CSE 564 Computer Architecture
Summer 2017

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan
Course information

- **Meeting Time:** 5:30 pm – 8:50 pm Monday Wednesday
- **Place:** Engineering Center 566
- **Grade:** 50% for 4 homeworks, 20% midterm + 30% final exam

- **Instructor:** Yonghong Yan
 - www.secs.oakland.edu/~yan, yan@oakland.edu
 - **Office:** 534 Engineering Center, **Tel:** (248) 370-4087
 - **Office Hours:** Monday 11:00 - 12:30PM, after class or by appointment

- **Public Course website:** http://passlab.github.io/CSE564
- **Private and homework submission:** moodle
- **Syllabus** for more details
Objectives

• Fundamentals and applications of computer architecture knowledge
 – Understand in-depth how software interacts with hardware
 • Instruction set and system software (compiler)
 – Explain key concepts in computer architectures
 • Processor architecture, memory hierarchy and cache coherence, CPU pipeline and out-of-order execution, instruction, data and thread level parallelism
 – Perform quantitative design and analysis of computer architecture for computer programming
 – Follow advanced and emerging technology and architectures

• Design of microprocessors using high-level hardware description languages
 – Knowing Chisel for designing RISC-V architectures
Required textbook

 - John L. Hennessy and David A. Patterson
 - Bible of computer architecture for graduate course
Reference textbook

 – John L. Hennessy and David A. Patterson
 – Sister book of the Bible for undergraduate course
Exams and Assignments

• Exams (50%): Test Fundamentals, close book/notes
 – Midterm (20%): 06/05 Monday during class
 – Final (30%): 06/26 Monday 5:30 – 8:50PM

• 4 Assignments (50%): Questions and development
 – Require both good and correct programming for processor design
 – Report and discuss your findings in report
 • Writing good document

• Attendance is NOT required, but highly recommended.
Schedule

May

<table>
<thead>
<tr>
<th>Su</th>
<th>Mo</th>
<th>Tu</th>
<th>We</th>
<th>Th</th>
<th>Fr</th>
<th>Sa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

June

<table>
<thead>
<tr>
<th>Su</th>
<th>Mo</th>
<th>Tu</th>
<th>We</th>
<th>Th</th>
<th>Fr</th>
<th>Sa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites

• Good reasoning and analytical skills
• Skills of programming
 – C: macro, pointer, array, struct, union, function pointer, etc.
 – Java or other high-level languages
 – Scripting will help
• Basic (undergraduate) knowledge of computer architecture
 – Processor architecture, memory hierarchy, etc
• Familiarity with Linux environment
• Talk with me if you have concern