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Topics	(Part	2)	

•  Parallel	architectures	and	hardware	
–  Parallel	computer	architectures	
–  Memory	hierarchy	and	cache	coherency	

•  Manycore	GPU	architectures	and	programming	
–  GPUs	architectures	
–  CUDA	programming	

•  Programming	on	large	scale	systems	(Chapter	6)	
–  MPI	(point	to	point	and	collec;ves)	
–  IntroducHon	to	PGAS	languages,	UPC	and	Chapel	

•  Parallel	algorithms	(Chapter	8,9	&10)	
–  Dense	matrix,	and	sor;ng	

2	



Acknowledgement	

•  Slides	adapted	from	U.C.	Berkeley	course	CS267/EngC233	
ApplicaHons	of	Parallel	Computers	by	Jim	Demmel	and	
Katherine	Yelick,	Spring	2011	
–  hVp://www.cs.berkeley.edu/~demmel/cs267_Spr11/	

•  And	materials	from	various	sources	

3	



Recap:	Node-level	Architecture	and	Programming	

•  Shared	memory	mulHprocessors:	mulHcore,	SMP,	NUMA	

–  Deep	memory	hierarchy,	distant	memory	much	more	
expensive	to	access.	

–  Machines	scale	to	10s	or	100s	of	processors	
–  InstrucHon	Level	Parallelism	(ILP),	Data	Level	Parallelism	(DLP)	

and	Thread	Level	Parallelism	(TLP)	
–  OpenMP,	Cilk,	pthread,	etc	

•  Manycore	and	heterogeneous	system	
–  Discrete	memory	space	between	host	and	accelerators	
–  Manycore	goes	to	1000s	PUs	
–  SIMT	or	other	type	of	lightweight	threading	model	
–  CUDA,	OpenMP/OpenACC,	etc	
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HPC	Architectures	(TOP500,	Nov	2014)	
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Outline	

•  Cluster	IntroducHon	
•  Distributed	Memory	Architectures	

–  ProperHes	of	communicaHon	networks	
–  Topologies	
–  Performance	models	

•  Programming	Distributed	Memory	Machines	using	
Message	Passing	
–  Overview	of	MPI	
–  Basic	send/receive	use	
–  Non-blocking	communicaHon	
–  CollecHves	
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Clusters	

•  A	group	of	linked	computers,	working	together	closely	
so	that	in	many	respects	they	form	a	single	computer.		

•  Consists	of		
–  Nodes(Front	+	compuHng)	
–  Network	
–  Socware:	OS	and	middleware	
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#1	of	Top500	Released	06/20/2016	
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Top	10	of	Top500	
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High	availability	clusters	
(HA)	(Linux)	

Mission	cri;cal	applica;ons	

Also	known	as	Failover	Clusters,		
implemented	for	the	purpose	of	
improving	the	availability	of	
services	which	the	cluster	provides.		

provide	redundancy	

eliminate	single	points	of	
failure.	

Network	Load	
balancing	clusters	

Web	servers,	mail	servers,..	

operate	by	distribu;ng	a	
workload	evenly	over	
mul;ple	back	end	nodes.	

Typically	the	cluster	will	be	
configured	with	mul;ple	
redundant	load-balancing	
front	ends.		

all	available	servers	process	
requests.	

HPC	Clusters	

Aims	for	high	
performance	

and	throughput	
High-speed	
inter-connect	

Beowulf	

Cluster	Classifica;on	



( Ethernet,Infiniband….)  
+ (MPI) 

HPC	Beowulf	Cluster	

•  Master	node:	or	service/front	node	(used	to	interact	with	users	locally	
or	remotely)	

•  CompuHng	Nodes	:	performance	computaHons		
•  Interconnect	and	switch	between	nodes:		e.g.	G/10G-bit	Ethernet,	

Infiniband	
•  Inter-node	programming	

–  MPI(Message	Passing	Interface)	is	the	most	commonly	used	one.	
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Network	Switch	
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Network	Interface	Card	(NIC)	
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Outline	

•  Cluster	IntroducHon	
•  Distributed	Memory	Architectures	

–  ProperHes	of	communicaHon	networks	
–  Topologies	
–  Performance	models	

•  Programming	Distributed	Memory	Machines	using	
Message	Passing	
–  Overview	of	MPI	
–  Basic	send/receive	use	
–  Non-blocking	communicaHon	
–  CollecHves	
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Historical	Perspec;ve	

•  Early	distributed	memory	machines	were:	
–  CollecHon	of	microprocessors.	
–  CommunicaHon	was	performed	using	bi-direcHonal	queues	

between	nearest	neighbors.	
•  Messages	were	forwarded	by	processors	on	path.	

–  �Store	and	forward�	networking	
•  There	was	a	strong	emphasis	on	topology	in	algorithms,	in	
order	to	minimize	the	number	of	hops	=	minimize	Hme	
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Network	Analogy	

•  To	have	a	large	number	of	different	transfers	occurring	at	
once,	you	need	a	large	number	of	disHnct	wires	
–  Not	just	a	bus,	as	in	shared	memory	

•  Networks	are	like	streets:	
–  Link	=	street.	
–  Switch	=	intersecHon.	
–  Distances	(hops)	=	number	of	blocks	traveled.	
–  RouHng	algorithm	=	travel	plan.	

•  ProperHes:	
–  Latency:	how	long	to	get	between	nodes	in	the	network.	
–  Bandwidth:	how	much	data	can	be	moved	per	unit	;me.	

•  Bandwidth	is	limited	by	the	number	of	wires	and	the	rate	at	which	
each	wire	can	accept	data.	
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Latency	and	Bandwidth	

•  Latency:	Time	to	travel	from	one	locaHon	to	another	for	a	
vehicle		
–  Vehicle	type	(large	or	small	messages)	
–  Road/traffic	condiHon,	speed-limit,	etc	

•  Bandwidth:	How	many	cars	and	how	fast	they	can	travel	
from	one	locaHon	to	another	
–  Number	of	lanes	

19	



Design	Characteris;cs	of	a	Network	

•  Topology	(how	things	are	connected)	
–  Crossbar,	ring,	2-D	and	3-D	mesh	or	torus,	hypercube,	tree,	

buVerfly,	perfect	shuffle	....	
•  RouHng	algorithm:	

–  Example	in	2D	torus:	all	east-west	then	all	north-south	(avoids	
deadlock).	

•  Switching	strategy:	
–  Circuit	switching:	full	path	reserved	for	enHre	message,	like	

the	telephone.	
–  Packet	switching:	message	broken	into	separately-routed	

packets,	like	the	post	office.			
•  Flow	control	(what	if	there	is	congesHon):	

–  Stall,	store	data	temporarily	in	buffers,	re-route	data	to	other	
nodes,	tell	source	node	to	temporarily	halt,	discard,	etc.	
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Performance	Proper;es	of	a	Network:	Latency	

•  Diameter:		the	maximum	(over	all	pairs	of	nodes)	of	the	shortest	
path	between	a	given	pair	of	nodes.	

•  Latency:	delay	between	send	and	receive	Hmes	
–  Latency	tends	to	vary	widely	across	architectures	
–  Vendors	ocen	report	hardware	latencies	(wire	Hme)	
–  ApplicaHon	programmers	care	about	socware	latencies	(user	

program	to	user	program)	
•  ObservaHons:	

–  Latencies	differ	by	1-2	orders	across	network	designs	
–  Socware/hardware	overhead	at	source/desHnaHon	dominate	cost	

(1s-10s	usecs)	
–  Hardware	latency	varies	with	distance	(10s-100s	nsec	per	hop)	but	is	

small	compared	to	overheads	
•  Latency	is	key	for	programs	with	many	small	messages	
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I second = 10^3 millseconds (ms) = 10^6 microseconds (us) = 10^9 nanoseconds 
(ns) 



Latency	on	Some	Machines/Networks	

8-byte Roundtrip Latency
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•  Latencies	shown	are	from	a	ping-pong	test	using	MPI	
•  These	are	roundtrip	numbers:	many	people	use	½	of	roundtrip	Hme	to	

approximate	1-way	latency	(which	can�t	easily	be	measured)	



End	to	End	Latency	(1/2	roundtrip)	Over	Time	
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• Latency	has	not	improved	significantly,	unlike	Moore�s	Law	
• T3E	(shmem)	was	lowest	point	–	in	1997	

Data from Kathy Yelick, UCB and NERSC!



Performance	Proper;es	of	a	Network:	
Bandwidth	

•  The	bandwidth	of	a	link	=		#	wires	/	Hme-per-bit	
•  Bandwidth	typically	in	Gigabytes/sec	(GB/s),	i.e.,	8*	220	bits	
per	second	

•  EffecHve	bandwidth	is	usually	lower	than	physical	link	
bandwidth	due	to	packet	overhead.	
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applications with mostly large 
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Bandwidth	on	Exis;ng	Networks	

Flood Bandwidth for 2MB messages
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•  Flood	bandwidth	(throughput	of	back-to-back	2MB	
messages)	



Bandwidth	Chart	
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Note:	bandwidth	depends	on	SW,	not	just	HW	



Performance	Proper;es	of	a	Network:	Bisec;on	
Bandwidth	

•  BisecHon	bandwidth:		bandwidth	across	smallest	cut	that	
divides	network	into	two	equal	halves	

•  Bandwidth	across	�narrowest�	part	of	the	network	
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bisection  
cut 

not a  
bisection 
cut  

bisec>on	bw=	link	bw	 bisec>on	bw	=	sqrt(n)	*	link	bw	

• BisecHon	bandwidth	is	important	for	algorithms	in	which	all	
processors	need	to	communicate	with	all	others	



Network	Topology	

•  In	the	past,	there	was	considerable	research	in	network	
topology	and	in	mapping	algorithms	to	topology.	
–  Key	cost	to	be	minimized:		number	of	�hops�	between	nodes	

(e.g.	�store	and	forward�)	
–  Modern	networks	hide	hop	cost	(i.e.,	�wormhole	rouHng�),	so	

topology	is	no	longer	a	major	factor	in	algorithm	performance.	
•  Example:		On	IBM	SP	system,	hardware	latency	varies	from	
0.5	usec	to	1.5	usec,	but	user-level	message	passing	latency	
is	roughly	36	usec.	

•  Need	some	background	in	network	topology	
–  Algorithms	may	have	a	communicaHon	topology	
–  Topology	affects	bisecHon	bandwidth.	
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Linear	and	Ring	Topologies	

•  Linear	array	

–  Diameter	=	n-1;	average	distance	~n/3.	
–  BisecHon	bandwidth	=	1	(in	units	of	link	bandwidth).	

•  Torus	or	Ring	

–  Diameter	=	n/2;	average	distance	~	n/4.	
–  BisecHon	bandwidth	=	2.	
–  Natural	for	algorithms	that	work	with	1D	arrays.	

29"



Meshes	and	Tori		

•  Two	dimensional	mesh	
–  Diameter	=	2	*	(sqrt(	n	)	–	1)	
–  BisecHon	bandwidth	=			sqrt(n)	

•  Two	dimensional	torus	
–  Diameter	=	sqrt(	n	)	
–  BisecHon	bandwidth	=			2*	sqrt(n)	
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• Generalizes	to	higher	dimensions		
• Cray	XT	(eg	Franklin@NERSC)	uses	3D	Torus	

• 	Natural	for	algorithms	that	work	with	2D	and/or	3D	arrays	(matmul)	



Hypercubes	

•  Number	of	nodes	n	=	2d			for	dimension	d.	
–  Diameter	=	d.		
–  BisecHon	bandwidth	=	n/2.	

	

•  0d									1d									2d													3d																					4d	

•  Popular	in	early	machines	(Intel	iPSC,	NCUBE).	
–  Lots	of	clever	algorithms.		

•  Greycode	addressing:	
–  Each	node	connected	to																																																																											

others	with	1	bit	different.		
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Trees	

•  Diameter	=	log	n.	
•  BisecHon	bandwidth	=	1.	
•  Easy	layout	as	planar	graph.	
•  Many	tree	algorithms	(e.g.,	summaHon).	
•  Fat	trees	avoid	bisecHon	bandwidth	problem:	

–  More	(or	wider)	links	near	top.	
–  Example:	Thinking	Machines	CM-5.	
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BuXerflies	

•  Diameter	=	log	n.	
•  BisecHon	bandwidth	=	n.	
•  Cost:	lots	of	wires.	
•  Used	in	BBN	BuVerfly.	
•  Natural	for	FFT.	
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Topologies	in	Real	Machines	
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approximaHons:	
E.g.,	the	X1	is	really	a	
�quad	bristled	
hypercube�	and	some	
of	the	fat	trees	are	not	
as	fat	as	they	should	be	
at	the	top	



Evolu;on	of	Distributed	Memory	Machines	

•  Special	queue	connecHons	are	being	replaced	by	direct	memory	
access	(DMA):	
–  Processor	packs	or	copies	messages.	
–  IniHates	transfer,	goes	on	compuHng.	

•  Wormhole	rouHng	in	hardware:	
–  Special	message	processors	do	not	interrupt	main	processors	along	

path.	
–  Long	message	sends	are	pipelined.	
–  Processors	don�t	wait	for	complete	message	before	forwarding	

•  Message	passing	libraries	provide	store-and-forward	
abstracHon:	
–  Can	send/receive	between	any	pair	of	nodes,	not	just	along	one	

wire.	
–  Time		depends	on	distance	since	each	processor	along		path	must	

parHcipate.	
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Performance	Models	
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Shared	Memory	Performance	Models	

•  Parallel	Random	Access	Memory	(PRAM)	
•  All	memory	access	operaHons	complete	in	one	clock	period	
--	no	concept	of	memory	hierarchy	(�too	good	to	be	true�).	
–  OK	for	understanding	whether	an	algorithm	has	enough	

parallelism	at	all.	
–  Parallel	algorithm	design	strategy:	first	do	a	PRAM	algorithm,	

then	worry	about	memory/communicaHon	Hme	(someHmes	
works)	

•  Slightly	more	realisHc	versions	exist	
–  E.g.,	Concurrent	Read	Exclusive	Write	(CREW)	PRAM.	
–  SHll	missing	the	memory	hierarchy	
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Latency	and	Bandwidth	Model	

•  Time	to	send	message	of	length	n	is	roughly	

•  Topology	is	assumed	irrelevant.	
•  Ocen	called	�α-β	model�	and	wriVen	

•  Usually	α	>>	β	>>	Hme	per	flop.	
–  One	long	message	is	cheaper	than	many	short	ones.	

–  Can	do	hundreds	or	thousands	of	flops	for	cost	of	one	message.	
•  Lesson:		Need	large	computaHon-to-communicaHon	raHo	to	be	

efficient.	
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Time = latency + n*cost_per_word 
         = latency + n/bandwidth 

Time = α + n*β 

α + n�β  <<  n�(α + 1�β) 



Alpha-Beta	Parameters	on	Current	Machines	

•  These	numbers	were	obtained	empirically		
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machine α β

T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GigE/MPI 5.854 0.00872

α is latency in usecs 
β is BW in usecs per Byte 

How well does the model 
          Time = α + n*β 
predict actual performance? 



Model	Time	Varying	Message	Size	&	Machines	
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Measured	Message	Time							
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LogP	Model	

	
•  4	performance	parameters	

–  L:	latency	experienced	in	each	communicaHon	event	
•  Hme	to	communicate	word	or	small	#	of	words	

–  o:	send/recv	overhead	experienced	by	processor	
•  Hme	processor	fully	engaged	in	transmission	or	recepHon	

–  g:	gap	between	successive	sends	or	recvs	by	a	processor	
•  1/g	=	communicaHon	bandwidth	

–  P:	number	of	processor/memory	modules	
42	



LogP	Parameters:	Overhead	&	Latency	

•  Non-overlapping	
overhead	

•  Send	and	recv	overhead	
can	overlap	
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EEL = End-to-End Latency 
         = osend + L + orecv 

EEL = f(osend, L, orecv) 
         ≥ max(osend, L, orecv) 



LogP	Parameters:	gap	

•  The	Gap	is	the	delay	between	sending	
messages	

•  Gap	could	be	greater	than	send	overhead	
–  NIC	may	be	busy	finishing	the	processing	

of	last	message	and			cannot	accept	a	new	
one.	

–  Flow	control	or	backpressure	on	the	
network	may	prevent	the	NIC	from	
accepHng	the	next	message	to	send.	

•  No	overlap	⇒	Hme	to	send	n	messages	
(pipelined)	= 			
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Results:	EEL	and	Overhead	
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Data from Mike Welcome, NERSC!



Send	Overhead	Over	Time	

•  Overhead	has	not	improved	significantly;	T3D	was	best	
–  Lack	of	integraHon;	lack	of	aVenHon	in	socware	
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Limita;ons	of	the	LogP	Model	

•  The	LogP	model	has	a	fixed	cost	for	each	message	
–  This	is	useful	in	showing	how	to	quickly	broadcast	a	single	word	
–  Other	examples	also	in	the	LogP	papers	

•  For	larger	messages,	there	is	a	variaHon	LogGP	
–  Two	gap	parameters,	one	for	small	and	one	for	large	messages	
–  The	large	message	gap	is	the	b	in	our	previous	model	

•  No	topology	consideraHons	(including	no	limits	for	bisecHon	
bandwidth)	
–  Assumes	a	fully	connected	network	
–  OK	for	some	algorithms	with	nearest	neighbor	communicaHon,	but	

with	�all-to-all�	communicaHon	we	need	to	refine	this	further	
•  This	is	a	flat	model,	i.e.,	each	processor	is	connected	to	the	

network	
–  Clusters	of	mulHcores	are	not	accurately	modeled		
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Summary	

•  Latency	and	bandwidth	are	two	important	network	metrics	
–  Latency	maVers	more	for	small	messages	than	bandwidth	
–  Bandwidth	maVers	more	for	large	messages	than	bandwidth	
–  Time	=	α	+	n*β	

•  CommunicaHon	has	overhead	from	both	sending	and	
receiving	end	
–  EEL = End-to-End Latency = osend + L + orecv 

•  MulHple	communicaHon	can	overlap	
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Outline	

•  Cluster	IntroducHon	
•  Distributed	Memory	Architectures	

–  ProperHes	of	communicaHon	networks	
–  Topologies	
–  Performance	models	

•  Programming	Distributed	Memory	Machines	using	
Message	Passing	
–  Overview	of	MPI	
–  Basic	send/receive	use	
–  Non-blocking	communicaHon	
–  CollecHves	
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Programming	With	MPI	

•  MPI	is	a	library	
–  All	operaHons	are	performed	with	rouHne	calls	
–  Basic	definiHons	in		

•  mpi.h	for	C	
•  mpif.h	for	Fortran	77	and	90	
•  MPI	module	for	Fortran	90	(opHonal)	

50"
Slide source: Bill Gropp, ANL 



MPI:	the	Message	Passing	Interface	

MPI_Init  IniHalizes	MPI.		
MPI_Finalize  Terminates	MPI.		
MPI_Comm_size  Determines	the	number	of	processes.		
MPI_Comm_rank  Determines	the	label	of	calling	process.		
MPI_Send  Sends	a	“unbuffered/blocking”	message.		

MPI_Recv  Receives	a	“unbuffered/blocking	message.	
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The	minimal	set	of	MPI	rou;nes.	

It	is	possible	to	write	fully-funcHonal	message-passing	programs	by	using	only	the	
six	rou;nes.		



SPMD	Program	Models	
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•  SPMD	(Single	Program,	MulHple	Data)	for	parallel	regions	
–  All	PEs	(Processor	Elements)	execute	the	same	program	in	

parallel,	but	has	its	own	data	
–  Each	PE	uses	a	unique	ID	to	access	its	porHon	of	data	
–  Different	PEs	can	follow	different	paths	through	the	same	

code	
	
•  Each	PE	knows	its	own	ID	

				
	

•  SPMD	is	by	far	the	most	commonly	used	paVern	for	
structuring	parallel	programs	
–  MPI,	OpenMP,	CUDA,	etc	

 if(my_id == n) {   } 
 else {    } 



Finding	Out	About	the	Environment	

•  Two	important	quesHons	that	arise	early	in	a	parallel	
program	are:	
–  How	many	processes	are	parHcipaHng	in	this	
computaHon?	

– Which	one	am	I?	
•  MPI	provides	funcHons	to	answer	these	quesHons:	

–  MPI_Comm_size	reports	the	number	of	processes,	size	
–  MPI_Comm_rank	reports	the	rank,	a	number	between	0	and	

size-1,	idenHfying	the	calling	process	
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Hello	World	(C)	
#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 
 
Try	this	on	login.secs.oakland.edu		
mpicc mpihello.c 
mpd& 
mpirun –np 4 ./a.out 
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Notes	on	Hello	World	

•  All	MPI	programs	begin	with	MPI_Init	and	end	with	
MPI_Finalize	

•  MPI_COMM_WORLD	is	defined	by	mpi.h	(in	C)	or	mpif.h	
(in	Fortran)	and	designates	all	processes	in	the	MPI	�job�	

•  Each	statement	executes	independently	in	each	process	
–  including	the	printf/print statements	

•  Libc	I/O	is	NOT	part	of	MPI-2	
–  print	and	write	to	standard	output	or	error	not	part	of	either	

MPI-1	or	MPI-2	
–  output	order	is	undefined	(may	be	interleaved	by	character,	

line,	or	blocks	of	characters),	

•  To	run	with	4	processes	
mpirun –np 4 a.out 
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Some	Basic	Concepts	

•  Processes	can	be	collected	into	groups	
•  Each	message	is	sent	in	a	context,	and	must	be	
received	in	the	same	context	
–  Provides	necessary	support	for	libraries	

•  A	group	and	context	together	form	a	communicator	
•  A	process	is	idenHfied	by	its	rank	in	the	group	
associated	with	a	communicator	

•  There	is	a	default	communicator	whose	group	contains	
all	iniHal	processes,	called	MPI_COMM_WORLD 
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Communicators		

•  A	communicator	defines	a	communica>on	domain	
–  A	set	of	processes	that	are	allowed	to	communicate	with	each	

other.		
•  InformaHon	about	communicaHon	domains	is	stored	in	
variables	of	type	MPI_Comm.		

•  Communicators	are	used	as	arguments	to	all	message	
transfer	MPI	rouHnes.		

•  A	process	can	belong	to	many	different	(possibly	
overlapping)	communicaHon	domains.		

•  MPI_COMM_WORLD	includes	all	the	processes.		
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MPI	Basic	Send/Receive	

•  We	need	to	fill	in	the	details	in	

•  Things	that	need	specifying:	
–  How	will	�data�	be	described?	
–  How	will	processes	be	idenHfied?	
–  How	will	the	receiver	recognize/screen	messages?	
–  What	will	it	mean	for	these	operaHons	to	complete?	
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Process 0 Process 1 

Send(data) 
Receive(data) 
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MPI	Datatypes	

•  The	data	in	a	message	to	send	or	receive	is	described	by	a	
triple	(address,	count,	datatype),	where	

•  An	MPI	datatype	is	recursively	defined	as:	
–  predefined,	corresponding	to	a	data	type	from	the	language	

(e.g.,	MPI_INT,	MPI_DOUBLE)	
–  a	conHguous	array	of	MPI	datatypes	
–  a	strided	block	of	datatypes	
–  an	indexed	array	of	blocks	of	datatypes	
–  an	arbitrary	structure	of	datatypes	

•  There	are	MPI	funcHons	to	construct	custom	datatypes,	in	
parHcular	ones	for	subarrays	

•  May	hurt	performance	if	datatypes	are	complex	
59"
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MPI	Tags	

•  Messages	are	sent	with	an	accompanying	user-defined	
integer	tag,	to	assist	the	receiving	process	in	idenHfying	
the	message	

•  Messages	can	be	screened	at	the	receiving	end	by	
specifying	a	specific	tag,	or	not	screened	by	specifying	
MPI_ANY_TAG	as	the	tag	in	a	receive	

•  Some	non-MPI	message-passing	systems	have	called	
tags	�message	types�.		MPI	calls	them	tags	to	avoid	
confusion	with	datatypes	
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MPI	Basic	(Blocking)	Send	

 
 
 
 
MPI_SEND(start, count, datatype, dest, tag, 
comm) 

•  The	message	buffer	is	described	by	(start, count, 
datatype). 

•  The	target	process	is	specified	by	dest,	which	is	the	rank	of	the	
target	process	in	the	communicator	specified	by	comm. 

•  When	this	funcHon	returns,	the	data	has	been	delivered	to	the	
system	and	the	buffer	can	be	reused.		The	message	may	not	
have	been	received	by	the	target	process.	
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A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 



MPI	Basic	(Blocking)	Send	

 
 
 
 
MPI_RECV(start, count, datatype, source, tag, 
comm, status) 

•  Waits	unHl	a	matching	(both	source and tag)	message	is	
received	from	the	system,	and	the	buffer	can	be	used	

•  source is	rank	in	communicator	specified	by	comm,	or	
MPI_ANY_SOURCE 

•  tag is	a	tag	to	be	matched	on	or	MPI_ANY_TAG 
•  receiving	fewer	than	count occurrences	of	datatype is	OK,	

but	receiving	more	is	an	error	
•  status contains	further	informaHon	(e.g.	size	of	message)	
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A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 



A	Simple	MPI	Program	
#include �mpi.h� 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
 
  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
          &status ); 
    printf( �Received %d\n�, buf ); 
  } 
 
  MPI_Finalize(); 
  return 0; 
} 63"Slide source: Bill Gropp, ANL 
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Retrieving	Further	Informa;on	

•  Status is a data structure allocated in the user�s 
program. 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 
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Tags	and	Contexts	

•  SeparaHon	of	messages	used	to	be	accomplished	by	use	of	
tags,	but	
–  this	requires	libraries	to	be	aware	of	tags	used	by	other	

libraries.	
–  this	can	be	defeated	by	use	of	�wild	card�	tags.	

•  Contexts	are	different	from	tags	
–  no	wild	cards	allowed	
–  allocated	dynamically	by	the	system	when	a	library	sets	up	a	

communicator	for	its	own	use.	
•  User-defined	tags	sHll	provided	in	MPI	for	user	convenience	
in	organizing	applicaHon	
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Running MPI Programs 
•  The MPI-1 Standard does not specify how to run an MPI program, just 

as the Fortran standard does not specify how to run a Fortran program. 

•  In general, starting an MPI program is dependent on the 
implementation of MPI you are using, and might require various scripts, 
program arguments, and/or environment variables. 

•  mpiexec <args>  is part of MPI-2, as a recommendation, but not a 
requirement, for implementors. 

•  Use  
    mpirun –np # -nolocal a.out 
for your clusters, e.g. 
    mpirun –np 3 –nolocal cpi 
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MPI is Simple 

•  Many parallel programs can be written using just these 
six functions, only two of which are non-trivial: 
–  MPI_INIT 
–  MPI_FINALIZE 
–  MPI_COMM_SIZE 
–  MPI_COMM_RANK 
–  MPI_SEND 
–  MPI_RECV 
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The	three	examples	

•  Send/receive	
•  Ping-poing	
•  Ring	
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MPI	References	

•  The	Standard	itself:	
–  at	hVp://www.mpi-forum.org	
–  All	MPI	official	releases,	in	both	postscript	and	HTML	

•  Other	informaHon	on	Web:	
–  hVp://www.mcs.anl.gov/mpi	

•  pointers	to	lots	of	stuff,	including	other	talks	and	tutorials,	a	
FAQ,	other	MPI	pages	

–  hVps://compuHng.llnl.gov/tutorials/mpi/	
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Books	on	MPI	
•  Using	MPI:		Portable	Parallel	Programming		

with	the	Message-Passing	Interface	(2nd	edi>on),		
by	Gropp,	Lusk,	and	Skjellum,	MIT	Press,		
1999.	

•  Using	MPI-2:		Portable	Parallel	Programming		
with	the	Message-Passing	Interface,	by	Gropp,		
Lusk,	and	Thakur,	MIT	Press,	1999.	

•  MPI:		The	Complete	Reference	-	Vol	1	The	MPI	Core,	by	Snir,	OVo,	
Huss-Lederman,	Walker,	and	Dongarra,	MIT	Press,	1998.	

•  MPI:	The	Complete	Reference	-	Vol	2	The	MPI	Extensions,	by	
Gropp,	Huss-Lederman,	Lumsdaine,	Lusk,	Nitzberg,	Saphir,	and	
Snir,	MIT	Press,	1998.	

•  Designing	and	Building	Parallel	Programs,	by	Ian	Foster,	Addison-
Wesley,	1995.	

•  Parallel	Programming	with	MPI,	by	Peter	Pacheco,	Morgan-
Kaufmann,	1997.	
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