
Lecture	07:	RISC-V	ISA	
	

CSE	564	Computer	Architecture	Summer	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1	

Contents	

1.   RISC-V	ISA	
2.   1	stage	implementaCon	
3.   Chisel	hardware	construcCon	language	
4.   Pipeline	implementaCon	

2	

Acknowledgement	

•  Slides	adapted	from	
–  Computer	Science	152:	Computer	Architecture	and	

Engineering,	Spring	2016	by	Dr.	George	Michelogiannakis	from	
UCB	

3	

What	is	RISC-V

•  RISC-V	(pronounced	"risk-five”)	is	a	ISA	standard	(a	document)	
–  An	open	source	implementaWon	of	a	reduced	instrucWon	set	compuWng	(RISC)	

based	instrucWon	set	architecture	(ISA)	
–  There	was	RISC-I,	II,	III,	IV	before	

•  Most	ISAs:	X86,	ARM,	Power,	MIPS,	SPARC	
–  Commercially	protected	by	patents	
–  PrevenWng	pracWcal	efforts	to	reproduce	the	computer	systems.		

•  RISC-V	is	open	
–  Permi]ng	any	person	or	group	to	construct	compaWble	computers	
–  Use	associated	so^ware	

•  The	project	was	originated	in	2010	by	researchers	in	the	Computer	Science	
Division	at	UC	Berkeley,	but	it	now	has	a	large	number	of	contributors.	As	of	
2017	version	2	of	the	userspace	ISA	is	fixed	
–  User-Level	ISA	SpecificaWon	v2.2	
–  Dra^	Compressed	ISA	SpecificaWon	v1.79	
–  Dra^	Privileged	ISA	SpecificaWon	v1.10

4	

Goals	in	defining	RISC-V

•  A	completely	open	ISA	that	is	freely	available	to	academia	and	industry	
•  A	real	ISA	suitable	for	direct	naWve	hardware	implementaWon,	not	just	

simulaWon	or	binary	translaWon	
•  An	ISA	that	avoids	"over-architecCng"	for		
–  a	parWcular	microarchitecture	style	(e.g.,	microcoded,	in-order,	decoupled,	out-of-

order)	or		
–  implementaWon	technology	(e.g.,	full-custom,	ASIC,	FPGA),	but	which	allows	

efficient	implementaWon	in	any	of	these	

•  RISC-V	ISA	includes	
–  A	small	base	integer	ISA,	usable	by	itself	as	a	base	for	customized	accelerators	or	

for	educaWonal	purposes,	and		
–  OpConal	standard	extensions,	to	support	general-purpose	so^ware	development	
–  OpConal	customer	extensions	

•  Support	for	the	revised	2008	IEEE-754	floaWng-point	standard	

5	

License	for	the	ISA	specificaCon

•  It	is	a	BSD	Open	Source	License.		
–  This	is	a	non-viral	license,	only	asking	that	if	you	use	it,	you	acknowledge	the	

authors,	in	this	case	UC	Berkeley.		
–  No	patent	that	would	be	required	to	implement	a	RISC-V-compaWble	processor	
–  They	may	be	many	micro-architectural	patents	that	might	be	infringed	by	a	

parWcular	RISC-V	implementaWon.		
•  But	cannot	indemnify	users	against	ISA	or	implementaWon	patents	
asserted	by	others	

•  The	goal	of	the	proposed	RISC-V	consorWum	is	to	maintain	and	track	possible	
patent	issues	for	RISC-V	implementors	

•  Open	Source	So^ware	License	
–  GPL:	Extensions	must	be	open	sourced	with	the	same	license	(kind	of)	
–  BSD:	Use	it	as	you	want/like	(kind	of)

6	

RISC-V	ISA	Principles	

•  Generally	kept	very	simple	and	extendable	
•  Separated	into	mulWple	specificaWons	
–  User-Level	ISA	spec	(compute	instrucWons)	
–  Compressed	ISA	spec	(16-bit	instrucWons)	
–  Privileged	ISA	spec	(supervisor-mode	instrucWons)	
–  More	…		

•  ISA	support	is	given	by	RV	+	word-width	+	extensions	
supported	
–  E.g.	RV32I	means	32-bit	RISC-V	with	support	for	the	I	

instrucWon	set	

7	

User	Level	ISA	

•  Defines	the	normal	instrucWons	needed	for	computaWon	
–  A	mandatory	Base	integer	ISA	
•  I:	Integer	instrucCons:	ALU,	branches/jumps,	and	loads/stores	
•  Support	for	misaligned	memory	access	is	mandatory	

–  Standard	Extensions	
• M:	Integer	MulCplicaCon	and	Division	
•  A:	Atomic	InstrucCons	
•  F:	Single-Precision	FloaCng-Point	
•  D:	Double-Precision	FloaCng-Point	
•  C:	Compressed	InstrucCons	(16	bit)	

•  G	=	IMAFD:	Integer	base	+	four	standard	extensions	
–  OpWonal	extensions	

8	

RISC-V	ISA	

•  Both	32-bit	and	64-bit	address	space	variants	
–  RV32	and	RV64	
•  Easy	to	subset/extend	for	educaWon/research	
–  RV32IM,	RV32IMA,	RV32IMAFD,	RV32G	

•  SPEC	on	the	website	
–  www.riscv.org	

9	

RV32	Processor	State	
•  Program	counter	(pc)	

•  32x32-bit	integer	registers	(x0-x31)	
–  x0	always	contains	a	0	
–  x1	to	hold	the	return	address	on	a	

call.	

•  32	floaWng-point	(FP)	registers	(f0-
f31)	
–  Each	can	contain	a	single-	or	double-

precision	FP	value	(32-bit	or	64-bit	
IEEE	FP)	

–  Is	an	extension	

•  FP	status	register	(fsr),	used	for	FP	
rounding	mode	&	excepWon	
reporWng	

10	

RISC-V	Hybrid	InstrucCon	Encoding	

•  16,	32,	48,	64	…	bits	length	encoding	
•  Base	instrucWon	set	(RV32)	always	has	fixed	32-bit	
instrucWons	lowest	two	bits	=	112	

•  All	branches	and	jumps	have	targets	at	16-bit	granularity	
(even	in	base	ISA	where	all	instrucWons	are	fixed	32	bits	

11	

Four	Core	RISC-V	InstrucCon	Formats	

12	

Reg.	Source	2	 Reg.	Source	1	

7-bit	opcode	field	
(but	low	2	bits	=112)	

AddiConal	opcode	
bits/immediate	

DesCnaCon	Reg.	

Aligned	on	a	four-byte	boundary	in	memory.	There	are	variants!	
Sign	bit	of	immediates	always	on	bit	31	of	instrucCon.	Register	
fields	never	move	

hqps://github.com/riscv/riscv-opcodes/blob/master/opcodes	

AddiConal	opcode	bits	

With	Variants	

13	

Reg.	Source	2	 Reg.	Source	1	

7-bit	opcode	field	
(but	low	2	bits	=112)	

AddiConal	opcode	
bits/immediate	

DesCnaCon	Reg.	

AddiConal	opcode	bits	

Based	on	the	handling	of	the	immediates	

Immediate	Encoding	Variants	

•  Immediate	produced	by	each	base	instrucWon	format	
–  InstrucWon	bit	(inst[y])	

14	

Integer	ComputaConal	InstrucCons	(ALU)	

•  I-type	(Immediate),	all	immediates	in	all	instrucCons	are	sign	
extended	
–  ADDI:	adds	sign	extended	12-bit	immediate	to	rs1	
–  SLTI(U):	set	less	than	immediate	
–  ANDI/ORI/XORI:	Logical	operaCons	
–  SLLI/SRLI/SRAI:	Shics	by	constants	

15	

I-type	instrucCons	end	with	I	

Integer	ComputaConal	InstrucCons	(ALU)	

•  I-type	(Immediate),	all	immediates	in	all	instrucCons	are	sign	
extended	
–  LUI/AUIPC:	load	upper	immediate/add	upper	immediate	to	pc	

16	

I-type	instrucCons	end	with	I	

•  Writes	20-bit	immediate	to	top	of	desWnaWon	register.	
•  Used	to	build	large	immediates.	
•  12-bit	immediates	are	signed,	so	have	to	account	for	sign	when	

building	32-bit	immediates	in	2-instrucWon	sequence	(LUI	
high-20b,	ADDI	low-12b)	

Integer	ComputaConal	InstrucCons	
•  R-type	(Register)	
–  rs1	and	rs2	are	the	source	registers.	rd	the	desCnaCon	
–  ADD/SUB:		
–  SLT,	SLTU:	set	less	than	
–  SRL,	SLL,	SRA:	shic	logical	or	arithmeCc	lec	or	right	

17	

ADDI	x0,	x0,	0	

Control	Transfer	InstrucCons	

18	

NO	architecturally	visible	delay	slots	
•  UncondiWonal	Jumps:	PC+offset	target	
–  JAL:	Jump	and	link,	also	writes	PC+4	to	x1,	UJ-type	
•  Offset	scaled	by	1-bit	le^	shi^	–	can	jump	to	16-bit	
instrucWon	boundary	(Same	for	branches)	

–  JALR:	Jump	and	link	register	where	Imm	(12	bits)	+	rd1	=	target	

Control	Transfer	InstrucCons	

19	

NO	architecturally	visible	delay	slots	
•  CondiWonal	Branches:	SB-type	and	PC+offset	target	

12-bit	signed	immediate	split	across	two	fields	

Branches,	compare	two	registers,	PC+(immediate<<1)	target	
(Signed	offset	in	mul0ples	of	two).Branches	do	not	have	delay	slot	

Loads	and	Stores	

•  Store	instrucWons	(S-type)	
–  MEM(rs1+imm)	=	rs2	
•  Loads	(I-type)	
–  Rd	=	MEM(rs1	+	imm)	

20	

More	

21	

Memory	Model	

•  RISC-V:	Relaxed	memory	model	

22	

Control	and	Status	Register	(CSR)	InstrucCons	

•  CSR	InstrucWons	

•  Timer	and	counters	

23	

Data	Formats	and	Memory	Addresses	

24	

Data	formats:							
8-b	Bytes,	16-b	Half	words,	32-b	words	and	64-b	double	words	

Some	issues	
• 	Byte	addressing	
	
	
	

• 	Word	alignment		
Suppose	the	memory	is	organized	in	32-bit	words.	
Can	a	word	address	begin	only	at	0,	4,	8,	?	

 0 1 2 3 4 5 6 7

Most	Significant	
Byte	

Least	Significant	
Byte	

Byte	Addresses	

3	 2	 1	 0	

0	 1	 2	 3	Big	Endian	

LiAle	Endian	
(RISC-V)	

ISA 	Design

•  RISC-V	has	32	integer	registers	and	can	have	32	floaWng-point	registers	
–  Register	number	0	is	a	constant	0	
–  Register	number	1	is	the	return	address	(link	register)	

•  The	memory	is	addressed	by	8-bit	bytes	

•  The	instrucWons	must	be	aligned	to	32-bit	addresses	
•  Like	many	RISC	designs,	it	is	a	"load-store"	machine	
–  The	only	instrucWons	that	access	main	memory	are	loads	and	stores	
–  All	arithmeWc	and	logic	operaWons	occur	between	registers	

•  RISC-V	can	load	and	store	8	and	16-bit	items,	but	it	lacks	8	and	16-bit	arithmeWc,	including	
comparison-and-branch	instrucWons	

•  The	64-bit	instrucWon	set	includes	32-bit	arithmeWc

25	

ISA 	Design	for	Performance

•  Features	to	increase	a	computer's	speed,	while	reducing	its	cost	
and	power	usage	
–  placing	most-significant	bits	at	a	fixed	locaWon	to	speed	sign-extension,	and	a	bit-

arrangement	designed	to	reduce	the	number	of	mulWplexers	in	a	CPU	

26	

ISA 	Design

•  IntenWonally	lacks	condiWon	codes,	and	even	lacks	a	carry	bit	
–  To	simplify	CPU	designs	by	minimizing	interacWons	between	instrucWons	

•  Builds	comparison	operaWons	into	its	condiWonal-jumps	

27	

ISA 	Design

•  The	lack	of	a	carry	bit	complicates	mulWple-precision	arithmeWc	
–  GMP,	MPFR	

•  does	not	detect	or	flag	most	arithmeWc	errors,	including	overflow,	underflow	
and	divide	by	zero	
–  No	special	instrucWon	set	support	for	overflow	checks	on	integer	arithmeWc	operaWons.	

•  Most	popular	programming	languages	do	not	support	checks	for	integer	overflow,	partly	
because	most	architectures	impose	a	significant	runWme	penalty	to	check	for	overflow	on	
integer	arithmeWc	and	partly	because	modulo	arithmeWc	is	someWmes	the	desired	
behavior	

–  FloaWng-Point	Control	and	Status	Register	

28	

ISA 	Design

•  Lacks	the	"count	leading	zero"	and	bit-field	operaWons	normally	used	to	
speed	so^ware	floaWng-point	in	a	pure-integer	processor

•  No	branch	delay	slot,	a	posiWon	a^er	a	branch	instrucWon	that	can	be	filled	
with	an	instrucWon	which	is	executed	regardless	of	whether	the	branch	is	
taken	or	not	
–  This	feature	can	improve	performance	of	pipelined	processors,	
–  Omiqed	in	RISC-V	because	it	complicates	both	mulWcycle	CPUs	and	superscalar	CPUs	

•  Lacks	address-modes	that	"write	back"	to	the	registers	
–  For	example,	it	does	not	do	auto-incremenWng	

29	

ISA 	Design

•  A	load	or	store	can	add	a	twelve-bit	signed	offset	to	a	register	that	contains	
an	address.	A	further	20	bits	(yielding	a	32-bit	address)	can	be	generated	at	
an	absolute	address	
–  RISC-V	was	designed	to	permit	posiWon-independent	code.	It	has	a	special	instrucWon	to	

generate	20	upper	address	bits	that	are	relaWve	to	the	program	counter.	The	lower	twelve	
bits	are	provided	by	normal	loads,	stores	and	jumps	

–  LUI	(load	upper	immediate)	places	the	U-immediate	value	in	the	top	20	bits	of	the	des0na0on	
register	rd,	filling	in	the	lowest	12	bits	with	zeros	

–  AUIPC	(add	upper	immediate	to	pc)	is	used	to	build	pc-rela0ve	addresses,	forms	a	32-bit	offset	
from	the	20-bit	U-immediate,	filling	in	the	lowest	12	bits	with	zeros,	adds	this	offset	to	the	pc,	
then	places	the	result	in	register	rd

30	

ISA 	Design

•  The	RISC-V	instrucWon	set	was	designed	for	research,	and	therefore	includes	
extra	space	for	new	instrucWons	
–  Planned	instrucWon	subsets	include	system	instrucWons,	atomic	access,	integer	mulWplicaWon,	floaWng-

point	arithmeWc,	bit-manipulaWon,	decimal	floaWng-point,	mulWmedia	and	vector	processing	

31	

–  It	includes	instrucWons	for	32-bit,	
64-bit	and	128-bit	integer	and	
floaWng-point	

–  It	was	designed	for	32-bit,	64-bit	
and	128-bit	memory	systems,	with	
32-bit	models	designed	for	lower	
power,	64-bit	for	higher	
performance,	and	128-bit	for	future	
requirements	

–  It's	designed	to	operate	with	
hypervisors,	supporWng	
virtualizaWon	

–  It	was	designed	to	conform	to	
recent	floaWng-point	standards

Calling	ConvenCon

•  C	Datatypes	and	Alignment	
–  	RV32	employs	an	ILP32	integer	model,	while	RV64	is	LP64	
–  FloaWng-point	types	are	IEEE	754-2008	compaWble	
–  All	of	the	data	types	are	keeped	naturally	aligned	when	stored	in	memory	
–  char	is	implicitly	unsigned	
–  In	RV64,	32-bit	types,	such	as	int,	are	stored	in	integer	registers	as	proper	sign	extensions	of	

their	32-bit	values;	that	is,	bits	63..31	are	all	equal	
•  This	restricWon	holds	even	for	unsigned	32-bit	types

32	

Calling	ConvenCon

•  RVG	Calling	ConvenWon	
–  If	the	arguments	to	a	funcWon	are	conceptualized	as	fields	of	a	C	struct,	each	with	

pointer	alignment,	the	argument	registers	are	a	shadow	of	the	first	eight	pointer-
words	of	that	struct	
•  FloaWng-point	arguments	that	are	part	of	unions	or	array	fields	of	structures	are	passed	in	

integer	registers	
•  FloaWng-point	arguments	to	variadic	funcWons	(except	those	that	are	explicitly	named	in	

the	parameter	list)	are	passed	in	integer	registers	
–  The	porWon	of	the	conceptual	struct	that	is	not	passed	in	argument	registers	is	

passed	on	the	stack	
•  The	stack	pointer	sp	points	to	the	first	argument	not	passed	in	a	register	

–  Arguments	smaller	than	a	pointer-word	are	passed	in	the	least-significant	bits	of	
argument	registers	

–  When	primiWve	arguments	twice	the	size	of	a	pointer-word	are	passed	on	the	
stack,	they	are	naturally	aligned	
•  When	they	are	passed	in	the	integer	registers,	they	reside	in	an	aligned	even-odd	register	

pair,	with	the	even	register	holding	the	least-significant	bits	
–  Arguments	more	than	twice	the	size	of	a	pointer-word	are	passed	by	reference	

33	

Calling	ConvenCon

–  The	stack	grows	downward	and	the	stack	pointer	is	always	kept	16-byte	aligned	
–  Values	are	returned	from	funcWons	in	integer	registers	v0	and	v1	and	floaWng-point	

registers	fv0	and	fv1	
•  FloaWng-point	values	are	returned	in	floaWng-point	registers	only	if	they	are	primiWves	or	

members	of	a	struct	consisWng	of	only	one	or	two	floaWng-point	values	
•  Other	return	values	that	fit	into	two	pointer-words	are	returned	in	v0	and	v1	
•  Larger	return	values	are	passed	enWrely	in	memory;	the	caller	allocates	this	memory	region	

and	passes	a	pointer	to	it	as	an	implicit	first	parameter	to	the	callee	

34	

Socware

•  The	RISC-V	website	has	a	specificaWon	for	user-mode	instrucWons,	a	dra^	for	
privileged	ISA	specificaWon	and	a	dra^	for	compressed	ISA	specificaWon	

•  It	also	includes	the	files	of	six	CPU	designs,	the	64-bit	superscalar	"Rocket"	and	five	
"Sodor"	CPUs	

•  The	so^ware	includes	a	design	compiler,	Chisel,	which	is	able	to	reduce	the	designs	to	
Verilog	for	use	in	devices	

•  The	website	includes	verificaWon	data	for	tesWng	core	implementaWons	
•  Available	RISC-V	so^ware	includes	a	GNU	Compiler	CollecWon	(GCC)	toolchain	(with	

GDB,	the	debugger),	an	LLVM	toolchain,	a	simulator	("Spike")	and	the	standard	
simulator	QEMU	

•  OperaWng	systems	support	exists	for	Linux,	but	the	supervisor-mode	instrucWons	are	
not	standardized	at	this	Wme	

•  There	is	also	a	JavaScript	ISA	simulator	to	run	a	RISC-V	Linux	system	on	a	web	browser

35	

ImplementaCons

•  The	RISC-V	ISA	has	been	designed	to	result	in	faster,	less-expensive,	smaller,	
and	less-power-hungry	electronics.	

•  It	is	carefully	designed	not	to	make	assumpWons	about	the	structure	of	the	
computers	on	which	it	runs.	
–  ValidaWng	this,	the	UCB	Sodor	cores	were	implemented	as	different	types	of	computers	

•  RISC-V	is	designed	to	be	extensible	from	a	32-bit	bare	bones	integer	core	
suitable	for	a	small	embedded	processor	to	64	or	128-bit	super	and	cloud	
computers	with	standard	and	special	purpose	extensions.	
–  It	has	been	tested	in	a	fast	pipelined	silicon	design	with	the	open	Rocket	SoC.	

•  The	UCB	processor	designs	that	implement	RISC-V	are	implemented	using	
Chisel,	an	open-source	hardware	construcWon	language	that	is	a	specialized	
dialect	of	Scala.	
–  'Chisel'	is	an	abbreviaWon:	ConstrucWng	Hardware	In	a	Scala	Embedded	Language

36	

ImplementaCons

•  The	Indian	InsWtute	of	Technology	Madras	is	developing	six	RISC-V	open-
source	CPU	designs	(SHAKTI)	for	six	disWnct	usages,	from	a	small	32-bit	CPU	
for	the	Internet	of	Things	to	large,	64-bit	CPUs	designed	for	warehouse-scale	
computers	based	on	RapidIO	and	Hybrid	Memory	Cube	technologies.	

•  Bluespec,	Inc.,	a	semiconductor	tools	company,	is	exploring	RISC-V	as	a	
possible	product.	

•  lowRISC	is	a	non	profit	project	that	aims	to	implement	a	fully	open-source	
SoC	based	on	the	64-Bit	RISC-V	ISA.	

•  The	planned	mulWmedia	set	may	include	a	general-purpose	mixed-precision	
vector	processor	similar	to	the	research	project	“Hwacha.”

37	

Resources

•  hqp://riscv.org/workshop-jan2015.html	
•  hqp://riscv.org/tutorial-hpca2015.html	

•  hqp://en.wikipedia.org/wiki/RISC-V	

•  Check	the	class	resource	page	

38	

