
Lecture 05: Pipelining: Basic/
Intermediate Concepts
 and Implementation

CSE 564 Computer Architecture Summer 2017

Department of Computer Science and Engineering
Yonghong Yan

yan@oakland.edu
www.secs.oakland.edu/~yan

1

Contents

1.  Pipelining Introduction
2.  The Major Hurdle of Pipelining—Pipeline Hazards
3.  RISC-V ISA and its Implementation

Reading:

u  Textbook: Appendix C
u  RISC-V ISA
u  Chisel Tutorial

Pipelining: Its Natural!

©  Laundry Example
© Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold
u  Washer takes 30 minutes
u  Dryer takes 40 minutes
u  “Folder” takes 20 minutes

© One load: 90 minutes

A B C D

Sequential Laundry

©  Sequential laundry takes 6 hours for 4 loads
©  If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Pipelined Laundry Start Work ASAP

©  Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
Sequential laundry takes 6 hours for 4 loads

The Basics of a RISC Instruction Set (1/2)

©  RISC (Reduced Instruction Set
Computer) architecture or load-store
architecture:
u  All operations on data apply to data in

register and typically change the entire
register (32 or 64 bits per register).

u  The only operations that affect memory
are load and store operation.

u  The instruction formats are few in
number with all instructions typically
being one size.

†  These simple three properties lead to
dramatic simplifications in the
implementation of pipelining.

The Basics of a RISC Instruction Set (2/2)

© MIPS 64 / RISC-V
u  32 registers, and R0 = 0;
u  Three classes of instructions

»  ALU instruction: add (DADD), subtract (DSUB), and logical operations (such
as AND or OR);

»  Load and store instructions:
»  Branches and jumps:

OP rs rt rd sa funct

OP rs rt immediate

OP jump target

R-format (add, sub, …)

I-format (lw, sw, …)

J-format (j)

RISC Instruction Set

©  Every instruction can be implemented in at most 5 clock cycles/
stages
u  Instruction fetch cycle (IF): send PC to memory, fetch the current

instruction from memory, and update PC to the next sequential PC by
adding 4 to the PC.

u  Instruction decode/register fetch cycle (ID): decode the instruction, read
the registers corresponding to register source specifiers from the register
file.

u  Execution/effective address cycle (EX): perform Memory address
calculation for Load/Store, Register-Register ALU instruction and
Register-Immediate ALU instruction.

u  Memory access (MEM): Perform memory access for load/store
instructions.

u  Write-back cycle (WB): Write back results to the dest operands for
Register-Register ALU instruction or Load instruction.	

Classic 5-Stage Pipeline for a RISC

©  Each cycle the hardware will initiate a new instruction and will
be executing some part of the five different instructions.
u  Simple;
u  However, be ensure that the overlap of instructions in the pipeline cannot

cause such a conflict. (also called Hazard)	

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Computer Pipelines

©  Pipeline properties
u  Execute billions of instructions, so throughput is what matters.
u  Pipelining doesn’t help latency of single task, it helps throughput of entire

workload;
u  Pipeline rate limited by slowest pipeline stage;
u  Multiple tasks operating simultaneously;
u  Potential speedup = Number pipe stages;
u  Unbalanced lengths of pipe stages reduces speedup;
u  Time to “fill” pipeline and time to “drain” it reduces speedup.

©  The time per instruction on the pipelined processor in ideal
conditions is equal to,

stage pipe ofNumber
machine dunpipelineon n instructioper Time

†  However, the stages may not be perfectly balanced.
†  Pipelining yields a reduction in the average execution time per instruction.

Processor

Control

Datapath

Review: Components of a Computer

Program Counter (PC)

 Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write Data

ReadData

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

CPU and Datapath vs Control

©  Datapath: Storage, FU, interconnect sufficient to perform the desired
functions
u  Inputs are Control Points
u  Outputs are signals

©  Controller: State machine to orchestrate operation on the data path
u  Based on desired function and signals

5 Stages of MIPS Pipeline

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder

 Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1
RS2

Imm
IR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

Making RISC Pipelining Real

©  Function units used in different cycles
u  Hence we can overlap the execution of multiple instructions

©  Important things to make it real
u  Separate instruction and data memories, e.g. I-cache and D-cache, banking

»  Eliminate a conflict for accessing a single memory.
u  The Register file is used in the two stages (two R and one W every cycle)

»  Read from register in ID (second half of CC), and write to register in WB (first
half of CC).

u  PC
»  Increment and store the PC every clock, and done it during the IF stage.
»  A branch does not change the PC until the ID stage (have an adder to compute

the potential branch target).
u  Staging data between pipeline stages

»  Pipeline register

Pipeline Datapath

© Register files in ID and WB stage
u  Read from register in ID (second half of CC), and write to register in WB

(first half of CC).

©  IM and DM

Pipeline Registers

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1
RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt Pipeline Registers for Data Staging between Pipeline Stages
Named as: IF/ID, ID/EX, EX/MEM, and MEM/WB

Pipeline Registers

© Edge-triggered property of register is critical

Inst. Set Processor Controller

IR <= mem[PC];
PC <= PC + 4

A <= Reg[IRrs];
B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddr if bop(A,b)
PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR

branch requires 3 cycles, store
requires 4 cycles, and all other
instructions require 5 cycles.

Events on Every Pipeline Stage

Stage Any Instruction

IF IF/ID.IR ß MEM[PC]; IF/ID.NPC ß PC+4
PC ß if ((EX/MEM.opcode=branch) & EX/MEM.cond)
{EX/MEM.ALUoutput} else {PC + 4}

ID ID/EX.A ß Regs[IF/ID.IR[Rs]]; ID/EX.B ß Regs[IF/ID.IR[Rt]]
ID/EX.NPC ß IF/ID.NPC; ID/EX.Imm ß extend(IF/ID.IR[Imm]); ID/EX.Rw ß IF/ID.IR[Rt or Rd]

ALU Instruction Load / Store Branch

EX

EX/MEM.ALUoutput ß
ID/EX.A func ID/EX.B, or
EX/MEM.ALUoutput ß
ID/EX.A op ID/EX.Imm

EX/MEM.ALUoutput ß
ID/EX.A + ID/EX.Imm

EX/MEM.B ß ID/EX.B

EX/MEM.ALUoutput ß
ID/EX.NPC + (ID/EX.Imm << 2)

EX/MEM.cond ß br condition

MEM MEM/WB.ALUoutput ß
EX/MEM.ALUoutput

MEM/WB.LMD ß
MEM[EX/MEM.ALUoutput]
or
MEM[EX/MEM.ALUoutput] ß
EX/MEM.B

WB Regs[MEM/WB.Rw] ß
MEM/WB.ALUOutput

For load only:
Regs[MEM/WB.Rw] ß
MEM/WB.LMD

Pipelining Performance (1/2)

©  Pipelining increases throughput, not reduce the execution time of
an individual instruction.
u  In face, slightly increases the execution time (an instruction) due to

overhead in the control of the pipeline.
u  Practical depth of a pipeline is limits by increasing execution time.

©  Pipeline overhead
u  Unbalanced pipeline stage;
u  Pipeline stage overhead;
u  Pipeline register delay;
u  Clock skew.	

©  Instructions per program depends on source code,
compiler technology, and ISA

© Cycles per instructions (CPI) depends on ISA and
µarchitecture

©  Time per cycle depends upon the µarchitecture and base
technology

Processor Performance

CPU Time = Instructions
Program

* Cycles
Instruction

*Time
Cycle

CPI for Different Instructions

22

Total	clock	cycles	=	7+5+10	=	22	
Total	instruc7ons	=	3	
CPI	=	22/3	=	7.33		
	
CPI	is	always	an	average	over	a	large	
number	of	instruc7ons	

Inst	3	

7	cycles	

Inst	1	 Inst	2	

5	cycles	 10	cycles	

Time	

Pipeline Performance (2/2)

©  Example 1 (p.C-10): Consider the unpipelined processor in previous section. Assume that
it has a 1ns clock cycle and that it uses 4 cycles for ALU operations and branches, and 5
cycles for memory operations. Assume that the relative frequencies of these operations are
40%, 20%, and 40%, respectively. Suppose that due to clock skew and setup, pipelining
the processor adds 0.2 ns of overhead to the clock. Ignoring any latency impact, how much
speedup in the instruction execution rate will we gain from a pipeline?

©  Answer
 The average instruction execution time on the unpipelined processor is

 Average instruction execution time =Clock cycle×Average CPI

 =1 ns× 40%+ 20%()× 4+ 40%×5()
 =1 ns× 4.4 = 4.4 ns

Speedup from pipelining = Average instruction time unpipelined
Average instruction time pipelined

=
4.4 ns
1.2 ns

= 3.7 times

†  In the pipeline, the clock must run at the speed of the slowest stage plus
overhead, which will be 1+0.2 ns.

Performance with Pipeline Stall (1/2)

pipelined cycleClock
dunpipeline cycleClock

pipelined CPI
dunpipeline CPI

pipelined cycleClock pipelined CPI
dunpipeline cycleClock dunpipeline CPI

pipelined n timeinstructio Average
dunpipeline n timeinstructio Averagepipelining from Speedup

×=

×

×
=

=

ninstructioper cyclesclock stall Pipelined1
ninstructioper cyclesclock stall PipelineCPI Idealpipelined CPI

+=

+=

Performance with Pipeline Stall (2/2)

Speedup from pipelining= CPI unpipelined
CPI pipelined

×
Clock cycle unpipelined

Clock cycle pipelined

 = 1
1+Pipeline stall cycles per instruction

×
Clock cycle unpipelined

Clock cycle pipelined

Clock cycle pipelined = Clock cycle unpipelined
Pipeline depth

 ⇒ Pipeline depth = Clock cycle unpipelined
Clock cycle pipelined

Speedup from pipelining = 1
1+Pipeline stall cycles per instruction

×
Clock cycle unpipelined

Clock cycle pipelined

 = 1
1+Pipeline stall cycles per instruction

×Pipeline depth

Pipelining speedup is proportional to the pipeline
depth and 1/(1+ stall cycles)

Pipeline Hazards

© Hazard, that prevent the next instruction in the instruction steam.
u  Structural hazards: resource conflict, e.g. using the same unit
u  Data hazards: an instruction depends on the results of a previous

instruction	
u  Control hazards: arise from the pipelining of branches and other

instructions that change the PC.

© Hazards in pipelines can make it necessary to stall the pipeline.
u  Stall will reduce pipeline performance.

Structure Hazards

©  Structure Hazards
u  If some combination of instructions cannot be accommodated because of

resource conflict (resources are pipelining of functional units and
duplication of resources).

»  Occur when some functional unit is not fully pipelined, or
»  No enough duplicated resources.

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

How do you “bubble” the pipe?

Performance on Structure Hazard

©  Example 2 (p.C-14): Let’s see how much the load structure hazard might cost.
Suppose that data reference constitute 40% of the mix, and that the ideal CPI of the
pipelined processor, ignoring the structure hazard, is 1. Assume that the processor with
the structure hazard has a clock rate that is 1.05 times higher than the clock rate of
processor without the hazard. Disregarding any other performance losses, is the
pipeline with or without the structure hazard faster, and by how much?

©  Answer
 The average instruction execution time on the unpipelined processor is

ideal

idealideal

 timecycleClock 1
 timecycleClock CPIn timeinstructio Average

×=

×=

How to solve structure hazard? (Next slide)

()

ideal

ideal

hazard structure

 timecycleClock 1.3
05.1

 timecycleClock 10.41

 timecycleClock CPIn timeinstructio Average

×=

××+=

×=

Summary of Structure Hazard

© An alternative to this structure hazard, designer could provide a
separate memory access for instructions.
u  Splitting the cache into separate instruction and data caches, or
u  Use a set of buffers, usually called instruction buffers, to hold instruction;

© However, it will increase cost overhead.
u  Ex1: pipelining function units or duplicated resources is a high cost;
u  Ex2: require twice bandwidth and often have higher bandwidth at the pins

to support both an instruction and a data cache access every cycle;
u  Ex3: a floating-point multiplier consumes lots of gates.

†  If the structure hazard is rare, it may not be worth the cost to
avoid it.

Data Hazards

© Data Hazards
u  Occur when the pipeline changes the order of read/write accesses to

operands so that the order differs from the order seen by sequentially
executing instructions on an unpipelined processor.

»  Occur when some functional unit is not fully pipelined, or
»  No enough duplicated resources.

u  A example of pipelined execution

DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

Data Hazard on R1

I
n
s
t
r.

O
r
d
e
r

DADD R1,R2,R3

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Bubble Bubble Bubble Bubble Bubble

Bubble Bubble Bubble Bubble Bubble

Solution #1: Insert stalls

I
n
s
t
r.

O
r
d
e
r

DADD R1,R2,R3

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Time (clock cycles)
IF ID/RF EX MEM WB

Stall

Stall

Three Generic Data Hazards (1/3)

© Read After Write (RAW)
u  InstrJ tries to read operand before InstrI writes it

© Caused by a “true dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.

I: ADD R1,R2,R3
J: SUB R4,R1,R3

Three Generic Data Hazards (2/3)

© Write After Read (WAR)
u  InstrJ writes operand before InstrI reads it

© Called an “anti-dependence” by compiler writers.
This results from reuse of the name “R1”.

© Can’t happen in MIPS 5 stage pipeline because:
u  All instructions take 5 stages, and
u  Reads are always in stage 2, and
u  Writes are always in stage 5

I: SUB R4,R1,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7

Three Generic Data Hazards (3/3)

© Write After Write (WAW)
u  InstrJ writes operand before InstrI writes it.

©  This hazard also results from the reuse of name r1
© Hazard when writes occur in the wrong order
© Can’t happen in our basic 5-stage pipeline because:

u  All writes are ordered and take place in stage 5

© WAR and WAW hazards occur in complex pipelines
© Notice that Read After Read – RAR is NOT a hazard

I: SUB R1,R4,R3
J: ADD R1,R2,R3
K: MUL R6,R1,R7

useless

#2: Forwarding (aka bypassing) to Avoid
Data Hazard

Time (clock cycles)
I
n
s
t

r.

O
r
d
e
r

DADD R1,R2,R3

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Pipeline register

Another Example of a RAW Data Hazard

©  Result of sub is needed by and, or, add, & sw instructions
©  Instructions and & or will read old value of r2 from reg file

© During CC5, r2 is written and read – new value is read
Time (cycles)

Pr
og

ra
m

 E
xe

cu
ti

on
 O

rd
er

value of r2

sub r2, r1, r3 IM

CC1
10

CC2

and r4, r2, r5

Reg

IM

10
CC3

or r6, r3, r2

ALU

Reg

IM

10
CC4

add r7, r2, r2

DM

ALU

Reg

IM

10
CC6

Reg

DM

ALU

Reg

20
CC7

Reg

DM

ALU

20
CC8

Reg

DM

20
CC5

sw r8, 10(r2)

Reg

DM

ALU

Reg

IM

10/20

Solution #1: Stalling the Pipeline

©  The and instruction cannot fetch r2 until CC5
u  The and instruction remains in the IF/ID register until CC5

©  Two bubbles are inserted into ID/EX at end of CC3 & CC4

u  Bubbles are NOP instructions: do not modify registers or memory

u  Bubbles delay instruction execution and waste clock cycles

Time (in cycles)

In
st

ru
ct

io
n

O
rd

er
 value of r2

CC1
10

CC2
10

CC3
10

CC4
10

CC6
20

CC7
20

CC8
20

CC5
10/20

bubble and r4, r2, r5 IM

or r6, r3, r2 IM Reg DM ALU

ALU Reg DM Reg

sub r2, r1, r3 IM Reg ALU DM Reg

bubble

Solution #2: Forwarding ALU Result

©  The ALU result is forwarded (fed back) to the ALU input
u  No bubbles are inserted into the pipeline and no cycles are wasted

© ALU result exists in either EX/MEM or MEM/WB register

Time (in cycles)

Pr
og

ra
m

 E
xe

cu
ti

on
 O

rd
er

CC2

and r4, r2, r5

Reg

IM

CC3

or r6, r3, r2

ALU

Reg

IM

CC6

Reg

DM

ALU

Reg

CC7

Reg

DM

ALU

CC8

Reg

DM

sub r2, r1, r3 IM

CC1 CC4

add r7, r2, r2

DM

ALU

Reg

IM

CC5

sw r8, 10(r2)

Reg

DM

ALU

Reg

IM

Double Data Hazard

© Consider the sequence:
 add r1,r1,r2
sub r1,r1,r3
and r1,r1,r4

©  Both hazards occur
u  Want to use the most recent
u  When executing AND, forward result of SUB

»  ForwardA = 01 (from the EX/MEM pipe stage)

Data Hazard Even with Forwarding

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

LD R1,0(R2)

DSUB R4,R1,R6

DAND R6,R1,R7

OR R8,R1,R9

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Data Hazard Even with Forwarding

Time (clock cycles)

OR R8,R1,R9

I
n
s
t
r.

O
r
d
e
r

LD R1,0(R2)

DSUB R4,R1,R6

AND R6,R1,R7

Reg A
LU

DMem Ifetch Reg

Reg Ifetch A
LU

DMem Reg Bubble

Ifetch A
LU

DMem Reg Bubble Reg

Ifetch A
LU

DMem Bubble Reg

How is this detected?

Load Delay

© Not all RAW data hazards can be forwarded
u Load has a delay that cannot be eliminated by forwarding

© In the example shown below …
u The LW instruction does not have data until end of CC4
u AND wants data at beginning of CC4 - NOT possible

DM

Time (cycles)

Pr
og

ra
m

 O
rd

er

CC2

and r4, r2, r5

Reg

IF

CC3

or r6, r3, r2

ALU

Reg

IF

CC6

Reg

DM

ALU

CC7

Reg

DM

CC8

Reg

lw r2, 20(r1) IF

CC1 CC4

add r7, r2, r2

ALU

Reg

IF

CC5

Reg

DM

ALU

Reg

However, load can
forward data to

second next
instruction

bubble

DM

Time (cycles)

Pr
og

ra
m

 O
rd

er

CC2

Reg

CC3

or r6, r3, r2

ALU

IM

CC6 CC7 CC8

lw r2, 20(r1) IM

CC1 CC4

Reg

CC5

Reg

DM Reg ALU

and r4, r2, r5 IM Reg Reg ALU DM

Stall the Pipeline for one Cycle

© Freeze the PC and the IF/ID registers
u  No new instruction is fetched and instruction after load is stalled

© Allow the Load in ID/EX register to proceed
© Introduce a bubble into the ID/EX register
© Load can forward data after stalling next instruction

Forwarding to Avoid LW-SW Data Hazard

Time (clock cycles)
I
n
s
t

r.

O
r
d
e
r

DADD R1,R2,R3

LD R4,0(R1)

SD R4,12(R1)

OR R8,R6,R9

XOR R10,R9,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Compiler Scheduling

©  Compilers can schedule code in a way to avoid load stalls
©  Consider the following statements:

 a = b + c; d = e – f;

©  Slow code: 2 stall cycles

lw r10, (r1) # r1 = addr b
lw r11, (r2) # r2 = addr c
add r12, r10, $11 # stall
sw r12, (r3) # r3 = addr a
lw r13, (r4) # r4 = addr e
lw r14, (r5) # r5 = addr f
sub r15, r13, r14 # stall
sw r15, (r6) # r6 = addr d

 Fast code: No Stalls
 lw r10, 0(r1)
 lw r11, 0(r2)
 lw r13, 0(r4)
 lw r14, 0(r5)
 add r12, r10, r11
 sw r12, 0(r3)
 sub r15, r13, r14
 sw r14, 0(r6)

Compiler optimizes for performance. Hardware checks for safety.

Hardware Support for Forwarding

Detecting RAW Hazards

© Pass register numbers along pipeline
u  ID/EX.RegisterRs = register number for Rs in ID/EX
u  ID/EX.RegisterRt = register number for Rt in ID/EX
u  ID/EX.RegisterRd = register number for Rd in ID/EX

© Current instruction being executed in ID/EX register
© Previous instruction is in the EX/MEM register
© Second previous is in the MEM/WB register
© RAW Data hazards when

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward

©  But only if forwarding instruction will write to a register!
u  EX/MEM.RegWrite, MEM/WB.RegWrite

© And only if Rd for that instruction is not R0
u  EX/MEM.RegisterRd ≠ 0
u  MEM/WB.RegisterRd ≠ 0

Forwarding Conditions

© Detecting RAW hazard with Previous Instruction
u  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01 (Forward from EX/MEM pipe stage)

u  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01 (Forward from EX/MEM pipe stage)

© Detecting RAW hazard with Second Previous
u  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10 (Forward from MEM/WB pipe stage)

u  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10 (Forward from MEM/WB pipe stage)

Control Hazard on Branches: Three Stage Stall

10: BEQ R1,R3,36

14: AND R2,R3,R5

18: OR R6,R1,R7

22: ADD R8,R1,R9

36: XOR R10,R1,R11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?

Branch/Control Hazards

©  Branch instructions can cause great performance loss
©  Branch instructions need two things:

u Branch Result Taken or Not Taken
u Branch Target

»  PC + 4 If Branch is NOT taken

»  PC + 4 + 4 × imm If Branch is Taken

©  For our pipeline: 3-cycle branch delay
u PC is updated 3 cycles after fetching branch instruction
u Branch target address is calculated in the ALU stage
u Branch result is also computed in the ALU stage
u What to do with the next 3 instructions after branch?

Branch Stall Impact

©  If CPI = 1 without branch stalls, and 30% branch

©  If stalling 3 cycles per branch
u  => new CPI = 1+0.3×3 = 1.9

©  Two part solution:
u  Determine branch taken or not sooner, and
u  Compute taken branch address earlier

© MIPS Solution:
u  Move branch test to ID stage (second stage)
u  Adder to calculate new PC in ID stage
u  Branch delay is reduced from 3 to just 1 clock cycle

Pipelined MIPS Datapath

A
dder

IF/ID

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1
RS2

Imm
M

U
X

ID
/EX

Four Branch Hazard Alternatives

©  #1: Stall until branch direction is clear

©  #2: Predict Branch Not Taken
u  Execute successor instructions in sequence
u  “Squash” instructions in pipeline if branch actually taken
u  Advantage of late pipeline state update
u  47% MIPS branches not taken on average
u  PC+4 already calculated, so use it to get next instruction

©  #3: Predict Branch Taken
u  53% MIPS branches taken on average
u  But haven’t calculated branch target address in MIPS

»  MIPS still incurs 1 cycle branch penalty
»  Other machines: branch target known before outcome

Four Branch Hazard Alternatives

©  #4: Delayed Branch
u  Define branch to take place AFTER a following instruction

 branch instruction
 sequential successor1
 sequential successor2

 sequential successorn

 branch target if taken

u  1 slot delay allows proper decision and branch target address in 5 stage
pipeline

u  MIPS uses this

Scheduling Branch Delay Slots

u  A is the best choice, fills delay slot & reduces instruction count (IC)
u  In B, the sub instruction may need to be copied, increasing IC
u  In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Delayed Branch

© Compiler effectiveness for single branch delay slot:
u  Fills about 60% of branch delay slots.
u  About 80% of instructions executed in branch delay slots useful in

computation.
u  About 50% (60% x 80%) of slots usefully filled.

© Delayed Branch downside: As processor go to deeper pipelines
and multiple issue, the branch delay grows and need more than
one delay slot
u  Delayed branching has lost popularity compared to more expensive but

more flexible dynamic approaches.
u  Growth in available transistors has made dynamic approaches relatively

cheaper.

Evaluating Branch Alternatives

©  The effective pipeline speedup with branch penalties, assuming
an ideal CPI of 1, is	

branches from cycles stall Pipeline1
depth Pipelinespeedup Pipeline

+
=

penaltyBranch frequencyBranch 1
depth Pipelinespeedup Pipeline
×+

=

penaltyBranch frequencyBranch branches from cycles stall Pipeline ×=

Because of the following:

We obtain

Performance on Control Hazard (1/2)

©  Example 3 (pA-25): for a deeper pipeline, such as that in a MIPS R4000, it
takes at least three pipeline stages before the branch-target address is known
and an additional cycle before the branch condition is evaluated, assuming no
stalls on the registers in the conditional comparison, A three-stage delay leads
to the branch penalties for the three simplest prediction schemes listed in the
following Figure A.15. Find the effective additional to the CPI arising from
branches for this pipeline, assuming the following frequencies:

Unconditional branch 4%
Conditional branch, untaken 6%
Conditional branch, taken 10%

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predicted taken 2 3 2

Predicted un taken 2 0 3

Figure A.15

Performance on Control Hazard (2/2)

© Answer

Additions to the CPI from branch cost

Branch
scheme

Unconditional
branches

Untaken
conditional
branches

Taken
conditional
branches

All branches

Frequency of
event 4% 6% 10% 20%

Stall pipeline 0.08 0.18

0.30 0.56

Predicted
taken

0.08

0.18

0.20 0.46

Predicted
untaken

0.08

0.00 0.30 0.38

Branch Prediction

©  Longer pipelines can’t readily determine branch outcome
early
u  Stall penalty becomes unacceptable

© Predict outcome of branch
u  Only stall if prediction is wrong

©  In MIPS pipeline
u  Can predict branches not taken
u  Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

More-Realistic Branch Prediction

© Static branch prediction
u Based on typical branch behavior
u Example: loop and if-statement branches

»  Predict backward branches taken
»  Predict forward branches not taken

© Dynamic branch prediction
u Hardware measures actual branch behavior

»  e.g., record recent history of each branch (BPB or BHT)

u Assume future behavior will continue the trend
»  When wrong, stall while re-fetching, and update history

Static Branch Prediction

Dynamic Branch Prediction

©  1-bit prediction scheme
u  Low-portion address as address for a one-bit flag for Taken or NotTaken

historically
u  Simple

©  2-bit prediction
u  Miss twice to change

Contents

1.  Pipelining Introduction
2.  The Major Hurdle of Pipelining—Pipeline Hazards
3.  RISC-V ISA and its Implementation

Reading:

u  Textbook: Appendix C
u  RISC-V ISA
u  Chisel Tutorial

