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Pipelining: Its Natural! 

©  Laundry Example 
© Ann, Brian, Cathy, Dave  

each have one load of clothes  
to wash, dry, and fold 
u  Washer takes 30 minutes 
u  Dryer takes 40 minutes 
u  “Folder” takes 20 minutes 

© One load: 90 minutes 

A B C D 



Sequential Laundry 

©  Sequential laundry takes 6 hours for 4 loads 
©  If they learned pipelining, how long would laundry take?  
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Pipelined Laundry Start Work ASAP 

©  Pipelined laundry takes 3.5 hours for 4 loads  
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Sequential laundry takes 6 hours for 4 loads 



The Basics of a RISC Instruction Set (1/2)

©  RISC (Reduced Instruction Set 
Computer) architecture or load-store 
architecture: 
u  All operations on data apply to data in 

register and typically change the entire 
register (32 or 64 bits per register). 

u  The only operations that affect memory 
are load and store operation. 

u  The instruction formats are few in 
number with all instructions typically 
being one size. 

†  These simple three properties lead to 
dramatic simplifications in the 
implementation of pipelining. 



The Basics of a RISC Instruction Set (2/2)

© MIPS 64 / RISC-V 
u  32 registers, and R0 = 0; 
u  Three classes of instructions 

»  ALU instruction: add (DADD), subtract (DSUB), and logical operations (such 
as AND or OR); 

»  Load and store instructions: 
»  Branches and jumps: 

OP rs rt rd sa funct 

OP rs rt immediate 

OP jump target 

R-format (add, sub, …) 

I-format (lw, sw, …) 

J-format (j) 



RISC Instruction Set

©  Every instruction can be implemented in at most 5 clock cycles/
stages 
u  Instruction fetch cycle (IF): send PC to memory, fetch the current 

instruction from memory, and update PC to the next sequential PC by 
adding 4 to the PC. 

u  Instruction decode/register fetch cycle (ID): decode the instruction, read 
the registers corresponding to register source specifiers from the register 
file. 

u  Execution/effective address cycle (EX): perform Memory address 
calculation for Load/Store, Register-Register ALU instruction and 
Register-Immediate ALU instruction. 

u  Memory access (MEM): Perform memory access for load/store 
instructions. 

u  Write-back cycle (WB): Write back results to the dest operands for 
Register-Register ALU instruction or Load instruction.	



Classic 5-Stage Pipeline for a RISC

©  Each cycle the hardware will initiate a new instruction and will 
be executing some part of the five different instructions. 
u  Simple; 
u  However, be ensure that the overlap of instructions in the pipeline cannot 

cause such a conflict. (also called Hazard)	

                               Clock number 

Instruction number 1 2 3 4 5 6 7 8 9 

Instruction i IF ID EX MEM WB 

Instruction i+1 IF ID EX MEM WB 

Instruction i+2 IF ID EX MEM WB 

Instruction i+3 IF ID EX MEM WB 

Instruction i+4 IF ID EX MEM WB 



Computer Pipelines 

©  Pipeline properties 
u  Execute billions of instructions, so throughput is what matters. 
u  Pipelining doesn’t help latency of single task, it helps throughput of entire 

workload; 
u  Pipeline rate limited by slowest pipeline stage; 
u  Multiple tasks operating simultaneously; 
u  Potential speedup = Number pipe stages; 
u  Unbalanced lengths of pipe stages reduces speedup; 
u  Time to “fill” pipeline and time to “drain” it reduces speedup. 

©  The time per instruction on the pipelined processor in ideal 
conditions is equal to, 

stage pipe ofNumber 
machine dunpipelineon n instructioper  Time

†  However, the stages may not be perfectly balanced. 
†  Pipelining yields a reduction in the average execution time per instruction. 
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CPU and Datapath vs Control 

©  Datapath: Storage, FU, interconnect sufficient to perform the desired 
functions 
u  Inputs are Control Points 
u  Outputs are signals 

©  Controller: State machine to orchestrate operation on the data path 
u  Based on desired function and signals 



5 Stages of MIPS Pipeline
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IR <= mem[PC]; 

PC <= PC + 4 

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt] 



Making RISC Pipelining Real

©  Function units used in different cycles 
u  Hence we can overlap the execution of multiple instructions 

©  Important things to make it real 
u  Separate instruction and data memories, e.g. I-cache and D-cache, banking 

»  Eliminate a conflict for accessing a single memory. 
u  The Register file is used in the two stages (two R and one W every cycle) 

»  Read from register in ID (second half of CC), and write to register in WB (first 
half of CC). 

u  PC 
»  Increment and store the PC every clock, and done it during the IF stage. 
»  A branch does not change the PC until the ID stage (have an adder to compute 

the potential branch target). 
u  Staging data between pipeline stages 

»  Pipeline register 



Pipeline Datapath 

© Register files in ID and WB stage 
u  Read from register in ID (second half of CC), and write to register in WB 

(first half of CC). 

©  IM and DM 



Pipeline Registers
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IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 
rslt <= A opIRop B 

Reg[IRrd] <= WB 

WB <= rslt Pipeline Registers for Data Staging between Pipeline Stages 
Named as: IF/ID, ID/EX, EX/MEM, and MEM/WB  
 



Pipeline Registers 

© Edge-triggered property of register is critical 



Inst. Set Processor Controller 

IR <= mem[PC];  
PC <= PC + 4 

A <= Reg[IRrs];  
B <= Reg[IRrt] 

r <= A opIRop B 

Reg[IRrd] <= WB 

WB <= r 

Ifetch 

opFetch-DCD 

PC <= IRjaddr if bop(A,b) 
PC <= PC+IRim 

br jmp 
RR 

r <= A opIRop IRim 

Reg[IRrd] <= WB 

WB <= r 

RI 

r <= A + IRim 

WB <= Mem[r] 

Reg[IRrd] <= WB 

LD 

ST 
JSR JR 

branch requires 3 cycles, store 
requires 4 cycles, and all other 
instructions require 5 cycles. 



Events on Every Pipeline Stage 

Stage Any Instruction 

IF IF/ID.IR ß MEM[PC]; IF/ID.NPC ß PC+4 
PC ß if ((EX/MEM.opcode=branch) & EX/MEM.cond) 
{EX/MEM.ALUoutput} else {PC + 4} 

ID ID/EX.A ß Regs[IF/ID.IR[Rs]];  ID/EX.B ß Regs[IF/ID.IR[Rt]] 
ID/EX.NPC ß IF/ID.NPC; ID/EX.Imm ß extend(IF/ID.IR[Imm]); ID/EX.Rw ß IF/ID.IR[Rt or Rd] 

ALU Instruction Load / Store Branch 

EX 
 

EX/MEM.ALUoutput ß 
ID/EX.A func ID/EX.B, or 
EX/MEM.ALUoutput ß 
ID/EX.A op ID/EX.Imm 

EX/MEM.ALUoutput ß 
ID/EX.A + ID/EX.Imm 
 
EX/MEM.B ß ID/EX.B 

EX/MEM.ALUoutput ß 
ID/EX.NPC + (ID/EX.Imm << 2) 
 
EX/MEM.cond ß br condition 

MEM MEM/WB.ALUoutput ß 
EX/MEM.ALUoutput 

MEM/WB.LMD ß 
MEM[EX/MEM.ALUoutput] 
or 
MEM[EX/MEM.ALUoutput] ß 
EX/MEM.B 

WB Regs[MEM/WB.Rw] ß 
MEM/WB.ALUOutput 

For load only: 
Regs[MEM/WB.Rw] ß 
MEM/WB.LMD 



Pipelining Performance (1/2)

©  Pipelining increases throughput, not reduce the execution time of 
an individual instruction. 
u  In face, slightly increases the execution time (an instruction) due to 

overhead in the control of the pipeline. 
u  Practical depth of a pipeline is limits by increasing execution time. 

©  Pipeline overhead 
u  Unbalanced pipeline stage; 
u  Pipeline stage overhead; 
u  Pipeline register delay; 
u  Clock skew.	



©  Instructions per program depends on source code, 
compiler technology, and ISA 

© Cycles per instructions (CPI) depends on ISA and 
µarchitecture 

©  Time per cycle depends upon the µarchitecture and base 
technology 

Processor Performance 

CPU  Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle



CPI for Different Instructions 

22 

Total	clock	cycles	=	7+5+10	=	22	
Total	instruc7ons	=	3	
CPI	=	22/3	=	7.33		
	
CPI	is	always	an	average	over	a	large	
number	of	instruc7ons	

Inst	3	

7	cycles	

Inst	1	 Inst	2	

5	cycles	 10	cycles	

Time	



Pipeline Performance (2/2) 

©  Example 1 (p.C-10): Consider the unpipelined processor in previous section. Assume that 
it has a 1ns clock cycle and that it uses 4 cycles for ALU operations and branches, and 5 
cycles for memory operations. Assume that the relative frequencies of these operations are 
40%, 20%, and 40%, respectively. Suppose that due to clock skew and setup, pipelining 
the processor adds 0.2 ns of overhead to the clock. Ignoring any latency impact, how much 
speedup in the instruction execution rate will we gain from a pipeline? 

©  Answer 
 The average instruction execution time on the unpipelined processor is 

 Average instruction execution time =Clock cycle×Average CPI

                                                       =1 ns× 40%+ 20%( )× 4+ 40%×5( )
                                                       =1 ns× 4.4 = 4.4 ns

Speedup from pipelining = Average instruction time unpipelined
Average instruction time pipelined

=
4.4 ns
1.2 ns

= 3.7 times

†  In the pipeline, the clock must run at the speed of the slowest stage plus 
overhead, which will be 1+0.2 ns. 



Performance with Pipeline Stall (1/2)

pipelined cycleClock 
dunpipeline cycleClock 

pipelined CPI
dunpipeline CPI                                       

pipelined cycleClock pipelined CPI
dunpipeline cycleClock dunpipeline CPI                                       

pipelined n timeinstructio Average
dunpipeline n timeinstructio Averagepipelining from Speedup

×=

×

×
=

=

ninstructioper  cyclesclock  stall Pipelined1                       
ninstructioper  cyclesclock  stall PipelineCPI Idealpipelined CPI

+=

+=



Performance with Pipeline Stall (2/2)

Speedup from pipelining= CPI unpipelined
CPI pipelined

×
Clock cycle unpipelined

Clock cycle pipelined

                                       = 1
1+Pipeline stall cycles per instruction

×
Clock cycle unpipelined 

Clock cycle pipelined

Clock cycle pipelined = Clock cycle unpipelined
Pipeline depth

      ⇒  Pipeline depth = Clock cycle unpipelined
Clock cycle pipelined

Speedup from pipelining = 1
1+Pipeline stall cycles per instruction

×
Clock cycle unpipelined 

Clock cycle pipelined

                                        = 1
1+Pipeline stall cycles per instruction

×Pipeline depth

Pipelining speedup is proportional to the pipeline 
depth and 1/(1+ stall cycles) 



Pipeline Hazards

© Hazard, that prevent the next instruction in the instruction steam. 
u  Structural hazards: resource conflict, e.g. using the same unit 
u  Data hazards: an instruction depends on the results of a previous 

instruction	
u  Control hazards: arise from the pipelining of branches and other 

instructions that change the PC. 

© Hazards in pipelines can make it necessary to stall the pipeline. 
u  Stall will reduce pipeline performance. 



Structure Hazards

©  Structure Hazards  
u  If some combination of instructions cannot be accommodated because of 

resource conflict (resources are pipelining of functional units and 
duplication of resources).  

»  Occur when some functional unit is not fully pipelined, or 
»  No enough duplicated resources. 



One Memory Port/Structural Hazards
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One Memory Port/Structural Hazards

I 
n 
s 
t 
r. 
 
O 
r 
d 
e 
r 

Time (clock cycles) 

Load 

Instr 1 

Instr 2 

Stall 

Instr 3 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5 

Reg A
LU

 

DMem Ifetch Reg 

Bubble Bubble Bubble Bubble Bubble 

How do you “bubble” the pipe? 



Performance on Structure Hazard 

©  Example 2 (p.C-14): Let’s see how much the load structure hazard might cost. 
Suppose that data reference constitute 40% of the mix, and that the ideal CPI of the 
pipelined processor, ignoring the structure hazard, is 1. Assume that the processor with 
the structure hazard has a clock rate that is 1.05 times higher than the clock rate of 
processor without the hazard. Disregarding any other performance losses, is the 
pipeline with or without the structure hazard faster, and by how much? 

©  Answer 
 The average instruction execution time on the unpipelined processor is 

 
ideal

idealideal

 timecycleClock 1                                             
 timecycleClock CPIn timeinstructio Average

×=

×=

How to solve structure hazard? (Next slide) 

( )

ideal

ideal

hazard structure

 timecycleClock 1.3                                                      
05.1

 timecycleClock 10.41                                                      

 timecycleClock CPIn timeinstructio Average

×=

××+=

×=



Summary of Structure Hazard

© An alternative to this structure hazard, designer could provide a 
separate memory access for instructions. 
u  Splitting the cache into separate instruction and data caches, or 
u  Use a set of buffers, usually called instruction buffers, to hold instruction; 

© However, it will increase cost overhead. 
u  Ex1: pipelining function units or duplicated resources is a high cost; 
u  Ex2: require twice bandwidth and often have higher bandwidth at the pins 

to support both an instruction and a data cache access every cycle; 
u  Ex3: a floating-point multiplier consumes lots of gates. 

†  If the structure hazard is rare, it may not be worth the cost to 
avoid it. 



Data Hazards

© Data Hazards  
u  Occur when the pipeline changes the order of read/write accesses to 

operands so that the order differs from the order seen by sequentially 
executing instructions on an unpipelined processor. 

»  Occur when some functional unit is not fully pipelined, or 
»  No enough duplicated resources. 

u  A example of pipelined execution 

DADD  R1, R2, R3 
DSUB  R4, R1, R5 
AND  R6, R1, R7 
OR  R8, R1, R9 
XOR  R10, R1, R11 



Data Hazard on R1
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Bubble Bubble Bubble Bubble Bubble 

Bubble Bubble Bubble Bubble Bubble 

Solution #1: Insert stalls
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Three Generic Data Hazards (1/3) 

© Read After Write (RAW)  
u  InstrJ tries to read operand before InstrI writes it 

 
   

 
 
 

© Caused by a “true dependence” (in compiler nomenclature). This 
hazard results from an actual need for communication. 

I: ADD R1,R2,R3 
J: SUB R4,R1,R3 



Three Generic Data Hazards (2/3) 

© Write After Read (WAR) 
u  InstrJ writes operand before InstrI reads it 

 
 
 
 

© Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “R1”. 

© Can’t happen in MIPS 5 stage pipeline because: 
u   All instructions take 5 stages, and 
u   Reads are always in stage 2, and  
u   Writes are always in stage 5 

I: SUB R4,R1,R3  
J: ADD R1,R2,R3 
K: MUL R6,R1,R7 



Three Generic Data Hazards (3/3) 

© Write After Write (WAW)  
u  InstrJ writes operand before InstrI writes it. 

 
 
 
 

©  This hazard also results from the reuse of name r1 
© Hazard when writes occur in the wrong order 
© Can’t happen in our basic 5-stage pipeline because:  

u  All writes are ordered and take place in stage 5 

© WAR and WAW hazards occur in complex pipelines 
© Notice that Read After Read – RAR is NOT a hazard 

I: SUB R1,R4,R3  
J: ADD R1,R2,R3 
K: MUL R6,R1,R7 

useless 



#2: Forwarding (aka bypassing) to Avoid 
Data Hazard
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Another Example of a RAW Data Hazard 

©  Result of sub is needed by and, or, add, & sw instructions 
©  Instructions and & or will read old value of r2 from reg file 

© During CC5, r2 is written and read – new value is read 
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Solution #1: Stalling the Pipeline 

©  The and instruction cannot fetch r2 until CC5 
u  The and instruction remains in the IF/ID register until CC5 

©  Two bubbles are inserted into ID/EX at end of CC3 & CC4 

u  Bubbles are NOP instructions: do not modify registers or memory 

u  Bubbles delay instruction execution and waste clock cycles 
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Solution #2: Forwarding ALU Result 

©  The ALU result is forwarded (fed back) to the ALU input 
u  No bubbles are inserted into the pipeline and no cycles are wasted 

© ALU result exists in either EX/MEM or MEM/WB register 
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Double Data Hazard 

© Consider the sequence: 
 add r1,r1,r2 
sub r1,r1,r3 
and r1,r1,r4 

©  Both hazards occur 
u  Want to use the most recent 
u  When executing AND, forward result of SUB 

»  ForwardA = 01 (from the EX/MEM pipe stage) 



Data Hazard Even with Forwarding
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Data Hazard Even with Forwarding

Time (clock cycles) 
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How is this detected? 



Load Delay 

© Not all RAW data hazards can be forwarded 
u Load has a delay that cannot be eliminated by forwarding 

© In the example shown below … 
u The LW instruction does not have data until end of CC4 
u AND wants data at beginning of CC4 - NOT possible 
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Stall the Pipeline for one Cycle 

© Freeze the PC and the IF/ID registers 
u  No new instruction is fetched and instruction after load is stalled 

© Allow the Load in ID/EX register to proceed 
© Introduce a bubble into the ID/EX register 
© Load can forward data after stalling next instruction 



Forwarding to Avoid LW-SW Data Hazard
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Compiler Scheduling 

©  Compilers can schedule code in a way to avoid load stalls  
©  Consider the following statements: 

 a = b + c;  d = e – f; 

©  Slow code: 2 stall cycles 

lw  r10, (r1)  # r1 = addr b 
lw  r11, (r2)  # r2 = addr c 
add  r12, r10, $11  # stall 
sw   r12, (r3)  # r3 = addr a 
lw r13, (r4)  # r4 = addr e  
lw  r14, (r5)  # r5 = addr f 
sub  r15, r13, r14  # stall 
sw  r15, (r6)  # r6 = addr d 

 Fast code: No Stalls 
 lw  r10,  0(r1) 
 lw  r11,  0(r2) 
 lw  r13,  0(r4) 
 lw  r14,  0(r5) 
 add  r12,  r10, r11 
 sw   r12,  0(r3) 
 sub  r15,  r13, r14 
 sw  r14,  0(r6) 

Compiler optimizes for performance.  Hardware checks for safety. 



Hardware Support for Forwarding 



Detecting RAW Hazards 

© Pass register numbers along pipeline 
u  ID/EX.RegisterRs = register number for Rs in ID/EX 
u  ID/EX.RegisterRt = register number for Rt in ID/EX 
u  ID/EX.RegisterRd = register number for Rd in ID/EX 

© Current instruction being executed in ID/EX register 
© Previous instruction is in the EX/MEM register 
© Second previous is in the MEM/WB register 
© RAW Data hazards when 

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 
EX/MEM 
pipeline reg 

Fwd from 
MEM/WB 
pipeline reg 



Detecting the Need to Forward 

©  But only if forwarding instruction will write to a register! 
u  EX/MEM.RegWrite, MEM/WB.RegWrite 

© And only if Rd for that instruction is not R0 
u  EX/MEM.RegisterRd ≠ 0 
u  MEM/WB.RegisterRd ≠ 0 



Forwarding Conditions 

© Detecting RAW hazard with Previous Instruction 
u  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 

    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 (Forward from EX/MEM pipe stage) 

u  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 (Forward from EX/MEM pipe stage) 

© Detecting RAW hazard with Second Previous 
u  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 10 (Forward from MEM/WB pipe stage) 

u  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 10 (Forward from MEM/WB pipe stage) 



Control Hazard on Branches: Three Stage Stall

10: BEQ R1,R3,36 
 

14: AND R2,R3,R5  
 

18: OR  R6,R1,R7 
 

22: ADD R8,R1,R9 
 
36: XOR R10,R1,R11 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

Reg A
LU

 

DMem Ifetch Reg 

What do you do with the 3 instructions in between? 

How do you do it? 

Where is the “commit”? 



Branch/Control Hazards 

©  Branch instructions can cause great performance loss 
©  Branch instructions need two things: 

u Branch Result  Taken or Not Taken 
u Branch Target 

»  PC + 4  If Branch is NOT taken 

»  PC + 4 + 4 × imm  If Branch is Taken 

©  For our pipeline: 3-cycle branch delay 
u PC is updated 3 cycles after fetching branch instruction 
u Branch target address is calculated in the ALU stage 
u Branch result is also computed in the ALU stage 
u What to do with the next 3 instructions after branch? 



Branch Stall Impact 

©  If CPI = 1 without branch stalls, and 30% branch 

©  If stalling 3 cycles per branch 
u  => new CPI = 1+0.3×3 = 1.9 

©  Two part solution: 
u  Determine branch taken or not sooner, and 
u  Compute taken branch address earlier 

© MIPS Solution: 
u  Move branch test to ID stage (second stage)  
u  Adder to calculate new PC in ID stage 
u  Branch delay is reduced from 3 to just 1 clock cycle 



Pipelined MIPS Datapath
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Four Branch Hazard Alternatives

©  #1: Stall until branch direction is clear 

©  #2: Predict Branch Not Taken 
u  Execute successor instructions in sequence 
u  “Squash” instructions in pipeline if branch actually taken 
u  Advantage of late pipeline state update 
u  47% MIPS branches not taken on average 
u  PC+4 already calculated, so use it to get next instruction 

©  #3: Predict Branch Taken 
u  53% MIPS branches taken on average 
u  But haven’t calculated branch target address in MIPS 

»  MIPS still incurs 1 cycle branch penalty 
»  Other machines: branch target known before outcome 



Four Branch Hazard Alternatives

©  #4: Delayed Branch 
u  Define branch to take place AFTER a following instruction 

 
 branch instruction 
 sequential successor1 
 sequential successor2 
 ........ 
 sequential successorn 

 branch target if taken 
 

u  1 slot delay allows proper decision and branch target address in 5 stage 
pipeline 

u  MIPS uses this 



Scheduling Branch Delay Slots

 
 

u  A is the best choice, fills delay slot & reduces instruction count (IC) 
u  In B, the sub instruction may need to be copied, increasing IC 
u  In B and C, must be okay to execute sub when branch fails 

add  $1,$2,$3 
if $2=0 then 

delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 

delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 
  
if $2=0 then 

add  $1,$2,$3 
add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 

sub $4,$5,$6 



Delayed Branch

© Compiler effectiveness for single branch delay slot: 
u  Fills about 60% of branch delay slots. 
u  About 80% of instructions executed in branch delay slots useful in 

computation. 
u  About 50% (60% x 80%) of slots usefully filled. 

© Delayed Branch downside: As processor go to deeper pipelines 
and multiple issue, the branch delay grows and need more than 
one delay slot 
u  Delayed branching has lost popularity compared to more expensive but 

more flexible dynamic approaches. 
u  Growth in available transistors has made dynamic approaches relatively 

cheaper. 



Evaluating Branch Alternatives

©  The effective pipeline speedup with branch penalties, assuming 
an ideal CPI of 1, is	

branches from cycles stall Pipeline1
depth Pipelinespeedup Pipeline

+
=

penaltyBranch frequencyBranch 1
depth Pipelinespeedup Pipeline
×+

=

penaltyBranch frequencyBranch branches from cycles stall Pipeline ×=

Because of the following:

We obtain



Performance on Control Hazard (1/2)

©  Example 3 (pA-25): for a deeper pipeline, such as that in a MIPS R4000, it 
takes at least three pipeline stages before the branch-target address is known 
and an additional cycle before the branch condition is evaluated, assuming no 
stalls on the registers in the conditional comparison, A three-stage delay leads 
to the branch penalties for the three simplest prediction schemes listed in the 
following Figure A.15. Find the effective additional to the CPI arising from 
branches for this pipeline, assuming the following frequencies: 

Unconditional branch 4%
Conditional branch, untaken 6%
Conditional branch, taken 10%

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predicted taken 2 3 2

Predicted un taken 2 0 3

Figure A.15



Performance on Control Hazard (2/2)

© Answer 

Additions to the CPI from branch cost

Branch 
scheme

Unconditional 
branches

Untaken 
conditional 
branches

Taken 
conditional 
branches

All branches

Frequency of 
event 4% 6% 10% 20%

Stall pipeline 0.08 0.18


0.30 0.56

Predicted 
taken

0.08


0.18


0.20 0.46

Predicted 
untaken

0.08


0.00 0.30 0.38



Branch Prediction 

©  Longer pipelines can’t readily determine branch outcome 
early 
u  Stall penalty becomes unacceptable 

© Predict outcome of branch 
u  Only stall if prediction is wrong 

©  In MIPS pipeline 
u  Can predict branches not taken 
u  Fetch instruction after branch, with no delay 



MIPS with Predict Not Taken 

Prediction 
correct 

Prediction 
incorrect 



More-Realistic Branch Prediction 

© Static branch prediction 
u Based on typical branch behavior 
u Example: loop and if-statement branches 

»  Predict backward branches taken 
»  Predict forward branches not taken 

© Dynamic branch prediction 
u Hardware measures actual branch behavior 

»  e.g., record recent history of each branch (BPB or BHT) 

u Assume future behavior will continue the trend 
»  When wrong, stall while re-fetching, and update history 



Static Branch Prediction 



Dynamic Branch Prediction 

©  1-bit prediction scheme 
u  Low-portion address as address for a one-bit flag for Taken or NotTaken 

historically 
u  Simple 

©  2-bit prediction 
u  Miss twice to change 
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Reading:  

u  Textbook: Appendix C 
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u  Chisel Tutorial 


