instructions, a draft for
privileged ISA specification and a draft for compressed ISA specification

It also includes the files of six CPU designs, the 64-bit superscalar "Rocket" and five
"Sodor" CPUs

The software includes a design compiler, Chisel, which is able to reduce the designs to
Verilog for use in devices

The website includes verification data for testing core implementations

Available RISC-V software includes a GNU Compiler Collection (GCC) toolchain (with
GDB, the debugger), an LLVM toolchain, a simulator ("Spike") and the standard
simulator QEMU

Operating systems support exists for Linux, but the supervisor-mode instructions are
not standardized at this time

There is also a JavaScript ISA simulator to run a RISC-V Linux system on a web browser

35

Implementations

* The RISC-V ISA has been designed to result in faster, less-expensive, smaller,
and less-power-hungry electronics.

* |tis carefully designed not to make assumptions about the structure of the
computers on which it runs.
— Validating this, the UCB Sodor cores were implemented as different types of computers

* RISC-V is designed to be extensible from a 32-bit bare bones integer core
suitable for a small embedded processor to 64 or 128-bit super and cloud
computers with standard and special purpose extensions.

— It has been tested in a fast pipelined silicon design with the open Rocket SoC.

* The UCB processor designs that implement RISC-V are implemented using
Chisel, an open-source hardware construction language that is a specialized
dialect of Scala.

— 'Chisel' is an abbreviation: Constructing Hardware In a Scala Embedded Language

36

Implementations

The Indian Institute of Technology Madras is developing six RISC-V open-
source CPU designs (SHAKTI) for six distinct usages, from a small 32-bit CPU
for the Internet of Things to large, 64-bit CPUs designed for warehouse-scale
computers based on RapidlO and Hybrid Memory Cube technologies.

Bluespec, Inc., a semiconductor tools company, is exploring RISC-V as a
possible product.

lowRISC is a non profit project that aims to implement a fully open-source

SoC based on the 64-Bit RISC-V ISA.

The planned multimedia set may include a general-purpose mixed-precision
vector processor similar to the research project “Hwacha.”

37

Resources

http://riscv.org/workshop-jan2015.html

http://riscv.org/tutorial-hpca2015.html

http://en.wikipedia.org/wiki/RISC-V

Check the class resource page

38

