Lecture 23: Distributed Memory
Machines and Programming

Concurrent and Multicore Programming
CSE 436/536

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics (Part 2)

* Parallel architectures and hardware
— Parallel computer architectures
— Memory hierarchy and cache coherency
* Manycore GPU architectures and programming
— GPUs architectures
— CUDA programming

@ Programming on large scale systems (Chapter 6)
— MPI (point to point and collectives)
— Introduction to PGAS languages, UPC and Chapel

* Parallel algorithms (Chapter 8,9 &10)
— Dense matrix, and sorting

Acknowledgement

* Slides adapted from U.C. Berkeley course CS267/EngC233
Applications of Parallel Computers by Jim Demmel and
Katherine Yelick, Spring 2011

— http://www.cs.berkeley.edu/~demmel/cs267 Sprll/

* And materials from various sources

Recap: Node-level Architecture and Programming

* Shared memory multiprocessors: multicore, SMP, NUMA

— Deep memory hierarchy, distant memory much more
expensive to access.

— Machines scale to 10s or 100s of processors

— Instruction Level Parallelism (ILP), Data Level Parallelism (DLP)
and Thread Level Parallelism (TLP)

— OpenMP, Cilk, pthread, etc

* Manycore and heterogeneous system
— Discrete memory space between host and accelerators
— Manycore goes to 1000s PUs
— SIMT or other type of lightweight threading model
— CUDA, OpenMP/OpenACC, etc

HPC Architectures (TOP500, Nov 2014)

Architecture System Share

ARCHITECTURES -
100% SIMD q
oo Constellations
Clusters
60% MPP

40%

20%

Single
Proc.

93 9% 9% %6 97 98 99 00 01 02 03 04 05 06 07 08 09 10 M 12 13 ‘14

Outline

«@ Cluster Introduction

* Distributed Memory Architectures
— Properties of communication networks
— Topologies
— Performance models

®* Programming Distributed Memory Machines using
Message Passing
— Overview of MPI
— Basic send/receive use
— Non-blocking communication
— Collectives

Clusters

* A group of linked computers, working together closely
so that in many respects they form a single computer.

* Consists of
— Nodes(Front + computing)
— Network
— Software: OS and middleware

’ Cluster Middle ware

-
-

2 B d D ,
< YA
- - — ,..l . e

— g

-« - &

pt swrmlpsacior Highlights of Tianhe-2

Nodes 16000

Mem 1.4PB

Racks 125+8+13+24=170 (720m2)

125 x Rack
Cool Close-coupled chilled) S l Rack (x Rack)
patercaniey == 10K (8 x Frame)

/TH-Express2

Power 17.8 MW (1.9GFlops/W) H] TH-2

Frame = . g
A (8 x board) — K

Y’ Compute

APM

B

R PT Computin ude ol Nmde et
_. PT Cammputin foudie Campds Node T
FT Campalin Nnde Tl Ymde :_:_:
e 1 e Ve 1D S Mende e e
B O i@ O
P larven e el

FFA500 i

#4096
Hybrid Hierarchy shared storage System

27 National University of Defense Technology

#1 of Top500 Released 06/20/2016

New Chinese Supercomputer Named World’s
Fastest System on Latest TOP500 List
June 20, 2016, 4:01 a.m.

FRANKFURT, Germany; BERKELEY, Calif.; and KNOXVILLE, Tenn.—China
maintained its No. 1 ranking on the 47th edition of the TOP500 list of the
world’s top supercomputers, but with a new system built entirely using

processors designed and made in China. Sunway TaihuLight is the new
No. 1 system with 93 petaflop/s (quadrillions of calculations per second)
on the LINPACK benchmark.

http://www.top500.org/

NEWS

China Tops Supercomputer Rankings
with New 93-Petaflop Machine
Michael Feldman, June 20, 2016, 9 a.m.

A new Chinese supercomputer,
the Sunway TaihuLight,
captured the number one spot
on the latest TOP500 list of
supercomputers released on
Monday morning at the International
Supercomputing Conference (ISC) being held in
Frankfurt, Germany. With a Linpack mark of 93

petaflops, the system outperforms the former

IN DEPTH

RMAX RPEAK POWE
RANK SITE SYSTEM CORES (TFLOP/S) (TFLOP/S) IKW)

Sequoia

China Races Ahead in TOP500

Supercomputer List, Ending US 10

Supremacy

RANK SITE

1

National Supercomputing
Center in Wuxi
China

National Super Computer
Center in Guangzhou
China

DOE/SC/0Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National
Laboratory
United States

DOE/NNSA/LANL/SNL
United States

Swiss National
Supercomputing Centre (CSCS)
Switzerland

HLRS -
Hochstleistungsrechenzentrum
Stuttgart

Germany

King Abdullah University of
Science and Technology
Saudi Arabia

http://www.top500.org/lists/2016/06/

Top 10 of Top500

SYSTEM

Sunway TaihuLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway
NRCPC

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster,
Intel Xeon E5-2692 12C 2.200GHz, TH Express-2,
Intel Xeon Phi 31S1P

NUDT

Titan - Cray XK7, Opteron 6274 16C 2.200GHz,
Cray Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz,
Custom
IBM

K computer, SPARCé4 VllIfx 2.0GHz, Tofu
interconnect

Fujitsu

Mira - BlueGene/Q, Power BQC 14C 1.60GHz,

Custom
IBM

Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz,
Aries interconnect
Cray Inc.

Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz,
Aries interconnect , NVIDIA K20x
Cray Inc.

Hazel Hen - Cray XC40, Xeon E5-2680v3 12C
2.5GHz, Aries interconnect
Cray Inc.

Shaheen Il - Cray XC40, Xeon E5-2698v3 16C
2.3GHz, Aries interconnect
Cray Inc.

CORES

10,649,600

3,120,000

560,640

1,572,864

705,024

786,432

301,056

115,984

185,088

196,608

RMAX
(TFLOP/S)

93,014.6

33,862.7

17,590.0

17,173.2

10,510.0

8,586.6

8,100.9

6,271.0

5,640.2

5,537.0

RPEAK
(TFLOP/S)

POWER
(KW)

125,435.9 15,371

54,902.4 17,808

27,112.5 8,209

20,132.7

7,890

11,280.4

12,660

10,066.3

3,945

11,078.9

7,788.9

2,325

7,403.5

7,235.2 2,834
11

Cluster Classification

High availability clusters Network Load
(HA) (Linux) balancing clusters

HPC Clusters

HPC Beowulf Cluster

(Ethernet,Infiniband....)
+ (MPI) 1

* Master node: or service/front node (used to interact with users locally
or remotely)

* Computing Nodes : performance computations

* |nterconnect and switch between nodes: e.g. G/10G-bit Ethernet,
Infiniband

* Inter-node programming
— MPI(Message Passing Interface) is the most commonly used one.

Network Switch

DOOO0OOO0 sm

P PP PP

Compute nodes

Network Interface Card (NIC)

Outline

® Cluster Introduction

@ Distributed Memory Architectures
— Properties of communication networks
— Topologies
— Performance models

®* Programming Distributed Memory Machines using
Message Passing
— Overview of MPI
— Basic send/receive use
— Non-blocking communication
— Collectives

16

Historical Perspective

* Early distributed memory machines were:
— Collection of microprocessors.

— Communication was performed using bi-directional queues
between nearest neighbors.

* Messages were forwarded by processors on path.
— “Store and forward” networking

* There was a strong emphasis on topology in algorithms, in
order to minimize the number of hops = minimize time

=Ty
il il
o .

Network Analogy

* To have a large number of different transfers occurring at
once, you need a large number of distinct wires
— Not just a bus, as in shared memory

* Networks are like streets:
— Link = street.
— Switch = intersection.
— Distances (hops) = number of blocks traveled.
— Routing algorithm = travel plan.

* Properties:
— Latency: how long to get between nodes in the network.

— Bandwidth: how much data can be moved per unit time.

* Bandwidth is limited by the number of wires and the rate at which
each wire can accept data.

18

Latency and Bandwidth

* Latency: Time to travel from one location to another for a
vehicle
— Vehicle type (large or small messages)
— Road/traffic condition, speed-limit, etc

* Bandwidth: How many cars and how fast they can travel
from one location to another
— Number of lanes

19

Design Characteristics of a Network

Topology (how things are connected)

— Crossbar, ring, 2-D and 3-D mesh or torus, hypercube, tree,
butterfly, perfect shuffle

Routing algorithm:

— Example in 2D torus: all east-west then all north-south (avoids
deadlock).

Switching strategy:

— Circuit switching: full path reserved for entire message, like
the telephone.

— Packet switching: message broken into separately-routed
packets, like the post office.
Flow control (what if there is congestion):

— Stall, store data temporarily in buffers, re-route data to other
nodes, tell source node to temporarily halt, discard, etc.

20

Performance Properties of a Network: Latency

* Diameter: the maximum (over all pairs of nodes) of the shortest
path between a given pair of nodes.
* |atency: delay between send and receive times
— Latency tends to vary widely across architectures
— Vendors often report hardware latencies (wire time)
— Application programmers care about software latencies (user
program to user program)
®* QObservations:
— Latencies differ by 1-2 orders across network designs
— Software/hardware overhead at source/destination dominate cost
(1s-10s usecs)
— Hardware latency varies with distance (10s-100s nsec per hop) but is
small compared to overheads

* Latency is key for programs with many small messages

| second = 10”3 millseconds (ms) = 106 microseconds (us) = 109 nanoseconds

(ns) .

Latency on Some Machines/Networks

25

Roundtrip Latency (usec)

8-byte I}L?lzmdtrip Latency

B MPI ping-pong

Elan3/Alpha Elan4/1A64

Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Latencies shown are from a ping-pong test using MPI

These are roundtrip numbers: many people use % of roundtrip time to
approximate 1-way latency (which can’ t easily be measured)

22

End to End Latency

(1/2 roundtrip) Over Time

100 . ”QLE glg :
Y
+ Paragon
¢+ CM5 * SBTS2 + 36.34
. nCubg/%BD
* 13D $ T3E18.916
+ Myrinet
20 * KSR ! -powea 227
> .20
* Cenju3 * 69743755 ¢ 6.905
* 481
+ 33
* SPP ¢ Quadrics, 5 g
+ SPP
¢ Quadrics
* T3E
1 : : .
1990 1995 2000 2005 2010
Year (approximate)

e Latency has not improved significantly, unlike Moore’ s Law
e T3E (shmem) was lowest point —in 1997

Data from Kathy Yelick, UCB and NERSC
23

Performance Properties of a Network:
Bandwidth

* The bandwidth of a link = # wires / time-per-bit

* Bandwidth typically in Gigabytes/sec (GB/s), i.e., 8* 220 bits
per second

* Effective bandwidth is usually lower than physical link
bandwidth due to packet overhead.

Routing

- Bandwidth is important for and contro
applications with mostly large
messages Data

payload

Error code

Trailer

24

Bandwidth on Existing Networks

Flood Bandwidth for 2MB messages
100%
’ 857 925 1504

0% m MPI
m
S 80%
£ o 610 630
S
Q 605 |
®
O 50% -
o
< 40% |
-
© 30% -
o
5 20% 1
o

10%

0% ; ; ; ; ;

BElan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

* Flood bandwidth (throughput of back-to-back 2MB
messages)

Bandwidth (MB/sec)

Note: bandwidth depends on SW, not just HW

Bandwidth Chart

400 A

350
2 — —— — —
300 ./ 4_/4

250
- ///‘
== * .
150 - / —
100 N o & L g /— =

h e
/ /
50
0 T T T 1
2048 4096 8192 16384 32768 65536 131072

Message Size (Bytes)

—— T3E/MPI
——- T3E/Shmem
—&— |BM/MPI
IBM/LAPI
—*— Compag/Put
—@— Compag/Get
—— M2K/MPI
— M2K/GM
—— Dolphin/MPI
—&— Giganet/VIPL
SysKonnect

Data from Mike Welcome, NERSC 26

Performance Properties of a Network: Bisection
Bandwidth

®* Bisection bandwidth: bandwidth across smallest cut that
divides network into two equal halves

* Bandwidth across “narrowest” part of the network

®
not a
- == DISection
bisection cut
cut 1= = = = = -
bisection bw= link bw bisection bw = sqrt(n) * link bw

e Bisection bandwidth is important for algorithms in which all
processors need to communicate with all others

27

Network Topology

* In the past, there was considerable research in network
topology and in mapping algorithms to topology.

— Key cost to be minimized: number of “hops” between nodes
(e.g. “store and forward”)

— Modern networks hide hop cost (i.e., “wormhole routing”), so
topology is no longer a major factor in algorithm performance.
* Example: On IBM SP system, hardware latency varies from
0.5 usec to 1.5 usec, but user-level message passing latency

is roughly 36 usec.

* Need some background in network topology
— Algorithms may have a communication topology
— Topology affects bisection bandwidth.

28

Linear and Ring Topologies

® Linear array
oo o o o o o °

— Diameter = n-1; average distance ~n/3.

— Bisection bandwidth =1 (in units of link bandwidth).

®* Torus or Ring

S e,
- - -
r - - - OJ
— Diameter = n/2; average distance ~ n/4.

— Bisection bandwidth = 2.
— Natural for algorithms that work with 1D arrays.

29

Meshes and Tori

* Two dimensional mesh * Two dimensional torus

— Diameter=2 * (sqrt(n)—-1) — Diameter =sqrt(n)

— Bisection bandwidth = sqgrt(n) — Bisection bandwidth = 2* sgrt(n)
S S S S) <D.)
I G B B R L i i R S
A R A ¢ e e S e e T
A R A ¢ e s e S
A R A ¢ e T T e e
e P

e Generalizes to higher dimensions
e Cray XT (eg Franklin@NERSC) uses 3D Torus
e Natural for algorithms that work with 2D and/or 3D arrays (matmul)
30

Hypercubes

* Number of nodes n =29 for dimension d.
— Diameter =d.
— Bisection bandwidth = n/2.

® o0 ﬁ @
c0od 1d 2d 3d 4d

* Popularin early machines (Intel iPSC, NCUBE).
— Lots of clever algorithms.

* Greycode addressing: 010

— Each node connected to
others with 1 bit different.

110

10

000

111
11
101

001

31

Trees

* Diameter = log n. }{
* Bisection bandwidth = 1.

* Easy layout as planar graph. }{
* Many tree algorithms (e.g., summation).

* Fat trees avoid bisection bandwidth problem:

— More (or wider) links near top. °* o
— Example: Thinking Machines CM-5. ollld

ollo
Sy,

Butterflies

Diameter = log n.
Bisection bandwidth = n.
Cost: lots of wires.

Used in BBN Butterfly.
Natural for FFT.

butterfly switch

Ex: to get from proc 101 to 110,
Compare bit-by-bit and
Switch if they disagree, else not

o

o)@

multistage butterfly network

33

Topologies in Real Machines

newer

older

Cray XT3 and XT4 3D Torus (approx)
Blue Gene/L 3D Torus

SGI Altix Fat tree

Cray X1 4D Hypercube*
Myricom (Millennium) Arbitrary
Quadrics (in HP Alpha Fat tree

server clusters)

IBM SP Fat tree (approx)
SGl Origin Hypercube

Intel Paragon (old) 2D Mesh

BBN Butterfly (really old) | Butterfly

Many of these are
approximations:

E.g., the X1l isreally a
“quad bristled
hypercube” and some
of the fat trees are not
as fat as they should be
at the top

34

Evolution of Distributed Memory Machines

* Special queue connections are being replaced by direct memory
access (DMA):

— Processor packs or copies messages.
— Initiates transfer, goes on computing.

* Wormbhole routing in hardware:

— Special message processors do not interrupt main processors along
path.

— Long message sends are pipelined.
— Processors don’ t wait for complete message before forwarding

* Message passing libraries provide store-and-forward
abstraction:

— Can send/receive between any pair of nodes, not just along one
wire.

— Time depends on distance since each processor along path must
participate.

35

Performance Models

36

Shared Memory Performance Models

* Parallel Random Access Memory (PRAM)

* All memory access operations complete in one clock period
-- no concept of memory hierarchy (“too good to be true”).

— OK for understanding whether an algorithm has enough
parallelism at all.

— Parallel algorithm design strategy: first do a PRAM algorithm,
then worry about memory/communication time (sometimes
works)

* Slightly more realistic versions exist
— E.g., Concurrent Read Exclusive Write (CREW) PRAM.
— Still missing the memory hierarchy

37

Latency and Bandwidth Model

* Time to send message of length n is roughly

Time = latency + n*cost_per_word
= latency + n/bandwidth

* Topology is assumed irrelevant.
* Often called “o-f3 model” and written
Time = a + n*B
* Usually a>> 3 >> time per flop.
— One long message is cheaper than many short ones.

o + ¥ << n¥x(a + 1*p)

— Can do hundreds or thousands of flops for cost of one message.

* Lesson: Need large computation-to-communication ratio to be
efficient.

38

Alpha-Beta Parameters on Current Machines

* These numbers were obtained empirically

machine o p

T3E/Shm 1.2| 0.003] o is latency in usecs
T3E/MPI 6.7] 0.003] Bis BW in usecs per Byte
IBM/LAPI 9.4] 0.003

IBM/MPI 7.6] 0.004

Quadrics/Get 3.267] 0.00498

Quadrics/Shm 1.3] 0.005| How well does the model
Quadrics/MPI 7.3 0.005 Time = a + n*p

Myrinet/GM 7.7 0.005| predict actual performance?
Myrinet/MPI 7.2 0.006

Dolphin/MPI 7.767| 0.00529

Giganet/VIPL 3.0 0.010

GigE/VIPL 4.6 0.008

Gige/MPI 5.854]1 0.00872

39

Model Time Varying Message Size & Machines

10000 +———

1000 _»

machine p

—e— T3E/Shm
—a— T3E/MPI
—A— IBMILAPI
—x— IBM/MPI

100 —¥— Quadrics/Shm

—e8— Quadrics/MPI
Myrinet/tGM
Myrinet/MPI

——— Gige/MIPL

10 +— GigE/MPI

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

40

Measured Message Time

10000

1000

100

10

machine —

—+— T3E/Shm
—a— T3E/MPI
—&— IBM/LAPI
—— IBM/MPI
—x— Quadrics/Shm
—e— Quadrics/MPI
Myrinet/GM
Myrinet/MPI
—— GigE/VIPL
—a+— GigE/MPI

128

256

512

1024

size

2048

4096

8192

16384 32768 65536 131072

41

LogP Model

+— P (processors) ——»

PIm| [P

o (overhead)

Ml .. [P|m
o (overhead)/ —49 (9ap)

L (latency)
interconnection network

* 4 performance parameters

L: latency experienced in each communication event

* time to communicate word or small # of words

0: send/recv overhead experienced by processor

* time processor fully engaged in transmission or reception
g: gap between successive sends or recvs by a processor

e 1/g = communication bandwidth

P: number of processor/memory modules

42

LogP Parameters: Overhead & Latency

* Non-overlapping * Send and recv overhead
overhead can overlap
Osend
— Osend
L -
OI'CCV
OI'CCV
EEL = End-to-End Latency n EEL=f(o, 4 L, 0,...)
= Osend +L+ Orecv = max(osend’ L’ Orecv)

43

LogP Parameters: gap

°* The Gap is the delay between sending -
messages

send

* Gap could be greater than send overhead 8P

— NIC may be busy finishing the processing
of last message and cannot accept a new gap
one.

— Flow control or backpressure on the
network may prevent the NIC from
accepting the next message to send.

* No overlap = time to send n messages
(pipelined) =

(Osend + L T o

<& <& <&
< /‘ /,
< <
< <

- gap) +n*gap =a+ n*p

recv

Results: EEL and Overhead

usec

25

20

15 —
10 § L
O _ 3 | [] — | | A\ | \ |

Q\ Q o Q Q\ Q\ 0\ Q’)\. Q\ @ Q\ v

S LT TSN LGSO &
S X & & S
SR A A S I R R DRSPS

A > & & NANCL

Send Overhead (alone) B Send & Rec Overhead & Rec Overhead (alone) O Added Latency

Data from Mike Welcome, NERSC
45

Send Overhead Over Time

* Overhead has not improved significantly; T3D was best
— Lack of integration; lack of attention in software

usecC

14
1o ¥ NCube/2 = CM>
10
(]

8 —c -ﬂrampn:in
5 OMS5 8 T3E g3y B Dolphin
4 T Veiko =

9 @ Paragon :Mynnet

T Melko EViyrinet2K

0 m T3D 8 T3E O Com?gaq
1990 1992 1994 1996 1998 2000 2002

Year (approximate)

Data from Kathy Yelick, UCB and NERFC

46

Limitations of the LogP Model

* The LogP model has a fixed cost for each message
— This is useful in showing how to quickly broadcast a single word
— Other examples also in the LogP papers

* For larger messages, there is a variation LogGP
— Two gap parameters, one for small and one for large messages
— The large message gap is the b in our previous model

* No topology considerations (including no limits for bisection
bandwidth)

— Assumes a fully connected network
— OK for some algorithms with nearest neighbor communication, but
with “all-to-all” communication we need to refine this further
* Thisis a flat model, i.e., each processor is connected to the
network
— Clusters of multicores are not accurately modeled

47

Summary

* Latency and bandwidth are two important network metrics
— Latency matters more for small messages than bandwidth
— Bandwidth matters more for large messages than bandwidth
— Time =a + n*f

* Communication has overhead from both sending and
receiving end
— EEL = End-to-End Latency = 0

* Multiple communication can overlap

+L+o

send recv

48

Outline

® Cluster Introduction

* Distributed Memory Architectures
— Properties of communication networks
— Topologies
— Performance models

@ Programming Distributed Memory Machines using
Message Passing
— Overview of MPI
— Basic send/receive use
— Non-blocking communication
— Collectives

49

Programming With MPI

°* MPIlis a library

— All operations are performed with routine calls
— Basic definitions in

 mpi.h for C

e mpif.h for Fortran 77 and 90

* MPI module for Fortran 90 (optional)

Slide source: Bill Gropp, ANL

MPI: the Message Passing Interface

The minimal set of MPI routines.

MPI Init Initializes MPI.

MPI Finalize Terminates MPI.

MPI_Comm_size Determinesthe number of processes.
MPI_Comm_rank Determines the label of calling process.
MPI_Send Sends a “unbuffered/blocking” message.

MPI_ RecvV Receives a “unbuffered/blocking message.

It is possible to write fully-functional message-passing programs by using only the
six routines.

51

SPMD Program Models

* SPMD (Single Program, Multiple Data) for parallel regions

— All PEs (Processor Elements) execute the same program in
parallel, but has its own data

— Each PE uses a unique ID to access its portion of data

— Different PEs can follow different paths through the same
code

® Each PE knows its own ID
if(lmy_id==n){ }
else{ }

®* SPMD is by far the most commonly used pattern for
structuring parallel programs
— MPI, OpenMP, CUDA, etc

52

Finding Out About the Environment

* Two important questions that arise early in a parallel
program are:

— How many processes are participating in this
computation?
— Which oneam I?
* MPI provides functions to answer these questions:

— MPI_Comm_size reports the number of processes, size

— MPI_Comm_rank reports the rank, a number between 0 and
size-1, identifying the calling process

Slide source: Bill Gropp, ANL

Hello World (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv|[])
{
int rank, size;

MPI Inlt(&argc, &argv);
MPI Comm | rank (MPI COMM WORLD,

MPI Comm . size(MPI ~ COMM WORLD,

printf("I am %d of %d\n", rank,

MPI Finalize();
return O;

}

Try this on login.secs.oakland.edu
mpicc mpihello.c

mpd &

mpirun -np 4 ./a.out

&rank) ;
&size);
size) ;

54

Notes on Hello World

* All MPI programs begin with MPI_Init and end with
MPI_Finalize

* MPI_COMM_WORLD is defined by mpi.h (in C) or m‘pif.h’
(in Fortran) and designates all processes in the MPI “job

* Each statement executes independently in each process
— includingthe printf/print statements

* Libc1/Ois NOT part of MPI-2

— print and write to standard output or error not part of either
MPI-1 or MPI-2

— output order is undefined (may be interleaved by character,
line, or blocks of characters),

®* To run with 4 processes
mpirun -np 4 a.out

Slide source: Bill Gropp, ANL

Some Basic Concepts

Processes can be collected into groups

Each message is sent in a context, and must be

received in the same context
— Provides necessary support for libraries

A group and context together form a communicator

A process is identified by its rank in the group
associated with a communicator

There is a default communicator whose group contains
all initial processes, called MPI_COMM WORLD

Slide source: Bill Gropp, ANL

Communicators

A communicator defines a communication domain

— A set of processes that are allowed to communicate with each
other.

Information about communication domains is stored in
variables of type MPI Comm.

Communicators are used as arguments to all message
transfer MPI routines.

A process can belong to many different (possibly
overlapping) communication domains.

MPI COMM WORLD includes all the processes.

57

MPI Basic Send/Receive

* We need to fill in the details in

Process 0 Process 1

Send(data)\\\\\\

*Receive(data)

* Things that need specifying:
— How will “data” be described?
— How will processes be identified?
— How will the receiver recognize/screen messages?
— What will it mean for these operations to complete?

Slide source: Bill Gropp, ANL

MPI Datatypes

* The data in a message to send or receive is described by a
triple (address, count, datatype), where

°* An MPI datatype is recursively defined as:
— predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE)
— a contiguous array of MPI datatypes
— a strided block of datatypes
— an indexed array of blocks of datatypes
— an arbitrary structure of datatypes

* There are MPI functions to construct custom datatypes, in
particular ones for subarrays

* May hurt performance if datatypes are complex

Slide source: Bill Gropp, ANL 59

MPI Tags

* Messages are sent with an accompanying user-defined
integer tag, to assist the receiving process in identifying
the message

* Messages can be screened at the receiving end by
specifying a specific tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive

* Some non-MPI message-passing systems have called

tags “message types . MPI calls them tags to avoid
confusion with datatypes

Slide source: Bill Gropp, ANL 60

MPI Basic (Blocking) Send

A(10) ——|

> B(20)

MPI_Send(A, 10, MPI DOUBLE, 1, ..) MPI Recv(B, 20, MPI DOUBLE, 0, ..)

MPI SEND (start, count, datatype, dest, tag,
comm)

°* The message buffer is described by (start, count,
datatype).

* The target process is specified by dest, which is the rank of the
target process in the communicator specified by comm.

* When this function returns, the data has been delivered to the
system and the buffer can be reused. The message may not
have been received by the target process.

Slide source: Bill Gropp, ANL

MPI Basic (Blocking) Send

A(10) ——|

> B(20)

MPI_Send(A, 10, MPI DOUBLE, 1, ..) MPI Recv(B, 20, MPI DOUBLE, 0, ..)

MPI RECV (start, count, datatype, source, tag,
comm, status)

* Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

®* source isrankin communicator specified by comm, or
MPI_ ANY SOURCE

* tagisatagto be matched on orMPI_ANY TAG

* receiving fewer than count occurrences of datatype is OK,
but receiving more is an error

* status contains further information (e.g. size of message)

Slide source: Bill Gropp, ANL 62

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv]|])

{

}

int rank, buf;

MPI Status status;

MPI Init(&argv, &argc);

MPI Comm rank(MPI COMM WORLD, &rank); SPMD Model

/* Process 0 sends and Process 1 receives */
if (rank == 0) { e

}

buf = 123456;

MPI_Send(&buf, 1, MPI_INT, 1, O, MP [WORLD) ;

else if (rank == 1) { <

MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM WORLD,
&status) ;

printf(“Received %d\n”, buf);

MPI Finalize();

return 0;

Slide source: Bill Gropp, ANL 63

Retrieving Further Information

e Status is a data structure allocated in the user’ s
program.

int recvd tag, recvd from, recvd count;

MPI_Status status;
MPI_Recv(..., MPI ANY SOURCE, MPI ANY TAG, ..., é&status)

recvd tag = status.MPI TAG;

recvd from = status.MPI SOURCE;
MPI Get count(&status, datatype, &recvd count);

Slide source: Bill Gropp, ANL 64

Tags and Contexts

* Separation of messages used to be accomplished by use of
tags, but
— this requires libraries to be aware of tags used by other
libraries.
— this can be defeated by use of “wild card” tags.

* Contexts are different from tags

— no wild cards allowed

— allocated dynamically by the system when a library sets up a
communicator for its own use.

* User-defined tags still provided in MPI for user convenience
in organizing application

Slide source: Bill Gropp, ANL

Running MPI Programs

* The MPI-1 Standard does not specify how to run an MPI program, just
as the Fortran standard does not specify how to run a Fortran program.

* In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require various scripts,
program arguments, and/or environment variables.

° mpiexec <args> is part of MPI-2, as a recommendation, but not a
requirement, for implementors.

° Use
mpirun —np # -nolocal a.out
for your clusters, e.q.
mpirun —np 3 —nolocal cpi

Slide source: Bill Gropp, ANL 66

MPI is Simple

* Many parallel programs can be written using just these
six functions, only two of which are non-trivial:

— MPI_INIT
— MPI_FINALIZE
— MPI_COMM SIZE
— MPI_COMM RANK
— MPI_SEND

— MPI_RECV

Slide source: Bill Gropp, ANL g7

* Send/receive
* Ping-poing
* Ring

The three examples

68

MPI References

* The Standard itself:
— at http://www.mpi-forum.org

— All MPI official releases, in both postscript and HTML

®* Other information on Web:
— http://www.mcs.anl.gov/mpi

* pointers to lots of stuff, including other talks and tutorials, a
FAQ, other MPI pages

— https://computing.linl.gov/tutorials/mpi/

Slide source: Bill Gropp, ANL

Books on MPI

Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2" edition), : vz
by Gropp, Lusk, and Skjellum, MIT Press, i

1999.

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

MPI: The Complete Reference - Vol 1 The MPI Core, by Snir, Otto,
Huss-Lederman, Walker, and Dongarra, MIT Press, 1998.

MPI: The Complete Reference - Vol 2 The MPI Extensions, by
Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, Saphir, and
Snir, MIT Press, 1998.

Designing and Building Parallel Programs, by lan Foster, Addison-
Wesley, 1995.

Parallel Programming with MPI, by Peter Pacheco, Morgan- o
Kaufmann, 1997. =

Message-Passing Interface

Slide source: Bill Gropp, ANL 70

