
Lecture	03:	ISA	Introduc1on	

	
CSE	564	Computer	Architecture	Summer	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1	



Contents	

1.   Introduc1on	

2.   Classifying	Instruc1on	Set	Architectures	

3.   Memory	Addressing	

4.   Type	and	Size	of	Operands	

5.   Opera1ons	in	the	Instruc1on	Set	

6.   Instruc1ons	for	Control	Flow	

7.   Encoding	an	Instruc1on	Set	

8.   CrosscuLng	Issues:	The	Role	of	Compilers	

9.   RISC-V	ISA	

	

•  Supplement		

–  MIPS	ISA	
–  RISC	vs	CISC	
–  Compiler	compilaFon	stages	
–  ISA	Historical		

•  	Appendix	L	
–  Comparison	of	ISA	

•  Appendix	K	
2	



The MIPS Instruction Set 

•  Used as the example as introduction 
•  Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 
•  Large share of embedded core market 

–  Applications in consumer electronics, network/storage 
equipment, cameras, printers, … 

–  Closed one to RISC-V 
•  Typical of many modern ISAs 

–  See MIPS Reference Data tear-out card, and Appendixes 
B and E in the reference textbook 

3	



Arithmetic Operations 

•  Add and subtract, three operands 
–  Two sources and one destination 
 add a, b, c  # a gets b + c 

•  All arithmetic operations have this form 

•  Design Principle 1: Simplicity favours regularity 
–  Regularity makes implementation simpler 
–  Simplicity enables higher performance at lower cost 

4	



Arithmetic Example 

•  C code: 

 f = (g + h) - (i + j); 

•  Compiled MIPS code: 

 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 

5	



Register Operands 

•  Arithmetic instructions use register operands 
•  MIPS has a 32 × 32-bit register file 

–  Use for frequently accessed data 
–  Numbered 0 to 31 
–  32-bit data called a �word� 

•  Assembler names 
–  $t0, $t1, …, $t9 for temporary values 
–  $s0, $s1, …, $s7 for saved variables 

•  Design Principle 2: Smaller is faster 
–  c.f. main memory: millions of locations 

6	



Register Operand Example 

•  C code: 
 f = (g + h) - (i + j); 
–  f, …, j in $s0, …, $s4 

•  Compiled MIPS code: 
 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 

7	



Memory Operands 
•  Main memory used for composite data 

–  Arrays, structures, dynamic data 
•  To apply arithmetic operations 

–  Load values from memory into registers 
–  Store result from register to memory 

•  Memory is byte addressed 
–  Each address identifies an 8-bit byte 

•  Words are aligned in memory 
–  Address must be a multiple of 4 

•  MIPS is Big Endian 
–  Most-significant byte at least address of a word 
–  c.f. Little Endian: least-significant byte at least address 

8	



Memory Operand Example 1 

•  C code: 
 g = h + A[8]; 
–  g in $s1, h in $s2, base address of A in $s3 

•  Compiled MIPS code: 
–  Index 8 requires offset of 32 

•  4 bytes per word 
 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset	 base	register	

9	



Memory Operand Example 2 

•  C code: 
 A[12] = h + A[8]; 
–  h in $s2, base address of A in $s3 

•  Compiled MIPS code: 
–  Index 8 requires offset of 32 
 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 

10	



Registers vs. Memory 
•  Registers are faster to access than memory 
•  Operating on memory data requires loads and stores 

–  More instructions to be executed 
•  Compiler must use registers for variables as much as 

possible 
–  Only spill to memory for less frequently used variables 
–  Register optimization is important! 

11	



Immediate Operands 

•  Constant data specified in an instruction 
 addi $s3, $s3, 4 

•  No subtract immediate instruction 
–  Just use a negative constant 
 addi $s2, $s1, -1 

•  Design Principle 3: Make the common case fast 
–  Small constants are common 
–  Immediate operand avoids a load instruction 

12	



The Constant Zero 

•  MIPS/RISC-V register 0 ($zero) is the constant 0 
–  Cannot be overwritten 

•  Useful for common operations 
–  E.g., move between registers 
 add $t2, $s1, $zero 

13	



Representing Instructions 

•  Instructions are encoded in binary 
–  Called machine code 

•  MIPS instructions 
–  Encoded as 32-bit instruction words 
–  Small number of formats encoding operation code 

(opcode), register numbers, … 
–  Regularity! 

•  Register numbers 
–  $t0 – $t7 are reg�s 8 – 15 
–  $t8 – $t9 are reg�s 24 – 25 
–  $s0 – $s7 are reg�s 16 – 23 

14	



MIPS R-format Instructions 

•  Instruction fields 
–  op: operation code (opcode) 
–  rs: first source register number 
–  rt: second source register number 
–  rd: destination register number 
–  shamt: shift amount (00000 for now) 
–  funct: function code (extends opcode) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

15	



R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002	=	0232402016	

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

16	



Hexadecimal 
•  Base 16 

–  Compact representation of bit strings 
–  4 bits per hex digit 

0 0000 4 0100 8 1000 c 1100 
1 0001 5 0101 9 1001 d 1101 
2 0010 6 0110 a 1010 e 1110 
3 0011 7 0111 b 1011 f 1111 

n  Example:	eca8	6420	
n  1110	1100	1010	1000	0110	0100	0010	0000	

17	



MIPS I-format Instructions 

•  Immediate arithmetic and load/store instructions 
–  rt: destination or source register number 
–  Constant: –215 to +215 – 1 
–  Address: offset added to base address in rs 

•  Design Principle 4: Good design demands good 
compromises 
–  Different formats complicate decoding, but allow 32-bit 

instructions uniformly 
–  Keep formats as similar as possible 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

18	



Stored Program Computers 

•  Instructions represented in 
binary, just like data 

•  Instructions and data stored 
in memory 

•  Programs can operate on 
programs 
–  e.g., compilers, linkers, … 

•  Binary compatibility allows 
compiled programs to work 
on different computers 
–  Standardized ISAs 

The BIG Picture 

19	



Logical Operations 

•  Instructions for bitwise manipulation 

Operation C Java MIPS 
Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

n  Useful	for	extracFng	and	inserFng	groups	
of	bits	in	a	word	

§2.6 Logical O
perations 

20	



Shift Operations 

•  shamt: how many positions to shift  
•  Shift left logical 

–  Shift left and fill with 0 bits 
–  sll by i bits multiplies by 2i 

•  Shift right logical 
–  Shift right and fill with 0 bits 
–  srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

21	



AND Operations 

•  Useful to mask bits in a word 
–  Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 

22	



OR Operations 

•  Useful to include bits in a word 
–  Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 

23	



NOT Operations 

•  Useful to invert bits in a word 
–  Change 0 to 1, and 1 to 0 

•  MIPS has NOR 3-operand instruction 
–  a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register	0:	always	
read	as	zero	

24	



Conditional Operations 
•  Branch to a labeled instruction if a condition is true 

–  Otherwise, continue sequentially 
•  beq rs, rt, L1 

–  if (rs == rt) branch to instruction labeled L1; 
•  bne rs, rt, L1 

–  if (rs != rt) branch to instruction labeled L1; 
•  j L1 

–  unconditional jump to instruction labeled L1 

§2.7 Instructions for M
aking D

ecisions 

25	



Compiling If Statements 
•  C code: 

 if (i==j) f = g+h; 
else f = g-h; 

–  f, g, … in $s0, $s1, … 
•  Compiled MIPS code: 

       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … 

Assembler	calculates	addresses	

26	



Compiling Loop Statements 
•  C code: 
 while (save[i] == k) i += 1; 

–  i in $s3, k in $s5, address of save in $s6 
•  Compiled MIPS code: 

 Loop: sll  $t1, $s3, 2 /* x4 */      
    add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 

27	



More Conditional Operations 

•  Set result to 1 if a condition is true 
–  Otherwise, set to 0 

•  slt rd, rs, rt 
–  if (rs < rt) rd = 1; else rd = 0; 

•  slti rt, rs, constant 
–  if (rs < constant) rt = 1; else rt = 0; 

•  Use in combination with beq, bne 
 slt $t0, $s1, $s2  # if ($s1 < $s2) 
bne $t0, $zero, L  #   branch to L 

28	



Branch Addressing 

•  Branch instructions specify 
–  Opcode, two registers, target address 

•  Most branch targets are near branch 
–  Forward or backward 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

n  PC-relaFve	addressing	
n  Target	address	=	PC	+	offset	×	4	

n  PC	already	incremented	by	4	by	this	Fme	
29	



Jump Addressing 

•  Jump (j and jal) targets could be anywhere in text 
segment 
–  Encode full address in instruction 

op address 
6 bits 26 bits 

n  (Pseudo)Direct	jump	addressing	
n  Target	address	=	PC31…28	:	(address	×	4)	

30	



Target Addressing Example 

•  Loop code from earlier example 
–  Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 

31	



Addressing Mode Summary 

32	



C Sort Example 
•  Illustrates use of assembly instructions for a C 

bubble sort function 
•  Swap procedure (leaf) 

 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

–  v in $a0, k in $a1, temp in $t0 

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together 

33	



The Procedure Swap 
swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 

 

 

void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

34	



The Sort Procedure in C 
•  Non-leaf (calls swap) 

 void sort (int v[], int n) 
 { 
   int i, j; 
   for (i = 0; i < n; i += 1) { 
     for (j = i – 1; 
          j >= 0 && v[j] > v[j + 1]; 
          j -= 1) { 
       swap(v,j); 
     } 
   } 
 } 

–  v in $a0, k in $a1, i in $s0, j in $s1 

35	



The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 
         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 
         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 
         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 
         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 
         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 
         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 
         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass	
params	
&	call	

Move	
params	

Inner	loop	

Outer	loop	

Inner	loop	

Outer	loop	

36	



sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 

37	



Arrays vs. Pointers 

•  Array indexing involves 
–  Multiplying index by element size 
–  Adding to array base address 

•  Pointers correspond directly to memory addresses 
–  Can avoid indexing complexity 

§2.14 A
rrays versus P

ointers 

38	



Example: Clearing and Array 

clear1(int array[], int size) { 
  int i; 
  for (i = 0; i < size; i += 1) 
    array[i] = 0; 
} 

clear2(int *array, int size) { 
  int *p; 
  for (p = &array[0]; p < &array[size]; 
       p = p + 1) 
    *p = 0; 
} 

       move $t0,$zero   # i = 0 

loop1: sll $t1,$t0,2    # $t1 = i * 4 

       add $t2,$a0,$t1  # $t2 = 

                        #   &array[i] 

       sw $zero, 0($t2) # array[i] = 0 

       addi $t0,$t0,1   # i = i + 1 

       slt $t3,$t0,$a1  # $t3 = 

                        #   (i < size) 

       bne $t3,$zero,loop1 # if (…) 

                           # goto loop1 

       move $t0,$a0    # p = & array[0] 

       sll $t1,$a1,2   # $t1 = size * 4 

       add $t2,$a0,$t1 # $t2 = 

                       #   &array[size] 

loop2: sw $zero,0($t0) # Memory[p] = 0 

       addi $t0,$t0,4  # p = p + 4 

       slt $t3,$t0,$t2 # $t3 = 

                       #(p<&array[size]) 

       bne $t3,$zero,loop2 # if (…) 

                           # goto loop2 

39	



Comparison of Array vs. Ptr 

•  Multiply �strength reduced� to shift 
•  Array version requires shift to be inside loop 

–  Part of index calculation for incremented i 
–  c.f. incrementing pointer 

•  Compiler can achieve same effect as manual use of 
pointers 
–  Induction variable elimination 
–  Better to make program clearer and safer 

40	



Summary 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 
Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 

41	



Backup	

42	



ARM & MIPS Similarities 
•  ARM: the most popular embedded core 
•  Similar basic set of instructions to MIPS 

§2.16 R
eal S

tuff: A
R

M
 Instructions 

ARM MIPS 
Date announced 1985 1985 
Instruction size 32 bits 32 bits 
Address space 32-bit flat 32-bit flat 
Data alignment Aligned Aligned 
Data addressing modes 9 3 
Registers 15 × 32-bit 31 × 32-bit 
Input/output Memory 

mapped 
Memory 
mapped 

43	



Compare and Branch in ARM 

•  Uses condition codes for result of an arithmetic/logical 
instruction 
–  Negative, zero, carry, overflow 
–  Compare instructions to set condition codes without 

keeping the result 
•  Each instruction can be conditional 

–  Top 4 bits of instruction word: condition value 
–  Can avoid branches over single instructions 

44	



Instruction Encoding 

45	



The Intel x86 ISA 

•  Evolution with backward compatibility 
–  8080 (1974): 8-bit microprocessor 

•  Accumulator, plus 3 index-register pairs 
–  8086 (1978): 16-bit extension to 8080 

•  Complex instruction set (CISC) 
–  8087 (1980): floating-point coprocessor 

•  Adds FP instructions and register stack 
–  80286 (1982): 24-bit addresses, MMU 

•  Segmented memory mapping and protection 
–  80386 (1985): 32-bit extension (now IA-32) 

•  Additional addressing modes and operations 
•  Paged memory mapping as well as segments 

§2.17 R
eal S

tuff: x86 Instructions 

46	



The Intel x86 ISA 
•  Further evolution… 

–  i486 (1989): pipelined, on-chip caches and FPU 
•  Compatible competitors: AMD, Cyrix, … 

–  Pentium (1993): superscalar, 64-bit datapath 
•  Later versions added MMX (Multi-Media eXtension) instructions 
•  The infamous FDIV bug 

–  Pentium Pro (1995), Pentium II (1997) 
•  New microarchitecture (see Colwell, The Pentium Chronicles) 

–  Pentium III (1999) 
•  Added SSE (Streaming SIMD Extensions) and associated registers 

–  Pentium 4 (2001) 
•  New microarchitecture 
•  Added SSE2 instructions 

47	



The Intel x86 ISA 
•  And further… 

–  AMD64 (2003): extended architecture to 64 bits 
–  EM64T – Extended Memory 64 Technology (2004) 

•  AMD64 adopted by Intel (with refinements) 
•  Added SSE3 instructions 

–  Intel Core (2006) 
•  Added SSE4 instructions, virtual machine support 

–  AMD64 (announced 2007): SSE5 instructions 
•  Intel declined to follow, instead… 

–  Advanced Vector Extension (announced 2008) 
•  Longer SSE registers, more instructions 

•  If Intel didn�t extend with compatibility, its 
competitors would! 
–  Technical elegance ≠ market success 

48	



Basic x86 Registers 

49	



Basic x86 Addressing Modes 

•  Two operands per instruction 
Source/dest operand Second source operand 

Register Register 
Register Immediate 
Register Memory 
Memory Register 
Memory Immediate 

n  Memory	addressing	modes	
n  Address	in	register	

n  Address	=	Rbase	+	displacement	

n  Address	=	Rbase	+	2scale	×	Rindex	(scale	=	0,	1,	2,	or	3)	

n  Address	=		Rbase	+	2scale	×	Rindex	+	displacement	

50	



x86 Instruction Encoding 

•  Variable length encoding 
–  Postfix bytes specify 

addressing mode 
–  Prefix bytes modify 

operation 
•  Operand length, 

repetition, locking, … 

51	



Implementing IA-32 

•  Complex instruction set makes implementation difficult 
–  Hardware translates instructions to simpler 

microoperations 
•  Simple instructions: 1–1 
•  Complex instructions: 1–many 

–  Microengine similar to RISC 
–  Market share makes this economically viable 

•  Comparable performance to RISC 
–  Compilers avoid complex instructions 

52	


